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Abstract. In our recent work on the measurement of (collective) in-
telligence, we used a dynamic intelligence test to measure and com-
pare the performances of artificial agents. In this paper we give a de-
tailed technical description of the testing framework, its design and
implementation, showing how it can be used to quantitatively eval-
uate general purpose, single- and multi-agent artificial intelligence
(AI). The source code and scripts to run experiments have been re-
leased as open-source, and instructions on how to administer the test
to artificial agents have been outlined. This will allow evaluating new
agent behaviours and also extending the scope of the test. Alterna-
tive testing environments are discussed along with other consider-
ations relevant to the robustness of multi-agent performance tests.
The intuition is to encourage people in the AI community to quanti-
tatively evaluate new types of heuristics and algorithms individually
and collectively using different communication and interaction pro-
tocols, and thus pave the way towards a rigorous, formal and unified
testing framework for general purpose agents.

1 INTRODUCTION
One of the major research questions at the present state of artificial
intelligence is: how smart groups of artificial agents are compared
to individual agents? Measuring machine intelligence is a complex
topic that has been tackled by a large number of theories and is not
yet fully understood as discussed in [24], [22, Section 2] and [21,
Chapter 5]. Besides that, the design and study of agent systems has
widely expanded in the last few years as agent models are increas-
ingly being applied in a wide range of disciplines in the purpose of
modelling complex phenomena.

In our previous work on the measurement of collective intelli-
gence [9, 7, 8] we identified a range of factors that hinder the effec-
tiveness of individual and interactive AI agents. This was achieved
by implementing a dynamic intelligence test based on the litera-
ture of artificial general intelligence and algorithmic information the-
ory [23, 22, 25]. We have used it to measure and compare the perfor-
mance of individual, and collectives of, artificial agents across sev-
eral environmental and interactive settings.

In this paper we give detailed technical description of our dynamic
intelligence testing framework. We discuss its design and implemen-
tation and show how it can be used to quantitatively evaluate general
purpose AI individually, and also collectively using various interac-
tion protocols. As anticipated in our recent work [9], the source code
and scripts to run experiments have been released as open-source,
and instructions on how to administer the test to artificial agents have
been outlined. Consequently, it is now possible to evaluate new agent

1 Faculty of IT, Clayton, Monash University, Australia, email:
{nader.chmait,yuanfang.li,david.dowe,david.green}@monash.edu

behaviours, and easily extend the scope of the evaluation framework.
The intuition is to encourage people in the AI community to evaluate
new types of heuristics and algorithms in individual and collective
scenarios using different communication and interaction protocols.
This will hopefully pave the way towards a rigorous, formal and uni-
fied testing framework for general purpose artificial agents.

2 BACKGROUND

Perhaps a good start to understand the history of machine intelligence
would be to take a look back at the imitation game [43] proposed by
Turing in the 1950s where the idea is to have one or more human
judges interrogating a program through an interface, and the program
is considered intelligent if it is able to fool the judges into thinking
that they are interrogating a human being. While this was once re-
garded as an intelligence test for machines, it has limitations [34]
and is mainly a test of humanness. The machine intelligence quo-
tient (MIQ) using fuzzy integrals was presented in [1] in 2002. How-
ever, determining a universal intelligence quotient for ranking artifi-
cial systems is not very practical and is almost unmeasurable due to
the vast non-uniformity in the performances of different types of arti-
ficial systems. Several studies [5, 11, 12, 14, 25, 36] have investigated
the relevance of compression [11, Sections 2 and 4], pattern recogni-
tion, and inductive inference [13, Section 2] to intelligence. Shortly
after [5, 11, 12, 25] came the C-test [19] which was one of the first
attempts to design an intelligence test consisting of tasks of quantifi-
able complexities. However, the test was static (non-dynamic) and
it did not fully embrace the vast scope implicit in the notion of in-
telligence. In 2007, Legg and Hutter proposed a general definition
of universal (machine) intelligence [30], and three years later a test
influenced by this new definition, namely the Anytime Universal In-
telligence Test, was put forward by Hernandez-Orallo and Dowe [22]
in order to evaluate intelligence. The test was designed to be admin-
istered to different types of cognitive systems (human, animal, arti-
ficial), and examples environment classes illustrating the features of
the test were also suggested in [22].

To the best of our knowledge, further to single agent intelli-
gence [1, 19, 30, 22], no formal intelligence tests were developed
in the purpose of quantifying the intelligence of groups of interactive
agents against isolated (non-interactive) agents - which is one of the
motivations behind this work. Yet, before we proceed with the de-
scription of our work, one question that might come to a reader’s
mind is: can’t we simply evaluate and compare artificial systems
over any given problem or environment from the literature? There
are several reasons why we can’t do that, most of them were studied
and examined in [22]. We briefly summarise some of these princi-
ples. Firstly, there is a risk that the choice of the environment used



for evaluation is biased, and that it favours particular types of agents
while it is unsuitable for others. Furthermore, the environment should
handle any level of intelligence in the sense that dull or brilliant, and
slow or fast systems can all be adequately evaluated. The test should
return a score after being stopped at any time-period, short or long.
Besides, not every evaluation metric is a formal intelligence test or
even at a minimum, a reliable performance metric. For instance, the
testing environment should be non-ergodic but reward-sensitive with
no sequence of actions leading to heaven (always positive) or hell
(always negative) scoring situations, and balanced [20] in the sense
that it must return a null reward to agents with a random behaviour,
etc.

Although the principle advantage of this work is measuring the
intelligence of artificial agents, the outcome also has implications
for agent-based systems. This is because it provides an opportunity
to predict the effectiveness (and expected performance) of existing
artificial systems under different collaboration scenarios and problem
complexities. In other words, it’s one way of looking at (quantifying)
the emergence of intelligence in multi-agent systems.

We begin by introducing our methodology for evaluating intelli-
gence using an agent-environment architecture (Section 3). We then
re-introduce and elaborate on the Λ∗ (Lambda Star) testing environ-
ment structure described in [9] (Section 4). We discuss the test imple-
mentation, its setup and parameters, in Section 5 and also give exam-
ples of how to define and evaluate new agent behaviours over the pro-
posed testing environment. We then discuss in Section 6 some alter-
native testing environments that might be useful to quantify the per-
formance of artificial agents and raise some arguments and consid-
erations relevant to the robustness of multi-agent performance tests.
We conclude in Section 7 with a brief summary.

3 AGENT-ENVIRONMENT FRAMEWORK

A common setting in most approaches to measuring intelligence is to
evaluate a subject over a series of problems of different complexities
and return a quantitative measure or score reflecting the subject’s per-
formance over these problems [22]. In artificial systems, the agent-
environment framework [30] is an appropriate representation for this
matter. For instance, this framework allows us to model and abstract
any type of interactions between agents and environments. It also
embraces the embodiment thesis [2] by embedding the agents in a
flow of observations and events generated by the environment.

Here we define an environment to mean the world where an agent
π, or a group of agents {π1, π2, . . . , πn}, can interact using a set
of observations, actions and rewards [30]. The environment gener-
ates observations from the set of observations O, and rewards from
R ⊆ Q, and sends them to all the agents. Then, each agent per-
forms actions from a limited set of actions A in response. An itera-
tion or step i stands for one sequence of observation-action-reward.
An observation at iteration i is denoted by oi, while the correspond-
ing action and reward for the same iteration are denoted by ai and
ri respectively. The string o1a1r1o2a2r2 is an example sequence of
interactions over two iterations between one agent and its environ-
ment. An illustration of the agent-environment framework is given
in Figure 1. We define the multi-agent-environment framework as
an extension of the above, such that oi,j , ai,j and ri,j are respec-
tively the observation, action and reward for agent πj at iteration i.
The order of interactions starts by the environment sending observa-
tions to all the agents at the same time. Then, the agents interact and
perform corresponding actions, and finally the environment provides
them back with rewards. For instance, the first interaction of agents

Agent Environment

Observation

Reward

Action

Figure 1: Agent-environment framework [30]

π1, π2 in the multi-agent-environment setting, denoted by o1a1r1, is
equivalent to o1,1o1,2a1,1a1,2r1,1r1,2.

4 EVALUATING INTELLIGENCE

In order to assess the performances of AI agents, whether in isola-
tion or collectively, we needed an environment over which we can
run formal intelligence tests (of measurable complexities) on artifi-
cial agents using the recently described framework. Hence, we devel-
oped in our recent work [9] an extension of the Λ environment [28,
Sec. 6][22] - one of the environment classes implementing the theory
behind the “Anytime Universal Intelligence Test” [22].

One of the reasons for selecting the Anytime Universal Intelli-
gence Test and the Λ environment was because they are derived
from formal and mathematical backgrounds that have been practi-
cally used to evaluate diverse kinds (including machines) of enti-
ties [26, 7, 8, 27]. More importantly, our selection embraces all of the
concerns we raised in the introduction regarding the measurement of
intelligence, thus providing us with a formal, anytime, dynamic and
unbiased setting [22] to quantitatively evaluate the effectiveness of
artificial agents.

4.1 The Λ∗ (Lambda Star) Environment

We re-introduce the Λ∗ (Lambda Star) environment class used in [9]
which is an extension of the Λ environment [22, Sec. 6.3][28] that
focuses on a restricted - but important - set of tasks in AI.

The general idea is to evaluate an agent that can perform a set
of actions, by placing it in a grid of cells with two special objects,
Good (⊕) and Evil (	), travelling in the space using movement pat-
terns of measurable complexities. The rewards are defined as a func-
tion of the position of the evaluated agent with respect to the posi-
tions of ⊕ and 	.

4.1.1 Structure of the test

An environment space is an m-by-n grid-world populated with ob-
jects from Ω = {π1, π2, . . . , πx,⊕,	}, the finite set of objects. The
set of evaluated agents Π ⊆ Ω is {π1, π2, . . . , πx}. Each element
in Ω can have actions from a finite set of actions A ={up-left, up,
up-right, left, stay, right, down-left, down, down-right}. All objects
can share the same cell at the same time except for⊕ and	 where in
this case, one of them is randomly chosen to move to the intended cell
while the other one keeps its old position. In the context of the agent-
environment framework [30], a test episode consisting of a series of
ϑ interactions oiairi such that 1 ≤ i ≤ ϑ, is modelled as follows:

1. the environment space is first initialised to an m-by-n toroidal
grid-world, and populated with a subset of evaluated agents from
Π ⊆ Ω, and the two special objects ⊕ and 	,
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2. the environment sends to each agent a description of its range of 1
Moore neighbour cells [17, 48] and their contents, the rewards in
these cells, as an observation,

3. the agents (communicate/interact and) respond to the observations
by performing an action in A, and the special objects perform the
next action in their movement pattern,

4. the environment then returns a reward to each evaluated agent
based on its position (distance) with respect to the locations of
the special objects,

5. this process is repeated again from point #2 until a test episode is
completed, that is when i = ϑ.

The Λ∗ environment consists of a toroidal grid space in the sense
that moving off one border makes an agent appear on the opposite
one. Consequently, the distance between two agents is calculated us-
ing the surpassing rule (toroidal distance) such that, in a 5-by-5 grid
space for example, the distance between cell (1, 3) and (5, 3) is equal
to 1 cell. An illustration of the Λ∗ environment is given in Figure 2.

	

⊕

π1

π2

π3

π4

π5 π6

πi agent; 99K path of 	; · · · > path of ⊕;
rewards: -1.0←�����→+1.0

Figure 2: A diagrammatic representation of a sample 10-by-10 Λ∗

environment space used in [9] to evaluate the performance of (groups
of interactive) artificial agents. The figure shows the objects in Ω, the
paths of the two special objects and an illustration of the (positive
and negative) rewards in the environment.

4.1.2 Rewarding function

The environment sends a reward to each evaluated agent from the set
of rewards R ⊆ Q where −1.0 ≤ R ≤ 1.0. Given an agent πj , its
reward rij ∈ R at some test iteration i can be calculated as:

rij ←
1

d(πj ,⊕) + 1
− 1

d(πj ,	) + 1

where d(a, b) denotes the (toroidal) distance between two objects
a and b. Recall that an agent does not have a full representation of
the space and only receives observations of its (range of 1 Moore)
neighbourhood [17, 48]. Therefore, we constrain the (positive and
negative) rewards an agent receives from the environment (as a func-
tion of its position with respect to ⊕ and 	 respectively) as fol-
lows: the positive reward πj receives at each iteration is calculated as
1/(d(πj ,⊕) + 1) if d(πj ,⊕) < 2, or 0 otherwise. Likewise its neg-
ative reward at that iterations is−1/(d(πj ,	) + 1) if d(πj ,	) < 2,

or 0 otherwise. Its total reward, rij at iteration i, is the sum of its
positive and negative rewards received at that iteration.

4.2 Algorithmic Complexity
We regard the Kolmogorov complexity [32]2 of the movement pat-
terns of the special objects as a measure of the algorithmic com-
plexity K(µ) of the environment µ in which they operate. For in-
stance, a Λ∗ environment of high Kolmogorov complexity is suffi-
ciently rich and structured to generate complicated (special object)
patterns/sequences of seeming randomness.

The Kolmogorov complexity [32] (Definition 1) of a string x is
the length of the shortest program p that outputs x over a reference
(Turing) machine U .

Definition 1 Kolmogorov Complexity

KU (x) := min
p : U(p)=x

l(p)

where l(p) denotes the length of p in bits, andU(p) denotes the result
of executing p on a Universal Turing machine U .

Assume, for example, that the special object ⊕ moves in a 5-by-5
grid space. It has an ordered (and repeating) movement pattern trav-
elling between cells with indices: 7, 3, 4, 9 and 8 (grayed cells ap-
pearing in Figure 3) such that, in a 25-cell grid, indices 1, 2 and 6
correspond respectively to cells with coordinates (1, 1), (1, 2) and
(2, 1) and so on (Figure 3). Also assume that the number of time
steps in one test episode ϑ = 20. Following algorithmic informa-
tion theory, namely Kolmogorov complexity, we consider the al-
gorithmic complexity of the environment K(µ) in which ⊕ oper-
ates as the length of the shortest program that outputs the sequence
73498734987349873498 (of length ϑ). We measure the Lempel-Ziv
complexity [31] of the movement patterns as an approximation to
K(µ) as suggested in [31, 15].

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 3: A conceptual representation of a 5-by-5 grid space and its
cell indices ranging from 1 to 25.

Note that, at one test episode, the movement patterns of the special
objects ⊕ and 	 are different but (algorithmically) equally complex
making sure the rewards are balanced [20]. The recurrent segment
of the movement pattern is at least of length one and at most bϑ/2c,
cyclically repeated until the final iteration (ϑ) of the test.

4.3 Search Space Complexity
We measure the search space complexity H(µ) as the amount of
uncertainty in µ, expressed by Shannon’s entropy [38]. Let N be

2 The concept of Kolmogorov complexity or algorithmic information theory
(AIT) is based on independent work of R. J. Solomonoff [39, 40, 41] and
A. N. Kolmogorov [29] in the first half of the 1960s, shortly followed by
related work by G. J. Chaitin [3, 4]. The relationship between this work and
the Minimum Message Length (MML) principle (also from the 1960s) [45]
is discussed in [46][44, Chapter 2 and Section 10.1][10, Sections 2 and 6].
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the set of all possible states of an environment µ such that a state
sµ, is the set holding the current positions of the special objects
{⊕,	} in the m-by-n space. Thus the number of states |N | in-
creases with the increase in the space dimensions m and n, and it
is equal to the number of permutation m×nP2 = (m×n)!

(m×n−2)!
. The

entropy is maximal at the beginning of the test as, from an agent’s
perspective, there is complete uncertainty about the current state of
µ. Therefore p(sµ) follows a uniform distribution and is equal to
1/|N |. Using log2 as a base for our calculations, we end up with:
H(µ) = −

∑
sµ∈N p(sµ) log2 p(sµ) = log2 |N | bits.

Algorithmic and search space complexities could be combined
into a higher level complexity measure of the whole environment.
This new measure can be very useful to weight test environments
used for the measurement of universal intelligence. Nonetheless,
having two separate measures of complexity also means that we can
quantify the individual influence of each class (or type) of complexity
on the performance of agents. This approach appears to be particu-
larly useful for evaluating the factors influencing the performance of
agent collectives as these collectives can exhibit different behaviors
in response to changes in the measures of each class of environment
complexity [9, Section 7].

Overall, we appraise the Λ∗ environment, at a minimum, as an ac-
curate measure of the subject’s ability of performing over a class of:
inductive-inference, compression, and search problems, all of which
are particularly related to intelligence [25, 14]. Note, however, that
we will use the term intelligence to describe the effectiveness or ac-
curacy of an evaluated agent over this test.

4.4 Intelligence Score
The metric of (individual agent) universal intelligence defined in [22,
Definition 10] was extended into a collective intelligence metric
(Definition 3) returning an average reward accumulation per-agent
measure of success (Definition 2) for a group of agents Π, over a
selection of Λ∗ environments (Section 4.1).

Definition 2 Given a Λ∗ environment µ and a set of (isolated or in-
teractive) agents Π = {π1, π2, . . . , πn} to be evaluated, the (av-
erage per-agent per-iteration) reward R̃Π,µ,ϑ of Π over one test

episode of ϑ-iterations is calculated as: R̃Π,µ,ϑ =
∑n
j=1

∑ϑ
i=1 r

i
j

n×ϑ .

Definition 3 The (collective) intelligence of a set of agents Π is de-
fined as: Υ(Π) = 1

ω

∑
µ∈L R̃Π,µ,ϑ, where L is a set of ω environ-

ments {µ1, µ2, . . . , µω} such that ∀µt, µq ∈ L : H(µt) = H(µq),
and ∀µi ∈ L,K(µi) is extracted from a range of (pattern) algorith-
mic complexities in ]1,Kmax].

Note the use of the same search space complexity, but different
algorithmic complexities, in the intelligence measure defined in Def-
inition 3. The reason behind this is to allow for running controlled
experiments to test against the influence each class of complexity
has on intelligence separately in a similar manner to [9, Sections 7.3
and 7.6].

5 IMPLEMENTATION DETAILS AND
EXPERIMENTAL PROTOCOL

In this section we discuss some important test functionalities and
experimental parameters, and give technical description of example
agent behaviours showing how they can be practically evaluated over
the Λ∗ environment.

5.1 Setup and Test Parameters
The intelligence test was implemented in C++, and the source code
and scripts to run experiments have been released as open-source [6],
with good efforts made to facilitate their re-usability.

Once the test is compiled and run, a new experiment is initiated.
The number of test episodes ω, as well as the number of iterations in
each episode, for that experiment can be entered into the command-
line. Setting ω to 1000 episodes (runs) usually records a very small
standard deviation between the test scores3. The size of the environ-
ment (and thus the search space uncertainty H(µ)) as well as the
number of agents to be evaluated can also be selected prior to each
experiment. The robustness of the test scores depends on the size of
the environment so it might be desirable to select a larger value of ω
for larger environment spaces.

In each episode, agents are administered over different pattern
complexities K(µ) automatically generated by the test, such that
K(µ) ∈ [2, 23], where a K(µ) of 23 corresponds to, more or less,
complex pattern prediction or recognition problems. Moreover, in
each episode, the evaluated agents are automatically re-initialised to
different spatial positions in the environment. At the end of each ex-
periment the (intelligence) scores (in the range [−1.0, 1.0]) of the
evaluated agents and collectives, averaged over all test episodes, are
displayed on the screen and also saved to file.

Agents can be evaluated in isolation as well as collectively follow-
ing the agent environment framework described in Section 3. For in-
stance, the test provides us with three key methods implementing the
(multi) agent-environment framework . Let µ̃ be an instance of the
test environment Λ∗ and Π a set of agents to be evaluated. The meth-
ods sendObservations(Π, k) and sendReward(Π, i) could be in-
voked on µ̃ at each iteration i of the test in order to send observations
and rewards respectively to all agents in Π, where k ∈ N+ refers to
the kth-Moore neighbourhood selected as the evaluated agents’ ob-
servation range. At each iteration of the test, after receiving an obser-
vation, each agent in Π invokes its own method performAction()
which returns a discrete action in the range [1, 9], such that an ac-
tion in {1, 2, 3, 4, 5, 6, 7, 8, 9} maps position-wise to {up-left, up,
up-right, left, stay, right, down-left, down, down-right}. The selected
action is subsequently used to update the agent’s position in the en-
vironment.

5.2 Defining Agent Behaviours
We have defined an abstract class Agent with many declared func-
tionalities that will come out to be essential for implementing and
evaluating new agent behaviours over the Λ∗ environment.

New isolated (non-interactive) agent behaviours can be introduced
as (one of the) subclasses of Agent, providing implementations for
its abstract methods as necessary. Interactive agent behaviours, on
the other hand, are polymorphic classes redefining and extending the
behaviour of their isolated agent’s superclass.

Homogeneous collectives of interactive agents are aggregations
of two or more interactive agents of the same behaviour (class). A
simplified UML class diagram illustrating the relationships between
isolated and collective agent behaviours is illustrated in Figure 4.
Likewise, heterogeneous collectives of agents can be defined as ag-
gregations of two or more interactive agents of different behaviours
(classes). Examples of (isolated and collective) agent behaviours are
described in the next two subsections.

3 Usually a standard deviation of less than 0.001 is recorded between identi-
cal experiments.
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«abstract»
Agent

position
perform action

Random agent

perform action

Local search agent

perform action

2...n
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Local search collective

Interactive Local search agent

perform action
communicate

Figure 4: A simplified UML class diagram illustrating the relation-
ships between some isolated and collective agent behaviours.

5.2.1 Isolated agent behaviours

In this subsection, we give a description of some agent behaviours4

which could be evaluated over the Λ∗ environment.
Local search agent: given an agent πj , we denote by cij and r(cij)

the cell where πj is located at iteration i, and the reward in this cell
respectively. LetN i

j andR(N i
j) denote respectively the set of neigh-

bour cells of agent πj (including cij) at iteration i, and the reward
values in these cells. R(cij , a) is a function that returns the reward
agent πj gets after performing action a ∈ A when it is in cell cij .
The behaviour of a local search agent πj at iteration i is defined as
follows:

aij ← arg max
a∈A

R(cij , a).

If all actions return an equivalent reward, then a random action in A
is selected.

Q-learning agent: in this reinforcement learning behaviour, the
evaluated Q-learning [47] agent learns using a state-action pair qual-
ity function, Q : S × A → R, in order to find the action-selection
policy that maximises its rewards. Each test episode of ϑ iterations is
equivalent to one training session. Because the testing environment
is dynamic, we define a Q-learning state si ∈ S that an agent πj oc-
cupies at iteration i as the pair {cij , i} consisting of πj’s current cell
position cij and the current iteration i, thus leading to a total number
of states |S| = m × n × ϑ, in a m-by-n environment space, over
one test episode. The Q-Learning behavior over one training session
is illustrated in Algorithm 1. We use the notations from the previous
(Local search agent) paragraph. After training is complete, the eval-

4 Several agent behaviours (isolated and collectives) other than those dis-
cussed in this paper have also been implemented and are made available
in [6] for both testing and modification.

Algorithm 1 Q-Learning agent behavior over one training session.

1: Initialize: learning rate α and discount factor γ.
2: Begin
3: for iteration i← 0 to ϑ− 1 do . loop over iterations
4: si ← {cij , i} . set current state
5: execute aij ← arg maxa∈AQ(si, a) . perform action

6: si+1 ← {ci+1
j , i+ 1} . set new (post-action) state

7:
Q(si, a

i
j) = Q(si, a

i
j)+ . update Q-table

α

[
R(cij , a

i
j) + γmax

a∈A
Q(si+1, a)−Q(si, a

i
j)

]
8: end for
9: End

uated agent simply travels between states by performing the actions
with the highest reward values recorded in its Q-table.

Expert agent: an expert or oracle agent knows the future move-
ments of the special object ⊕. At each step i of an episode this agent
approaches the subsequent i + 1 cell destination of ⊕ seeking max-
imum payoff. However, if ⊕ has a constant movement pattern (e.g.,
moves constantly to the right) pushing it away from the oracle, then
the oracle will move in the opposite direction in order to intercept
⊕ in the upcoming test steps. Once it intercepts ⊕, it then continues
operating using its normal behaviour.

Random agent: a random agent randomly choses an action from
the finite set of actionsA at each iteration until the end of an episode.

The scores of the random and oracle agents could be used as a
baseline for the intelligence test scores of artificial agents, where a
random agent is used as a lower bound on performance while the
expert agent is used as an upper bound.

5.2.2 Agent collectives

The isolated agents could also be evaluated collectively (in groups)
using a communication protocol to interact between one another. We
propose a simple algorithm for enabling communication between
local search agents using stigmergy [16] which is a form of indi-
rect communication. For instance, we let local search agents induce
fake rewards in the environment, thus indirectly informing neighbour
agents about the proximity of the special objects. Note that fake re-
wards will not affect the score (real reward payoff) of the agents.

Let R̂(N i
j) denote the set of fake rewards in the neighbour cells

of agent πj (including cij) at iteration i, and R̂(cij , a) is a function
returning the fake reward agent πj receives after performing action
a ∈ A when it is in cell cij at iteration i. Fake rewards are induced
in the environment according to Algorithm 2. Each agent proceeds

Algorithm 2 Stigmergic or indirect communication: fake reward
generation over one iteration i of the test.

1: Input: Π (set of evaluated agents), 0 < γ < 1 (fake reward discounting
factor), a test iteration i.

2: Initialize: ∀πj ∈ Π: R̂(N i
j)← 0.0.

3: Begin
4: for j← 1 to |Π| do . loop over agents
5: rmax ← maxR(N i

j)

6: rmin ← minR(N i
j)

7: r̂ ← γ · rmax + (1− γ) · rmin
8: R̂(N i

j)← R(N i
j) + r̂

9: end for
10: End

by selecting an action by relying on fake rewards this time instead of
the real rewards, as follows: aij ← arg max

a∈A
R̂(cij , a). If all actions
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are equally rewarding, then a random action is selected. Thereupon,
we expect local search agents using stigmergy to form non-strategic
coalitions after a few iterations of the test as a result of tracing the
most elevated fake rewards in the environment.

In the case of Q-learning collectives, the agents in the collective
could share and update a common Q-table, and thus all learn and
coordinate simultaneously.

5.3 Modularity and Code Re-use
We have provided a large set of functionalities which might come
in handy when amending and extending the current scope of the
test, and for defining new agent behaviours to be evaluated. These
functionalities can be found in the utility class General in [6] un-
der the directory /src/General.cpp. Moreover, we have used
UnitTest++ [33], a lightweight unit testing framework for C++ over
Windows, in order to allow for easy defect isolation, assist in vali-
dating existing and newly implemented functionality, and encourage
code review.

5.4 Experimental Demonstration
An example of an executable test experiment can be found in the
main method in [6]. Similar types of experiment were conducted in
our previous work [9] in order to identify and analyse factors influ-
encing the intelligence of agent collectives. For instance, using the
Λ∗ environment, one could evaluate several types of multi-agent sys-
tems and quantitatively measure how:

• the complexity of the environment (its uncertainty and algorithmic
complexity),

• the communication protocol used between the agents,
• the interaction time,
• and the agents’ individual intelligence

all reflect (individually but also jointly) on the collective performance
of the system. This can be easily achieved by running a series of
controlled experiments in which the values (of one or more) of the
above factors are altered.

6 ALTERNATIVE ENVIRONMENTS AND
FURTHER CONSIDERATIONS

As mentioned in Section 4.1, the Λ∗ (Lambda Star) environment
focuses on a restricted set of canonical tasks particularly relevant to
the intelligence of AI agents. Nonetheless, the generalisation of these
canonical tasks does not account for a range of multiagent problems.
In particular, the tasks to perform in the Λ∗ environment are a nice
abstraction of two problems in the literature (among others): search-
ing for a moving target while avoiding injury, and nest selection when
there is one and only one best nest. But these tasks do not cover other
important multi-agent problems like those that require coordination
(e.g., lifting and moving a table).

6.1 Measuring Multi-agent Coordination
Coordination is an important feature in multi-agent systems which
has a high influence on their performance. Measuring coordination
between interactive agents can be a difficult task. The scope of the
Λ∗ (Lambda Star) environment does not currently account for the

measurement of coordination between agents, but we are consider-
ing extensions to assess this. For instance, problems that require co-
ordination could have been evaluated if the payoff received from the
Good object⊕ (Section 4.1) had only occurred if two or more agents
were in its neighborhood.

Another interesting extension to the test setting is to enable the
environment to respond to the agent’s behaviour and actions. Testing
can be performed in an even more heterogeneous setting where the
agents don’t have the same reward function and/or actions and obser-
vations, and to give more attention or weight to the agent’s learning
(ability), which is an important aspect of intelligence.

Moreover, other properties like (environment) coverage could be
evaluated by dispersing agents in the space to monitor what is hap-
pening in the environment (e.g., monitoring which neighborhoods
are/are not explored by the agents).

6.2 Fitness Landscapes
Lambda Star (Λ∗) is one of many environments which can be used to
evaluate artificial agents. A famous problem in AI is to evaluate the
performance of artificial agents over fitness landscapes consisting of
many local optima but only one global optimum. The landscapes re-
flect evaluations of some fitness or utilisation function over a set of
candidate solutions. Adaptive landscapes can be considered where
the underlying fitness evolves or changes over time. We have im-
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Figure 5: A screen-shot from the early stages of a simulation of a
fitness landscape with many local optima but only one global opti-
mum. Colors (and their different intensities showing in the right-hand
side color-bar) represent fitness (ranging between [−1.0, 1.0]), or the
quality of the landscape, at different spatial positions. The black stars
represent agents navigating or searching the landscape.

plemented a performance test based on the abovementioned problem
description (by extending the Λ∗ environment) and further designed
a simulation depicting the behavior of (co-operative) artificial agents
exploring a landscape over a period of time. The motivation is to as-
sess the trade-off between exploration and exploitation in a reinforce-
ment learning setting, and investigate the influences of this trade-off
on the agents’ payoffs in a multiple candidate solution space or en-
vironment. A screen-shot from the early stages of that simulation is
given in Figure 5.

6.3 Further Thoughts on Robust Intelligence Tests
The same way collective intelligence can emerge between artificial
agents (due, for example, to the wisdom of the crowd [42], informa-
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tion sharing, reduction in entropy, etc.), pluralistic ignorance [37] is
also a common phenomenon observed in many social settings which
can occur between rational agents. Robust intelligence tests should
be able to detect such a phenomenon. For instance, the field of game
theory has highlighted several scenarios where cooperation between
agents does not leads to an optimal payoff (e.g., the famous prisoner’s
dilemma [35]). A robust intelligence test should be general enough
to reflect and evaluate such scenarios.

Other multi-agent phenomena witnessed in various social settings
reflect how agents acting individually might perform adversely to
the common good, and thus deplete their available resources as a
consequence of their collective behavior. A robust intelligence test
should allow for a quantitative assessment of the tragedy of the com-
mons [18] phenomena occurring in multi-agent scenarios.

7 CONCLUSIONS

This paper provides a technical description of the design and imple-
mentation of the Λ∗ environment which can be used to evaluate gen-
eral purpose AI agents both in isolation and collectively. The high-
level evaluation architecture, based on an agent-environment frame-
work, is discussed. The source code and scripts to run experiments
have been released as open-source, and instructions on how to admin-
ister the test to existing and new artificial agents have been outlined
and supported by examples.

We have also proposed and discussed some alternative testing en-
vironments that might be useful to quantify the performance of arti-
ficial agents. We further raised some arguments and considerations
(in connection with pluralistic ignorance and the tragedy of the com-
mons phenomena) that are relevant to the robustness of multi-agent
performance tests.

Having presented the above, we encourage people in the AI com-
munity to evaluate new, more advanced, types of heuristics and algo-
rithms over the Λ∗ environment, and also extend its scope to include
new functionality. Multi-agent systems can now be assessed using
various interaction and communication protocols. This indicates that
the performance of agent collectives can be quantitatively evaluated
and compared to that of individual agents. This might help answer
many open questions in AI regarding the emergence of collective in-
telligence in artificial systems.
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