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Abstract. Recent progress in machine learning, on predictive tasks
in particular, is usually claimed on the basis of performance com-
parisons. Due to the limitation of application scenarios and com-
putational resources, most people cannot evaluate their work on a
large variety of tasks and datasets, and it has become tricky for both
reviewers and readers to verify individual performance gains for a
given approach. In this paper we investigate possible approaches to
achieve better efficiency on model benchmarking. For a large col-
lection of datasets, rather than training and testing a given approach
on every individual dataset, we seek methods that allow us to pick
only a few representative datasets to quantify the model’s goodness,
from which to extrapolate to performance on other datasets. To this
end, we adopt existing approaches from psychometrics: specifically,
Item Response Theory and Adaptive Testing. Both are well-founded
frameworks designed for educational tests. We propose certain mod-
ifications following the requirements of machine learning experi-
ments, and present some initial results and insights in this paper.

1 Introduction

Thanks to the recent popularity of machine learning and artificial in-
telligence techniques, researchers and practitioners now have very
considerable choice of models and learning algorithms when facing
a given task. However, as choices come with deliberations, to select
an appropriate model is also becoming more and more challenging.
From a traditional view, performing a good model selection typically
involves two steps. (1) To gather related work and hence seeking
for existing comparisons. (2) Prepare a shortlist and run the mod-
els within the targeted task for more detailed and local comparisons.
However, given the number of research areas and datasets available
now, there are few if any research papers that provide a comprehen-
sive benchmark on all related datasets. Furthermore, for publication
reasons, people tend to show the datasets where the proposed ap-
proaches have improvements, making it even harder to obtain a fair
and comprehensive view of different methods [8]. Regarding the sec-
ond step, given the rapidly rising in computational demands among
recent approaches, it is also often impractical to cover a broad set
of experiments simultaneously. While there have been platforms like
OpenML [18] that aims to collect running results via standard con-
figurations, it still requires relatively large sets of new experiments
once a novel task/method is introduced. These additional experi-
ments could take a non-trivial time to run given OpenML’s crowd-
sourcing nature. Although certain research areas and methods can
come with formal guarantees, these only cover limited scenarios, and
most practices in the field still rely on experiments and empirical
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evaluations. Therefore, in this paper, we consider the problem of ef-
ficiently obtaining fair and reliable benchmarking on a set of models
and datasets.

To set up the scenarios of our benchmarking, we first discuss a few
standard experimental settings according to their difficulties to be
provided with a unified benchmark. The most common setting, which
is also the simplest one to benchmark, is the typical predictive ma-
chine learning task. For such tasks, we usually can assume there exist
some labelled datasets and several model classes that can be trained
and tested on any possible combination. Typically, an experiment in-
cludes a set of evaluation measures, and we can simply read the mea-
surements to reflect the performance on any given model-dataset pair.
Another typical setting is to experimentally verify trade-offs between
predictive performance and computational costs, widely seen in ap-
proaches requiring computational approximation, such as Bayesian
inference [1]. While being similar to the first setting, for such exper-
iments, the predictive performance can no longer be directly taken
to compare. That is, we need additional evaluation to incorporate
the evaluation measures, such as running speed and memory require-
ments. While the settings above are mainly quantitative evaluation,
the hardest setting to benchmark is the so-called qualitative perfor-
mance. For such experiments, there is not any fixed or well-accepted
evaluation measure, and subjective opinions decide the goodness of
results. One significant example of this setting is the images synthe-
sised by Generative Adversarial Networks [6], where people often
provide comparisons by case study and annotator voting.

As a starting step, we focus on the first setting and investigate
approaches that, while maintaining the overall computational costs,
can accurately quantify the performances on a large variety of mod-
els and datasets. For this purpose, we refer to the fields of psycho-
metrics and testing in education, and borrow the frameworks of Item
Response Theory (IRT) [11, 17] and Computerised Adaptive Test-
ing (CAT) [7, 20]. Both frameworks work under the same scenario,
where a participant is assigned several items to answer (response). A
typical example would be the case of educational tests, where each
student is a participant, and each test question is an item. IRT hence
refers to a set of statistical models built on the responses from the
participants and items. In IRT, a representative setting is to assume
each participant has an ability parameter, and each item gets a dif-
ficulty parameter. Both parameters can affect the expectation of the
responses. The aim is hence to learn these parameters with some col-
lected responses, which can later provide a ranking or benchmarking.
CAT is a framework further built on top of IRT. While in IRT, the
availability of many responses from different participant-item com-
binations is expected. Sometimes a specific combination might not be
necessary. For instance, it is less informative to give a harder ques-
tion to a student who just failed to answer a much simpler one. The
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purpose of CAT is hence to adaptively select the items according to
previous responses so that the total number of items used in the test
is kept at a relatively low level. From these points, we can see IRT
and CAT indeed fulfils our need for model-dataset benchmarking.

In this paper, where we focus on predictive machine learning, ev-
ery dataset is an item, and each model class is a participant. We aim
to investigate the possibilities of using the IRT and CAT frameworks
to obtain accurate benchmarks on each model-dataset combination
while limiting the total number of experiments. We first give a brief
introduction of the existing approaches from both IRT and CAT in
section 2, following proposed modifications on them for our bench-
marking requirements in section 3. Experiments on some common
model classes and datasets will be presented in section 4, and finally
additional discussions and insights are provided in section 5.

2 Background
In this section we give a brief review of related methods in both IRT
and CAT, together with some notations. We also discuss some exist-
ing work on IRT in machine learning.

2.1 Item Response Theory
Item Response Theory refers to a collection of methods that aims
to measure individual abilities, question (item) difficulties, and other
potential attributes by checking individual responses to a set of ques-
tions (items). Statistically, IRT models are latent variable models,
where the responses are the observations, and abilities, difficulties
and other related parameters are the latent variables to be inferred.
IRT models are of particular use when the responses distribute dif-
ferently according to different items, and simply averaging the re-
sponses does not represent a participant’s ability. IRT is therefore
quite handy while dealing with educational exams, as well as many
physiological tests. When it comes to machine learning experiments,
where different datasets typically come with different baseline per-
formances, IRT hence provides an opportunity to treat the perfor-
mance gains among these datasets fairly.

In the following, we introduce two conventional IRT models and
discuss their parameter settings and applications. We use the notation
θ to denote the parameter of a particular candidate, and use other
notations for item parameters according to the type of IRT models.
The notation R denotes the random variable of the responses.

Two-parameter logistic model

The two-parameter logistic model is defined as follows:

R |Θ = θ ,∆ = δ ,A = a∼ Bernoulli(µ(θ ,δ ,a)) (1)

µ(θ ,δ ,a) =
1

1+ exp
(
−a · (θ −δ )

) (2)

And:

E
[
R |Θ = θ ,∆ = δ ,A = a

]
= µ(θ ,δ ,a) (3)

Var
[
R |Θ = θ ,∆ = δ ,A = a

]
= µ(θ ,δ ,a) ·

(
1−µ(θ ,δ ,a)

)
(4)

Here R∈ {0,1}, θ ∈R is the ability parameter, and δ ∈R is the diffi-
culty parameter. The two-parameter logistic model additionally has a
discrimination parameter a on the items, which controls how the re-
sponse distribution changes when candidate ability varies. Therefore,
assume we have two participants with different abilities, an item with

high discrimination tends to have higher differences between the re-
sponses from the two participants respectively. Positive discrimina-
tion indicates that higher ability leads to higher expectation on the
responses, and vice versa. Besides the two-parameter setting, there
also exists a few variants on the Logistic IRT. The three-parameter
setting further adds a guessing parameter which lower-bounds the
response expectation. A multinomial setting can also be adapted to
support categorical responses beyond the binary setting.

Three-parameter Beta model

While the logistic model supports binary responses, a recently pro-
posed IRT model extends the support to continuous response [5]:

R |Θ = θ ,∆ = δ ,A = a∼ Beta(α(θ ,δ ,a),β(θ ,δ ,a)) (5)

α(θ ,δ ,a) =
(

θ

δ

)a
(6)

β(θ ,δ ,a) =
(1−θ

1−δ

)a
(7)

(8)

And:

E
[
R |Θ = θ ,∆ = δ ,A = a

]
=

α(θ ,δ ,a)

α(θ ,δ ,a)+β(θ ,δ ,a)
(9)

Var
[
R |Θ = θ ,∆ = δ ,A = a

]
= (10)

α(θ ,δ ,a) ·β(θ ,δ ,a)

(α(θ ,δ ,a)+β(θ ,δ ,a))
2 · (α(θ ,δ ,a)+β(θ ,δ ,a)+1)

Here R∈ [0,1] (a bounded continuous response), θ ∈ [0,1], δ ∈ [0,1]
and a ∈ R. Similar to the logistic case, here a is still the discrim-
ination parameter, and can control the change rate of responses ac-
cording to the ratio between ability and discrimination. In addition to
supporting continuous responses, one advantage is that the response
curve of the three-parameter Beta model has various shapes be-
yond the usual sigmoid shape (for a > 1), including inverse-sigmoid
(0 < a < 1), parabolic (a = 1) and even identity (a = 1,δ = 1/2). .

Estimation of IRT parameters

The estimation of IRT parameters proceeds as follows. We assume
to have a bag of L items, denoted as D = {1, . . . ,L}, and a bag
of M participants, denoted as F = {1, . . . ,M}. With a given exper-
iment protocol, we can collect a set of N item-participant-response
tuples, denoted as {(d1, f1,r1), . . . ,(dN , fN ,rN)}. Here di ∈D, fi ∈ F
represents a particular item / participant respectively. Denote θθθ =
{θ1, . . . ,θM} as the parameter vector of abilities of all participants,
ωωω = {ω1, . . . ,ωL} as the vector of item parameters, and g(r;θ ,ω)
as the likelihood function of a selected IRT model. The maximum
likelihood estimation can then be given as:

(ω̂ωω, θ̂θθ) = argmax(ωωω,θθθ)

N

∑
i=1

lng(ri;ωdi ,θ fi) (11)

Among specific applications, we can also see a Bayesian treatment
[19, 5], where the aim is to calculate the full posterior of the param-
eters, rather than the maximum likelihood solution. In this work, we
primarily use the maximum likelihood fitting in order to keep the
computational cost manageable.



2.2 Computerised Adaptive Testing

The fundamental idea of CAT is that, rather than testing a participant
with all the questions or a random sequence of questions, the partici-
pant is given questions selected in real-time (difficulty) based on the
current estimation of ability. We can then update the ability estima-
tion with the response to the selected question, and proceed to select
the next question. Therefore, it is quite common to apply CAT based
on a pre-trained IRT model, where we have estimated the difficulties
(and other parameters) and abilities on a pool of items/participants.

As a result, most CAT approaches include three main compo-
nents: an IRT model, an item selection method, and an item expo-
sure method. As the name suggests, an item selection method deter-
mines, given the current ability estimation, how we select an item
with appropriate difficulty to be the next question, so that we can es-
timate the ability better. Intuitively, we do not want the item to be
too complicated or too simple for the actual ability, as for both cases,
the responses do not give much information on the one’s ability. We
introduce two common item selection methods in the following sec-
tions.

The item exposure method, on the other hand, controls the
marginal frequency/probability that a particular item appears to the
participants. The motivation is that we do not want a small num-
ber of questions to be exposed to the participants continually. Such
high exposure can potentially leak these questions to further partic-
ipants hence affects later responses. In this work, we focus on the
item selection criterion and provide some discussion on item expo-
sure methods at the end of the paper.

Fisher item information

We start with the most commonly adopted approach for item selec-
tion, which uses the criterion of Fisher information [10, 2]. Given
the current candidate ability θ , a selected IRT model with the like-
lihood function g(r;ω,θ), and a set of L items with parameters
{ω1, . . . ,ωL}, the Fisher item information on the jth item is then cal-
culated as:

I(θ ;g,ω j) = ER∼P(ω j ,θ)

[(∂ lng(R;ω j,θ)

∂θ

)2
]

(12)

=
∫

r

(
∂ lng(r;ω j,θ)

∂θ

)2
g(r;ω j,θ)d r (13)

Here P(ω j,θ) refers to the corresponding probability measure of the
IRT model. The Fisher item information calculates the variance of
the likelihood gradient, so that we can find the item(s) that can po-
tentially change the likelihood function to a larger extent.

Kullback-Leibler item information

The KL item information [3, 2] is constructed based on the Kullback-
Leibler divergence between the IRT likelihood g with current ability
θ and the one with a updated ability θ∗. The divergence on the jth
item with parameter ω j is defined as:

KLω j (θ∗ || θ) = ER∼P(ω j ,θ)

[
ln

g(R;ω j,θ)

g(R;ω j,θ∗)

]
(14)

However, during application time we do not have access to the
updated parameter θ∗. Therefore we cannot calculate the KL-
divergence directly. As a solution, we consider the potential informa-

tion from the jth item to be the integrated divergence around the cur-
rent ability θ , given the fact that the KL divergence is non-negative:

KI(θ ,g,ω j) =
∫

θ+ε

θ∗=θ−ε

KLω j (θ∗||θ)dθ∗ (15)

This KL item information is hence an aggregated gain around the
current ability estimation, hence can be used to select the item with
maximal information.

Item exposure control

The problem of controlling exposure rate is as follows, assume we
have pre-trained an IRT model with L items and M participants,
and have picked an item selection method. There exists a marginal
Bernoulli distribution with mean e j, for each item j ∈ {1, . . . ,L}, in-
dicating how likely an item appears to the participants. Since most
item selection method tends to prioritise items that are most helpful
to quantify participant abilities, we can expect for some items this
number will be close to one, that is, the item tends to be selected
for every participant. In contrast, there will also be items that are
unlikely to be assigned at all.

To solve the above issue and ensure the robustness of the testing,
the Sympson-Hetter method [16] proposes to define a maximal ex-
posure rate λ j ∈ [0,1] for each item j. We can then define another
Bernoulli distribution with parameter τ j ∈ [0,1] so that τ j · e j ≤ λ j.
For implementation, since e j is not known for a specific item selec-
tion method, we usually approximated it in an online manner with
existing assignment counts for each item.

An alternative item selection-exposure method is the
discrimination-stratified multistage (or a-stratified multistage)
[4]. It controls the exposure rate by dividing items into several
groups according to their discrimination parameters. During the
procedure, a participant goes from the highest discrimination group
to the lowest discrimination group. Within each group, we select an
item purely based on the distance between current ability and item
difficulties. As this approach avoids considering the information
from the discrimination, the exposure rate of all items tends to be
more balanced. Another benefit is that the item selected in this
method does not require an information criterion to be defined, as it
only requires to compare ability and difficulty.

2.3 Applications in Machine Learning
There has been some recent work adopting the IRT framework for
machine learning model analysis [13, 9, 5]. All three apply IRT on
a model-instance level, that is, seeing a model as a participant and
treating an instance (within a given dataset) as an item. In [13, 9]
the authors use the Logistic model and discuss the interpretation of
the learnt IRT parameters, including models like the always-correct
model (e.g. model predicts the ground truth). The response reflects
whether a model correctly predicts the target class. In [5], the authors
propose the three-parameter Beta model and learn its parameter in a
Bayesian setting (e.g. posterior of the parameters). As the Beta IRT
model supports bounded continuous response, in [5], the authors se-
lected the predicted probability of the correct class as the response.

3 Modifications
We now introduce some modifications on top of existing IRT and
CAT methods so that we can apply them to the problem of model-
dataset evaluation. In general, we consider the following two require-



ments for the IRT and CAT methods. (1) They should support stan-
dard machine learning evaluation metrics, that is, to support the mod-
elling of continuous gain/loss measures. (2) The corresponding item
information should be obtainable analytically or through efficient
approximations. Furthermore, we discuss the preference for non-
negative discrimination in the scenario of a model-dataset bench-
mark.

3.1 Modified logistic IRT
The first modification is on the logistic IRT family. Due to its origi-
nal application scenario, the logistic IRT family was mainly used to
model binary responses. As introduced above, to support CAT with a
continuous response, the IRT needs to model a continuous response
and provides the corresponding likelihood. The original logistic IRT
works on a Bernoulli assumption and the model calculate a mean pa-
rameter in the closed interval [0,1]. While in the case of Bernoulli
distribution, the mean parameter is sufficient to calculate the likeli-
hood, we need to consider other parameterisation for the continuous
case. Although the Beta-3 IRT model uses the Beta likelihood and
supports continuous response by default, it would also be valuable
to keep an IRT model with sigmoid shape for better comparison.
To achieve this, we hence replace the Bernoulli assumption with a
logit-normal assumption in the IRT model. We use the orginal logis-
tic function to calculate the mean of the response, and add a extra s
parameter as the standard deviation:

R |Θ = θ ,∆ = δ ,A = a,S = s∼ Logit-normal(µ(θ ,δ ,a),σ(s))

(16)

µ(θ ,δ ,a) =−a · (θ −δ ) (17)

σs = s (18)

The likelihood is then given as:

p(r | θ ,δ ,a,s) = 1√
2πs2

1
r(1− r)

exp
(
−
(
ln( 1−rr )+a · (θ −δ )

)2

2∗ s2

)
(19)

While the expectation and variance are not analytically available,
they can be obtained by importance sampling:

E[R | θ ,δ ,a,s] = 1
Q

Q

∑
i=1

1
1+ exp(r̃i)

(20)

Var[R | θ ,δ ,a,s] = 1
Q

Q

∑
i=1

( 1
1+ exp(r̃i)

−E[R | θ ,δ ,a,s]
)

(21)

r̃i ∼ Normal(−a · (θ −δ ),s) (22)

With these modifications, the IRT model and corresponding CAT ap-
proaches can work with any bounded continuous response. While
other possible extensions support continuous response [15, 14], we
experimented particularly with the logistic and Beta-3 models given
their close connection.

3.2 Approximate item information with
importance sampling

The second minor modification also aims to incorporate continuous
response. While using binary responses, both Fisher item informa-
tion and KL item information are available analytically. These ana-
lytical results generally are no longer reachable when switching to

IRT models with continuous response. However, as the integration in
both Fisher item information and KL item information is to calculate
an expectation upon a density function, we can approximate them
with importance sampling. We hence use this sampling solution for
both the logistic and Beta-3 IRT in the following experiments.

3.3 Constraint of non-negative discrimination
An implicit assumption for traditional IRT and CAT applications is
that a given item only be tested on a participant once. This assump-
tion is intuitive if we consider the student examination scenario,
where the student will tend to remember the question after seen it
multiple times, and most likely to result in the same response for
any repeated question. The same interpretation applies to the work
on IRT with model-instance combinations, where it gains little infor-
mation when we ask the model to predict the same instance twice.
For such settings, it is understandable that specific items might have
negative discrimination where stronger participants tend to make the
wrong response.

However, in the scenario of model-dataset testing, as seen in many
research experiments, repeated experiments can often provide useful
statistical information. Using the student examination example again,
in machine learning experiments, we include both teaching and test-
ing, but only test on a pre-trained student. Therefore, one key differ-
ence between model-dataset testing from existing IRT applications
is that we are evaluating a learning process. For each test, instead
of having a pre-trained participant to respond to items, we always
start from a blank participant and train them before gathering the re-
sponses. As long as we assume this, there is a learnable pattern from
the dataset, and we can further assume a more robust model should
statistically have better performances, hence non-negative discrimi-
nation. The worst case would be a dataset containing random noise,
and hence gives 0 discrimination. In practice, we can either achieve
this via constrained optimisation during the estimation of IRT param-
eters or directly to estimate the logarithm of discrimination parame-
ters via unconstraint approaches. Alternatively, we can also do it the
Bayesian way, which assumes positive discrimination is more likely
via the prior distribution. However, as we only consider the maximal
likelihood case in this paper, we leave this option as future work.

4 Experiments
In this section, we experimentally investigate the performance of the
IRT and CAT methods discussed above. As an initial investigation,
we address the following questions. (1) Given a set of standard ma-
chine learning evaluation measures, which types of IRT provides bet-
ter modelling on the responses? (2) For similar settings, which item
selection method provides the most benchmarking efficiency?

We first introduce the settings of our experiments. Then, on the
IRT side, we compare the inference errors on responses using a stan-
dard train-test split setting. Regarding the CAT methods, we compare
them on three types of results: (1) The decay of the mean squared er-
ror (MSE) on the inferred response, given a validation set. (2) The
decay of negative log-likelihood (NLL) on inferred responses, given
a validation set. (3) The ranks of the selected datasets.

4.1 Setup
We select six standard evaluation measures: (1) multi-class accuracy,
(2) Brier score, (3) Log-loss, (4) weighted averaged binary accuracy,
(5) weighted averaged binary AUC, (6) weighted averaged binary



Figure 1: Inference errors of the IRT models on different evaluation
measures

F-measure. Here all the losses are bounded with [0,1] except the log-
loss. We hence perform post-processing on the log-loss. We define an
upper bound by calculating the logarithm of a tiny positive number,
then the entire bound is rescaled to the range of [0,1]. Furthermore,
we use the negative value of Brier score and log-loss to fit the IRT
models, so that they become measures on gain (e.g. larger values
indicate better results), in line with the other evaluation measures.

We select a set of datasets and model classes (described below),
and run each model-dataset combination with 50% random train-test
split ten times. We use these results to train both Beta-3 and logistic
IRT models.

For adaptive testing we selected the gradient boosting classifier as
the candidate model, and run it with all the datasets ten times using
the same setting above. These results are using as a validation set.
During the adaptive testing, each time we update the model ability,
we use the trained IRT to infer an expected response/pdf on response.
We also calculate the corresponding MSE / NLL with the validation
set and compare different IRT and CAT approaches. In principle, a
better IRT-CAT combination should have a lower inferred error, as
well as a faster convergence speed to the final MSE / NLL.

We use the 165 datasets provided by PMLB [12], which is a pre-
processed collection of UCI datasets on various classification tasks.
For computational efficiency, for all the datasets with more than
10,000 instances, we sample it down to 10,000 instances while ap-
proximately keeping the marginal distribution of the target variable.
We leave testing larger datasets for future work.

We selected 9 model classes from the sklearn package: (1) multi-
layer perceptron (MLP), (2) K nearest neighbours (KNN), (3) sup-
port vector machine (SVM), (4) pseudo Gaussian process (GP), (5)
decision tree (TREE), (6) random forest (RF), (7) Ada boosting
(ADA), (8) naive Bayes (NB), (9) logistic regression (LR).

For each model class, we selected eight different parameter set-
tings to form different model instances, resulting in a total number
of 72 models. For instance, for the MLP we choose various numbers
of hidden units in a two-layer setting. Regarding the GP, here we call
it pseudo models as sklearn does not support any sparse modelling.
We hence perform a simple random sampling on the training set. We
first randomly select one data point for each class, then further sam-

ple random data points from the entire training set.

4.2 Comparing IRT approches
The first experiment we performed was to investigate whether the
IRT models can accurately model and infer the test results. For this
purpose, we perform a random split experiment on the collected re-
sponses from the 165 datasets and 72 models. That is, we divided
the collected responses into a training set and a test set, and use the
training set to train the IRT models, then the test set can be applied to
verify the expected responses from each IRT model. Figure 1 shows
the results, where we compare them with the root mean squared er-
rors on the inferred performances on the expectations, note here these
errors are computed based on the measure after rescaling. As the re-
sults show, Logistic IRT achieves a lower RMSE on 5 out of 6 eval-
uation measures, and Beta-3 IRT only performs better on log-loss.
One of the possible reasons is that, after the rescale, log-loss tends to
distribute close to the upper bound (e.g. as the lower bound can be
hardly achieved by any reasonable model), thus making the Beta dis-
tribution more suitable to fit the distribution. Otherwise, the Logistic
model tends to be more stable, given its Gaussian assumption.

4.3 Comparing IRT and CAT pairs
As discussed above, for the second experiment, we use different IRT
and item selection approaches to test the candidate gradient boost-
ing classifier. We start the testing by assuming the candidate model
to have an averaged ability, then keep testing the model and updat-
ing its ability until we have tested all the datasets. At each test step,
we record the RMSE and NLL using the validation set. Figure 2
shows the decay of the root mean square error on each IRT model
and item selection criterion pairs, and Figure 3 gives the negative
log-likelihood.

The results sow that, while the logistic IRT mostly performs bet-
ter in the previous experiments, here we have more cases where the
Beta-3 IRT achieves a lower inference error, as seen e.g. with F-
measure. In general, the performance on RMSE and NLL seem to
be dominated by the IRT models. These results are mostly differ-
ent when we switch from the Logistic IRT model to the Beta-3 IRT
model or vice versa, while not being affected much by different item
selection criterion. In terms of decaying speed, most results show
an immediate decay within the first five tests, and the rest tests do
not contribute much on the inference error. Exceptions include the
F-score for both MSE and NLL, as well as the log-loss in NLL.

To further understand the selected test sequence from each IRT
and item selection approach, here we further calculate the pair-wise
rank correlation (Kendall’s tau), and the results are in Figure 4. On
the top level, it shows that the test sequences tend to be similar be-
tween the same IRT model while being significantly uncorrelated be-
tween the Beta-3 IRT and Logistic IRT. This observation indicates
that the item selection methods play a less important role here, and
this is mainly the case for the Logistic IRT. A strong correlation ap-
pears between the Fisher item information and KL item information
among all the evaluation measures. However, Beta-3 IRT only shows
a similar level of correlation in multi-class accuracy, and the correla-
tion is weaker among other evaluation measures.

5 Discussion
From the results above, here we discuss several messages. (1) IRT
models have a critical role in the benchmark. A suitable IRT model



(a) Multi-class accuracy (b) Brier score (c) Log-loss

(d) Weighted averaged binary accuracy (e) Weighted averaged binary AUC (f) Weighted averaged binary F-measure

Figure 2: Root mean squared error of the adaptive testing sequence of the gradient boosting classifier

(a) Multi-class accuracy (b) Brier score (c) Log-loss

(d) Weighted averaged binary accuracy (e) Weighted averaged binary AUC (f) Weighted averaged binary F-measure

Figure 3: Negative log-likelihood of the adaptive testing sequence of the gradient boosting classifier

can indeed lead to better inference on the test results, without spend-
ing much effort on further testing. However, neither IRT model ex-
perimented with in this paper appear to dominate on all evaluation
measures, suggesting considerable room for further investigation. (2)
Adaptive testing can effectively reduce the total number of experi-
ments. For most evaluation measures, we can indeed observe a sig-
nificant decay on the inference error with a small number of tests. (3)
Item exposure control is worth further consideration in the bench-
marking process. The trained IRT model shows a reliable power on
dominating the test sequences, meaning the same IRT will prefer
to suggest the same combination of datasets at the beginning of the
benchmark. While we didn’t explore it in this paper, such behaviour
can potentially lead to over-fitting, as it encourages the developers to
focus on the performance on the first few datasets.
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