Efficient Graph Classification In Shifted Datasets using Weighted Correlated Feature Selection

Md. Samiullah¹, Chowdhury Farhan Ahmed², Anna Fariha¹, Akiz Uddin Ahmed¹ ¹ Department of Computer Science and Engineering, University of Dhaka, Bangladesh

² ICube Laboratory, University of Strasbourg, France

Presenter:

Chowdhury Farhan Ahmed

OUTLINE

Introduction Background Study Related works & Motivation Contributions Proposed Approach ► Conclusions

INTRODUCTION

- Recently Machine Learning and Data Mining fields are experiencing a trend of dataset shift
- Inter-domain Knowledge is extracted and utilized to improve learning system performance
- Graph, a sophisticated data structure, is capable of capturing effective correlation among objects
- Classification of graphs have great impact on real life applications e.g. human behavior prediction in social networks
- Applications involved knowledge transferring requires specialized classifier model
- Designing a classifier, capable of inter-domain knowledge capturing, is challenging and demanding

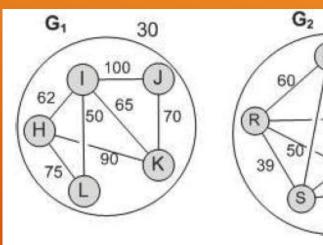
BACKGROUND

- Graph classification is important for predicting behavior or type or class of unknown graphs
- Graph classification is done by:
 - Feature selection
 - Classification
- $\succ \text{ Correlation of a graph } G_{s}gConfidence(G_{s}) = \frac{|G_{s}=subgrapg(G \in GD)|}{\max_{\forall e_{i} \in E(G_{s} \in GD)} \{freq(e_{i})\}}$

Here for G1, Numerator = 30, Denominator = 100 Therefore, gConfidence(G1) = 0.3 and for G2, Numerator = 30, Denominator = 60. Therefore, gConfidence(G2) = 0.5

gConfidence(G1) < gConfidence(G2)

Hence, G2 is more inherently correlated than G1



30

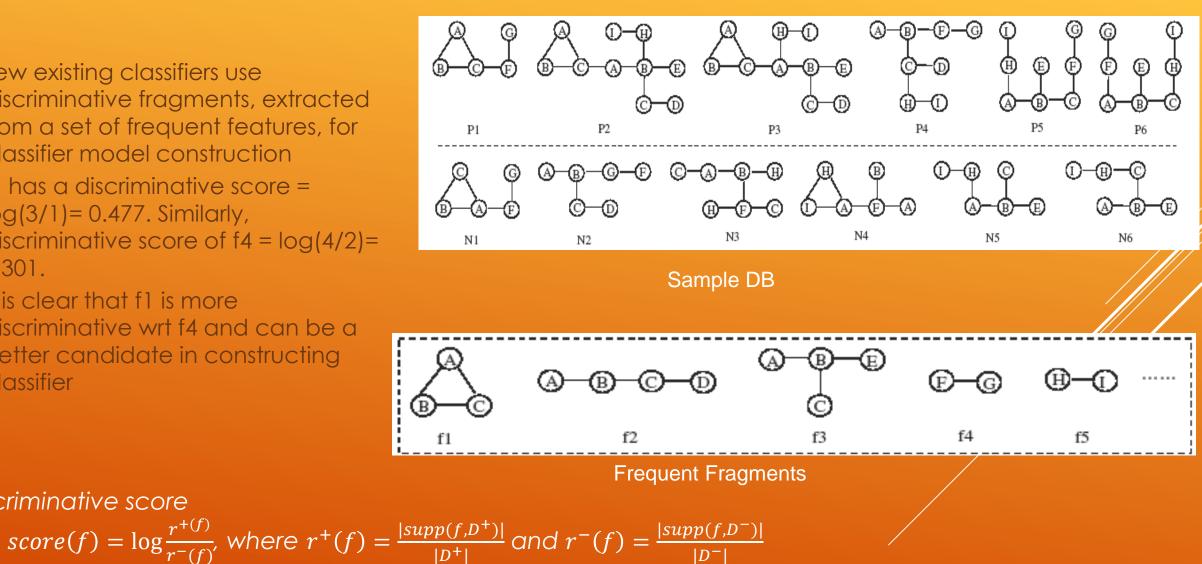
45

40

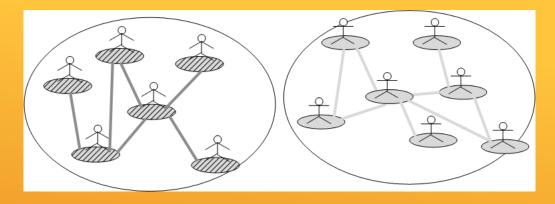
BACKGROUND ...

- Few existing classifiers use discriminative fragments, extracted from a set of frequent features, for classifier model construction
- f1 has a discriminative score = log(3/1) = 0.477. Similarly, discriminative score of f4 = log(4/2) =0.301.
- It is clear that f1 is more discriminative wrt f4 and can be a better candidate in constructing classifier

Discriminative score



RELATED WORKS & MOTIVATIONS



- For classifying graphs and model construction, some approaches [Yan et al, SIGMOD'08] mined features from frequent graphs and some [Jin et al, CIKM'09] considered cooccurring subgraphs. There exist some approaches [Zhu et al, CIKM'12] which additionally considered diversity among features for better classification.
- Existing graph based transfer learning approaches mined significant (frequent) subgraphs using semi-supervised learning method [Shi et al, SDM'12] and some alleviated knowledge from domain to domain using graphs [Jingrui et al, CIKM'09].
- > No other earlier model considered correlation among entities during classification
- Correlation is a key indicator for classification of graphs and transferring knowledge between domains
- ► Scenario:
 - A social network (facebook, Twitter, LinkedIn) with several groups can be divided into classes based on their behavior.
 - The behavioral classification can be more effective by considering correlation among the persons. A group of researcher, students, businessmen and other professionals in a network like FaceBook can be better classified and the knowledge can be used in Twitter.

CONTRIBUTIONS

- Correlation based feature selection
- New diversity capturing score is proposed
- Effective classifier construction for classifying graphs
- Neural Network based leaning method to adjust the classifier in transferred environment

PROPOSED APPROACHES: MEASURES

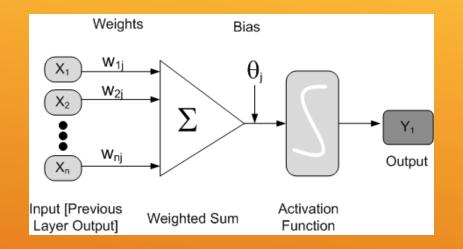
- ► gDistance(G_1, G_2) = $\sum_{i=1}^5 a_i \times cf_i$
 - > a_i represents the number of operation to convert G_2 into G_1 for
 - Addition of (i=1) vertices, (i=2) edges,
 - Deletions of (i=3) vertices, (i=4) edges and
 - Reversing (i=5) edge directions
 - > cf_i is the cost factor (weight of operations)
- gDistance(f1, f2) = 3. Since, the edge (A, C) need to be deleted and the vertex "D" along with edge (C, D) should be added to convert f1 into f2.

f4

 f_{5}

- $\succ Diversity(G) = \min_{\forall sG, sG = subset(G)} gDistance(G, sG)$
- > $CDDF(G) = w \times gConfidence(G) + (1 w) \times Diversity(G)$
- $\blacktriangleright Score_{CDDF} = log \frac{CDDF^+(G)}{CDDF^-(G)}$
- The score will be positive for positive labeled graphs and similarly negative for negative graphs.

PROPOSED APPROACHES: MODEL



- X₁, X₂ ... X_n are treated as input layer units for n Independent Variables and initialized as usual
- Classification output is Y, the dependent variable with the domain {0,1} for binary classification
- The model with *m* number of hidden layer and *h* number of units per layer have following units: H_{1,1}, H_{1,2}, ..., H_{1,h}, H_{2,1}, H_{2,2}, ..., H_{2,h}, ..., H_{m,1}, H_{m,2}, ..., H_{m,h}
- Connection weights between q^{th} and $(q+1)^{th}$ layer units r and s, respectively, are denoted as $W_{(q,r),(q+1,s)}$.

PROCEDURES

- Two Sets of best-k features F^+ and F^- are extracted from two source datasets D^+ and D^- which constitutes a set of n-features {f1, f2, ..., fn} with highest correlated and discriminative feature score is selected and a weight of 1 is assigned [where $n \le 2^*k$]
- Suppose in target domain, there are a few graphs G_L for learning and several unlabeled graph G_T for testing.
- Then NN based backpropagation algorithm is applied to adjust the weights of the features wrt the class labels of the graphs G_L.
- The feature weight adjustment is performed for every graph of the training dataset.
- Then for any newly coming graph of G_T with unknown label is tested for coverage by the features in both dataset.
- Now, the sum of positive feature weights and sum of negative feature weights are considered for log ratio calculation to estimate the label of the testing graph in target domain.

CONCLUSIONS

- Graph classification, especially in the transfer learning domain, is one of the most crucial topics in state-of-the-art machine learning research
- For the first time we have proposed a correlation based graph classification approach as well as a new diversity capturing measure, which are used for developing classification model
- Neural network based learning model is proposed that can be used for compensating the changes in transferred learning environments
- Currently we are working on experimental analysis to evaluate the performance of our approach and its supremacy.

