

Sigurd Spieckermann^{1,2}, Siegmund Düll^{1,3}, Steffen Udluft¹, Thomas Runkler^{1,2}

¹ Siemens AG – Corporate Technology – Learning Systems, Otto-Hahn-Ring 6 – 81739 Munich, Germany
² Technical University of Munich – Department of Informatics, Boltzmannstr. 3 – 85748 Garching, Germany
³ Berlin University of Technology – Machine Learning, Franklinstr. 28-29 – 10587 Berlin, Germany

Unrestricted © Siemens AG 2014. All rights reserved

Introduction

- (n+1) similar dynamical systems **S**₁,...,**S**_{n+1}
- Sufficient observations from S_1, \dots, S_n , few from S_{n+1}
- Goal: Learn state transition function for S_{n+1}
- Approach:
 - Transfer learning through parameter transfer
 - Exploiting similarity between S₁,...,S_{n+1}

System Identification

- Initial state: s_1
- Action sequence: $a_1, ..., a_t$
- Successor state sequence: $S_2, ..., S_{T+1}$

• Learn:
$$s_2, ..., s_{T+1} = f(s_1, a_1, ..., a_T)$$

$$L(\hat{s}_{2,\dots,T+1}, s_{2,\dots,T+1}) = \frac{1}{2T} \sum_{t=1}^{T} \left\| s_{t+1} - \hat{s}_{t+1} \right\|_{2}^{2}$$

 $h_0 = W_{hs}s_1 + b_0$ $h_{t+1} = \tanh(W_{ha}a_t + W_{hh}h_t + b_h)$ $\hat{s}_{t+1} = W_{sh}h_t + b_s$ $s_1 - W_{hs} + b_0$ b_0

 \hat{S}_{t+1}

 h_{t+1}

 a_t

 W_{hh}

 h_t

 W_{sh}

 W_{ha}

b

 b_h

Factored Tensor RNN

Factored Tensor RNN

Unrestricted © Siemens AG 2014. All rights reserved

Experiments – Cart-Pole

	CP1	CP2	CP3	CP4	CP5	CP6
pole length (*)	0.50	0.6	0.7	0.8	0.9	U(0.3,1.1)
pole mass	0.1 · (*)	0.1.(*)	0.1 · (*)	0.1 · (*)	0.1 (*)	0.1 · (*)
$ D_T $	10 000	10 000	10 000	10 000	10 000	156
$ D_V $	5000	5000	5000	5000	5000	78
$ D_G $	—	_	-	—	_	100 000

Experiments – Cart-Pole

Experiments – Mountain Car

State: (x, \dot{x})

Experiments – Mountain Car

	MC1	MC2	MC3	MC4	MC5	MC6
gravity	0.0010	0.0015	0.0020	0.0025	0.0030	U(0.0005,0.005)
$ D_T $	10 000	10 000	10 000	10 000	10 000	156
$ D_V $	5000	5000	5000	5000	5000	78
$ D_G $	_	_	_	_	—	100 000

Experiments – Mountain Car

Conclusion

- Factored Tensor RNN is a new approach for system identification through transfer learning
- FTRNN was consistently superior to other considered RNN-based approaches on the CP and MC simulations