
LMCE 2014 - Nancy, 19th September 2014 



◦ Introduction 
◦ Multidimensional contexts 
◦ Experiments 
 Datamarts 
 Techniques 
 Context plots 
 Results 
◦ Conclusions and Future work 

2 



◦ Many applications use structured information 
in several dimensions 
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◦ Data mining models are not designed to take 
hierarchical attributes 
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◦ Two alternatives: 
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 One model for each operating 

context and apply it for that level 
of aggregation 
 
 

 One more versatile model at the 
lowest operating context and then 
aggregate its predictions 
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 Unified genomic variation repository to allow biologists to perform 
efficient recovery tasks about genomic mutations and their phenotype. 

 Original schema: 
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Fact:  
There are 37 variations in chromosone 5 causing diseases of the category 

“cancer” with specialisation M discovered in 2012 and provided by any databank 

VARIATION 
(fact) 

GENOTYPE 
(where) 

PHENOTYPE 
(what) 

DATE 
(when) 

DBANK 
(from where) 

SPEC 
(how) 

 5 dimensions and 48 possible multidimensional contexts (cubes). 
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 This is an artificial dataset constructed from IBM sales information. 

 Original schema: 
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SALES 
(fact) 

CLASS 
(what) 

PRODUCT 
(what) 

PERIOD 
(when) 

STORE 
(where) 

Fact:  
The sale for class X of product “tomato” with promotion Y in 

september 2013 at Valencia store was 24,242 units (453,252 dollars) 

PROMO 
(how) 

 5 dimensions and 84 possible multidimensional contexts (cubes). 
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 This dataset represents car fuel consumption and emissions. 

 Original schema: 
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Fact:  
CO2 emission for car C within the euro standard with engine capacity X from year 

2013 diesel and with automatic transmission had a concentration of 350 

CO2 

(fact) 

TRANS 
(what) 

EURO 
(what) 

TIME 
(when) 

CAR 
(what) 

Engine 
(what) 

FUEL 
(what) 

 6 dimensions and 96 possible multidimensional contexts (cubes). 
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 We used four techniques: 

◦ MEAN 

◦ LRW (linear regression from Rweka) 

◦ M5P (regression tree from Rweka) 

◦ KNN (package kknn in R) 
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 SE: The higher the aggregation the higher the magnitudes 
but the number of rows decreases, so the magnitudes will 
be comparable. 
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 Multidimensional context plots (MDC): 

◦ Normalised Squared Error (NSE) of a method (M) 
 
 
 
 
 

◦ We use the SL.MEAN model since it will be constant for the 
multidimensional context during deployment. 

◦ We just see whether M is better or not than the mean model. 
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 Multidimensional context plots (MDC): 

◦ Reduction Coefficient (RC) indicator, given a deployment 
dataset (D) 
 
 
 
 

◦ RC goes from 0 (no aggregation) to 1 (all rows are collapsed 
into one row). 

◦ RC is a very useful way of locating each point in the plot 
according to how much aggregated the context is. 
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◦ No sparseness  this allows the models to 
  make better predictions 
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◦ LL: any bias in these predictions will accumulate further up and will 
         lead to high error. 
◦ SL: the models are learnt from aggregated data, and many rows will be 
         aggregated into single rows with measures that are no longer zero. 

N
SE  Average 
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◦ MD data: the same task can change significantly  
  depending on the level of aggregation 

◦ Reframing vs. Retraining dilemma 

◦ New plots and metrics 

◦ Best choice depends on the dataset/technique but … 
 if !(sparse)  LL  
 LL-KNN generally works fine … M5P generally loses 

◦ Resources are an important criterion 
 LL is more versatile and economical 
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◦ Find more datamarts and other ways of splitting 
  the data 

◦ Propose new plots and metrics 

◦ LL approach using a quantification procedure 

◦ Disaggregation: work at an upper level and then 
  disaggregate 

◦ Specific techniques devised for the MD setting: 
• MD kNN, MD Decision Trees, MD Naive Bayes, etc. 
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Thank you 
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