
Optimizing Area Under Roc Curve with SVMs
Alain Rakotomamonjy 1

Abstract. For many years now, there is a growing interest around
ROC curve for characterizing machine learning performances. This
is particularly due to the fact that in real-world problems misclassifi-
cation costs are not known and thus, ROC curve and related metrics
such as the Area Under ROC curve (AUC) can be a more mean-
ingful performance measures. In this paper, we propose a quadratic
programming based algorithm for AUC maximization and show that
under certain conditions 2-norm soft margin Support Vector Ma-
chines can also maximize AUC. We present experiments that com-
pare SVMs performances to those of other AUC maximization based
algorithms and provide empirical analysis of SVMs behavior with
regards to ROC- based metrics. Our main conclusion is that SVMs
can maximize both AUC and accuracy compared to other algorithms
like RankBoost that optimize only AUC 2.

1 Introduction

At the present time, some of the most important tasks in data-mining
are classification, regression and information retrieval. Each of this
domain proposes methods and algorithms that provide support for
decision making and thus assessing their performances is a crucial
problem. Usually, these algorithms come along with several param-
eters that can considerably modify their behavior and performances
making the importance of appropriately selecting these parameters
easily understandable.

Traditionally, evaluation of a learned model is done by minimiz-
ing an estimation of a generalization error or some other related mea-
sures [20]. However, accuracy (the rate of correct classification) of a
classifier, which is the most frequently used performance measure,
is not necessarily a good one. In fact, when the data are strongly
unbalanced, accuracy may be misleading since the all-positive or
all-negative classifier may achieve a very good classification rate.
And situations for which data sets are unbalanced arise frequently
in real-world problems and in these cases, model evaluation is done
by means of other criteria than accuracy [23, 14]. Metrics extracted
from ROC curve can be a good alternative for model evaluation, since
they can make the difference between errors on positive or negative
examples [12]. Besides, ROC curve can provide a set of hypothesis
that are optimal according to some misclassification cost distribu-
tions and this can be interest since error costs are not necessarily
known during learning. Hence, providing the final user a set of clas-
sifier is preferable, because he will be able choose the appropriate
classifier according to his knowledge of costs.

However, If the goal is to achieve the best performance under a
ROC based metrics, several works have shown that it is better to

1 P.S.I CNRS FRE 2645, INSA de Rouen, France email:
alain.rakotomamonjy@insa-rouen.fr

2 Parts of this paper have already been submitted to the Modelling, Compu-
tation and Optimization Conference, Metz 2004

use a specific induction principle [21, 2]. In fact, optimizing clas-
sification accuracy or the mean-square error of a classifier does not
necessarily imply good ROC curve performance. Hence, several al-
gorithms have recently been developed for optimizing the ROC curve
[5, 7, 4, 23, 13] and they have been proven to work well with some
different degrees of success, whereas some other works [10, 15] have
shown that those metrics can been useful for model selection.

Support Vector Machines are now well-founded and largely used
machine learning algorithms [18, 20]. They have been proved to be
very effective on several real-world problems. Genuine SVMs im-
plementation supposes that misclassification costs are equal for both
classes, and thus SVMs are not suitable for problems which violated
this hypothesis. Lin et al. [11] provided some simple extension of
SVMs for non-standard situations in which error costs are not equal.
However, these approaches assume that misclassification costs are
known during training since they are based on different penaliza-
tions of positive and negative examples. Thus, if the data are strongly
unbalanced and/or misclassification cost unknown, a ROC curve ap-
proach is still of interest.

Our aim in this paper is to propose a algorithm that optimizes an
approximation of the Area Under ROC curve. We will show that the
optimization problem that we achieve is very similar to the SVM’s
one and that there is connection between our so-called ROC opti-
mizer SVM and classical SVMs. From this, one can deduce that in
certain conditions, SVMs actually optimize the Area under the ROC
curve.

This paper is organized as follows : Section 2 gives a brief back-
ground on ROC curve. Section 3 formally defines the problem of
optimizing AUC with SVM. After having derived the algorithm, a
short analysis is provided which suggests that 2-norm SVMs maxi-
mize the area under the roc curve in some feature space. In section 4,
we provide some empirical analysis of these SVMs algorithms and
we experimentally compare SVMs to other algorithms, such as Rank-
Boost, with respects to the AUC measure. Finally, section 5 gives a
conclusion and proposes some perspectives of this work.

2 ROC curve

The Receiver Operating Characteristics curve has been introduced
by the signal processing community in order to evaluate the capabil-
ity of an human operator to distinguish informative radar signal from
noise. Then, it has mostly been used in the medical decision making
community for assessing the usefulness of a diagnostic test.

ROC curve is a two-dimensional measure of classification perfor-
mance. It can be understood as a plot of the probability of correctly
classifying the positive examples against the rate of incorrectly clas-
sifying true negative examples. In this sense, one can interpret this
curve as a comparison of the classifier performance across the en-
tire range of class distributions and error costs. Usually, decision rule



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC curve 

Figure 1. Example of ROC curve. The diagonal line denotes the ROC
curve of a random classifier.

is performed by selecting a decision threshold which separates the
positive and negative classes. Thus, when dealing with minimum er-
ror classifier, most of the time this threshold is set in order to ap-
proximate the Bayes error rate. However, class distributions or error
costs can be so that the optimal threshold associated to the Bayes risk
varies within a large range of values, and for each possible value of
this threshold a pair of true-positive and false-positive performance
rate is thus obtained. Hence, ROC curve can be completely deter-
mined by varying this threshold value. Thus, one of the most interest-
ing point of ROC curve is that if error costs or class distributions are
unknown, classifier performance can still be characterized and opti-
mized. Figure (1) depicts an example of the ROC curve of a given
classifier. The diagonal line corresponds to the ROC curve of a clas-
sifier that predicts the class at random and the performance improves
the further the curve is near to the upper left corner of the plot.

The most frequently used performance measure extracted from the
ROC curve is the value of the area under the curve, commonly de-
noted as AUC. When AUC is equal to 1, the classifier achieves per-
fect accuracy if the threshold is correctly chosen, and a classifier that
predicts the class at random has an associated AUC of 0.5. Another
interesting point of the AUC is that it depicts a general behavior of
the classifier since it is independent to the threshold used for obtain-
ing a class label. Processing the AUC would need the computation of
an integral in the continuous case, however, in the discrete case, one
can compute this area with step functions and the following property
holds :

AUC =

∑n+

i=1

∑n−

j=1 1
f(x+

i
)>f(x−

j
)

mn
(1)

where f(·) is denoted as the scoring function (in machine learning,
the decision function of a classifier is the most frequent scoring func-
tion), x+ and x− respectively denote the positive and negative sam-
ples and n+ and n− are respectively the number of positive and neg-
ative examples and 1π is defined to be 1 if the predicate π holds and
0 otherwise. The above equation has also been pointed out as being
the Wilcoxon-Mann-Whitney statistic. This equation states that if a
classifier f(x) is so that : f(x+

i ) > f(x−
j ), ∀i = 1, · · ·n+, ∀j =

1, · · ·n− then the AUC of this classifier is maximal. Any negative
sample that happens to be ranked higher than positive sample makes
the AUC decreases.

Table 1. ROC curve related metrics. tp and fp are respectively the true
and false positive rate and c the skewness ratio

Metrics Equation

Accuracy tp+c(1−fp)
1+c

Precision tp
tp+c·fp

F-measure 2tp
tp+c·fp+1

WRAcc 4c(tp−fp)

(1+c)2

Other frequently used measures in the machine learning commu-
nity are related to the ROC curve through the confusion matrix of
a classifier. These metrics depend on the true positive (tp) and false
positive (tp) rate and the skew parameter c which is the ratio of neg-
ative examples over positive examples. These different measures are
reminded in Table (1) and an analysis of their properties can be found
in Flach [6]. Precision and F-measure are for instance frequently used
in the information retrieval community in order to assess algorithm’s
performances [8, 17, 16].

3 Optimizing AUC with SVMs

This section presents an algorithm for maximizing AUC with SVMs.
After having derived the problem formulation, solutions and analysis
of the method are proposed.

3.1 Optimization problem

Suppose we have some learning examples {xi, yi}
�
i=1, a linear de-

cision function on the form f(x) = 〈w, x〉 + b for which the class
of a new example x is given by sign(f(x)). the AUC equation (1)
corresponding to this learning set and f(x) is equivalent to :

AUC =

∑n+

i=1

∑n−

i=1 1ξij>0

n+n−
with ξij = f(x+

i ) − f(x−
j )

Hence the problem of maximizing AUC becomes :

maxw
1

n+n−

∑n+

i=1

∑n−

j=1 1ξij>0

with ξij = f(x+
i ) − f(x−

j ) 1 ≤ i ≤ n+, 1 ≤ j ≤ n−

(2)
This equation which can be rewritten as a minimization problem
poses several issues. First of all, the objective function is not dif-
ferentiable over the range of ξij . Thus in order to make it tractable,
an approximated differentiable objective is needed. Another issue is
that the problem is ill-posed since solution of the problem may not be
unique. In fact, if the learning examples are separable, then any lin-
ear hypothesis of the version space would be a maximizer of this cost
function. Thus, in order to make it well-posed, the problem needs to
be stabilized for instance by regularization. Taking into account all
these points, looking for linear hypothesis that maximizes AUC is
approximately equivalent to solve the problem :

minw
1
2
‖w‖2 + C

∑n+

i=1

∑n−

j=1 ξij

with f(x+
i ) ≥ f(x−

j ) + ρ − ξij 1 ≤ i ≤ n+, 1 ≤ j ≤ n−

ξij ≥ 0 1 ≤ i ≤ n+, 1 ≤ j ≤ n−

(3)
where ρ > 0. A square-norm regularization term has been added
to the objective function. It aims at stabilizing the problem through



a Tikhonov based-regularization. The choice of this regularization
component is arbitrary but the advantage of this one being its similar-
ity with SVMs and its computational tractability since the problem
is convex. Like in SVMs, C is a parameter that allows to trade-off
between the regularization term and the constraint violation ξi,j . The
step function of ξi,j in equation (2) has been replaced by a linear
function of ξi,j . This again makes the problem more tractable at the
expense of roughly approximating the true objective function. Dif-
ferent approximation functions could have been used, for instance,
sigmoid functions are frequently used as an approximation of step
function. However, using these functions turn the optimization prob-
lem into a non-linear one which is hard to solve. Yan et al. [23] have
used such a function for the similar problem of optimizing AUC.

The constrained optimization problem defined in equation (3) can
be solved by a standard method of Lagrange multipliers. The La-
grangian function associated to the above primal problem is :

L(w, ξi,j) =
1

2
‖w‖2 + C

n+,n−∑
i,j=1

ξij

−

n+,n−∑
i,j=1

αij(〈w, x
+
i − x

−
j 〉 − ρ + ξi,j)

−

n+,n−∑
i,j=1

γi,jξi,j

Getting Lagrangian derivatives with regards to primal variables give :

∂L
∂w

= w −
∑

i,j αi,j(x
+
i − x−

j ) ∂L
∂ξu,v

= C − αu,v − γu,v

∀u ∈ 1, · · · , n+, v ∈ 1, · · · , n−

(4)
After making these derivatives vanished, replugging these equations
back into the Lagrangian leads to the following dual optimization
problem :

maxα − 1
2

∑n+,n−

i,j=1

∑n+,n−

u,v=1 αi,jαu,v〈x
+
i − x−

j , x+
u − x−

v 〉

+ρ
∑n+,n−

i,j=1 αi,j

with C ≥ αi,j ≥ 0
(5)

This is a quadratic optimization problem that can be solved using
classical algorithms like interior point or active constraints methods.
Similarly to classical SVMs, expression of w shows that the deci-
sion function depends only on data points. In this particular case, it
depends on difference of negative and positive examples :

f(x) =

n+,n−∑
i,j=1

α
∗
i,j〈x

+
i − x

−
j , x〉 + b (6)

where α∗
i,j are the arguments that maximize the dual problem (5).

3.2 Analyzing the KKT conditions

The Lagrange multiplier values αi,j usually denote the difficulties
of satisfying the constraints of a constrained optimization problem.
Thus analyzing these variables lead to a better insight of the problem.
In our case, we can get the following proposition :

Proposition 3.2.1 For all pairs of positive and negative examples
(i, j) optimized with regards to AUC through the primal and dual

problem given in equation (3) and (5), the ranking constraints are
related to the Lagrange multiplier values by the equation :


f(x+

i ) ≥ f(x−
j ) + ρ if αi,j = 0

f(x+
i ) ≤ f(x−

j ) + ρ if αi,j = C

f(x+
i ) = f(x−

j ) + ρ if 0 < αi,j < C

Proof : This proposition can be easily proved by looking at the
KKT conditions of the primal optimization problem. At optimality
of the problem (3), the following equations hold :

αi,j

(
f(x+

i ) − f(x−
j ) − ρ + ξi,j

)
= 0 ∀(i, j) (7)

γi,jξi,j = 0 ∀(i, j) (8)

C − αi,j − γi,j = 0 ∀(i, j) (9)

αi,j ≥ 0 ∀(i, j) (10)

γi,j ≥ 0 ∀(i, j) (11)

then if αi,j = 0, we have γi,j �= 0, thus ξi,j = 0 and finally, by
plugging this into the primal problem constraints, we have f(x+

i ) ≥
f(x−

j ) + ρ. If αi,j = C, then γi,j = 0 thus ξi,j ≥ 0 and finally
f(x+

i ) < f(x−
j ) + ρ. At last, if we have 0 < αi,j < C, then

f(x+
i ) − f(x−

j ) − ρ + ξi,j = 0, but since ξi,j = 0 also holds, we
get f(x+

i ) = f(x−
j ) + ρ

Hence, similarly to SVMs, the decision function f(x) that maxi-
mizes AUC depends only on some examples of the problem. Ac-
cording to the above proposition, the support vector examples are
those that strictly meet the ranking constraint and those that are badly
ranked. This is in accordance with the intuition that since the area
under ROC curve depends essentially on examples that are badly
ranked, one should particularly focus on those examples for opti-
mizing the AUC.

3.3 Speed-up tricks

The number of variables in the dual problem is equal to n+ ·n−, thus
even for a small-scale problem, using this algorithm can rapidly be
prohibitive both in time and memory complexities. For reducing the
size of the quadratic programming problem, a simple heuristic based
on the local neighbors of each example can be used. This idea has
already been exploited in [9].

Instead of ranking all the positive examples higher than all nega-
tive examples, we only focus on a subset of a positive-negative exam-
ples. Suppose m being a user-defined constant specifying the num-
ber of interesting neighbors of a sample, our trick is the following :
at first let N+ being the set of all positive examples that are in the
m-nearest positive neighbors of each negative samples. In the worst-
case scenario, the cardinality of N+ is m ·n−. Then, we consider for
AUC optimization the pairs of the N+ samples and their m-nearest
negative neighbors. For summarizing, we maximize AUC for the fol-
lowing examples :

i ∈ N+
, j ∈ B(i, m)

where B(i, m) is the set of m-nearest negative neighbors of the pos-
itive sample i. Hence the number of variables in the QP problem is
reduced to at most m2 · n− samples.

Although this is the trick that has been implemented for the experi-
ments, it is likely that some more efficient heuristics can be used. For
instance, it would be interesting to identify examples that are likely
to be incorrectly ranked and then to perform AUC optimization only
on these examples.



3.4 Links with SVM

Owing to the square-norm regularization of w, the primal problem
in equation (3) seems to be very similar to the classical SVMs opti-
mization problem. Our aim in this paragraph is to show that although
the feasibility domain of these two problems are rather different, in
some cases the resulting decision function can be identical.

Proposition 3.4.1 Suppose that a training set {xi, yi}
�
i=1 is linearly

separable. Then for any ρ > 0, the solution of the ROC-optimizer
SVM wROC is related to the solution wSV M of a classical SVM
problem through a constant β by the equation :

wROC = βwSV M

Proof : First of all, since the data are separable, the convex hull
of positive and negative examples (the envelope of the examples) are
disjoint. Hence, the primal problem of ROC-SVM can be stated as :

minw,b
1
2
‖w‖2

with f(x+
i ) ≥ f(x−

j ) + ρ 1 ≤ i ≤ n+, 1 ≤ j ≤ n−

Recall that the constraints of the classical SVMs problem are, in the
linearly separable case :{

f(x+
i ) ≥ 1 ∀i ∈ 1, · · · , n+

f(x−
j ) ≤ −1 ∀j ∈ 1, · · · , n−

then for any b and wSV M that satisfy these constraints,we have

〈wSV M , x
+
i 〉 − 〈wSV M , x

−
j 〉 ≥ 2

〈
ρ

2
wSV M , x

+
i 〉 − 〈

ρ

2
wSV M , x

−
j 〉 ≥ ρ

then up to a multiplicative constant β = ρ

2
, any hyperplane in the

feasibility domain of the classical SVMs problem is related to an
unique hyperplane in the ROC optimizer SVMs one.

Now suppose that wROC is so that

〈wROC , x
+
i 〉−〈wROC , x

−
j 〉 ≥ ρ ∀i = 1, · · · , n

+
j = 1, · · · , n

−

Let us define the following quantities

ρ+ = min
i=1,··· ,n+

f(x+
i ) ρ− = max

j=1,··· ,n−

f(x−
j )

then by definition we have ρ+ − ρ− ≥ ρ, 〈wROC , x+
i 〉 ≥ ρ+ and

〈wROC , x−
j 〉 ≤ ρ−. Thus, we have :

{
2

ρ+−ρ−

〈wROC , x+
i 〉 −

ρ++ρ−

ρ+−ρ−

≥ 1 ∀i ∈ 1, · · · , n+

2
ρ+−ρ−

〈wROC , x−
j 〉 −

ρ++ρ−

ρ+−ρ−

≤ −1 ∀j ∈ 1, · · · , n−

and then there exists a b and wSV M = 2
ρ+−ρ−

wROC that belongs
to the feasibility domain of SVMs optimisation problem.

Thus, since there exists a one-to-one relation between the two fea-
sibility domain and since their objective function are thus equal up
to a multiplicative constant, one can conclude that in this case, the
solution wROC of the ROC-optimizer SVM is of the form wROC =
βwSV M .

Interestingly, this proposition tell us that SVMs maximize an ap-
proximation of AUC particularly if the data sets are linearly sepa-
rable. However, in the non-separable case, the connection between
ROC-SVMs and SVMs is not so straighforward. We believe that
since the support vectors sets involved in both problems can be very
different it is not likely that there is some relationships between so-
lutions.

3.5 Generalization to non-linear case

Since the decision function f(x) given in equation (6) and the dual
problem in equation (5) that determines the optimal αi,j depend only
on the inner product between dataset, the so-called kernel trick [18]
can be used for extending the ROC optimizer SVMs to non-linear
problem. Hence, as for SVMs, one can use any kernel k(x, x′) satis-
fying the Mercer’s conditions for maximizing AUC in some feature
space F associated to the k(x, x′). In this case, the solution of the
problem is obtained from the general equations :

f(x) =
n+∑
i=1

n−∑
j=1

α
∗
i,j

(
k(x+

i , x) − k(x−
j , x)

)
+ b

where α∗
i,j are the arguments that optimize the following quadratic

programming problem :

maxα − 1
2

∑n+,n−

i,j=1

∑n+,n−

u,v=1 αi,jαu,v[k(x+
i , x+

u ) − k(x+
i , x−

v )

−k(x+
u , x−

j ) + k(x−
j , x−

v )] + ρ
∑n+,n−

i,j=1 αi,j

with C ≥ αi,j ≥ 0
(12)

3.6 2-norm SVMs and maximization of AUC

In a previous paragraph, we have shown that there is a strong con-
nection between SVMs and ROC optimizer SVMs for separable data
sets.

In this section, we want to show that when dealing with non-
separable data sets, SVMs with quadratic penalization of errors (2-
norm SVMs) produce a linear hypothesis that maximizes the AUC in
some feature space.

When the data sets are not separable, the SVMs large margin op-
timization problem implement the following idea. At first, the data
points are mapped to a feature space H through a non-linear trans-
formation Φ(x) which is implicitly defined by the kernel k(x, x′) of
H. Then the decision function obtained by SVMs is :

f(x) = 〈w, Φ(x)〉H + b =

�∑
i=1

α
∗
i yik(x, xi) + b (13)

with f(x) being the optimal hyperplane that optimizes the following
problem :

minw,b,ξi

1
2
‖w‖2 + C

∑�

i=1 ξ2
i

st yif(xi) ≥ 1 − ξi
(14)

in which the terms ξi are relaxing constraint variables that are
quadratically penalized, and C a penalization term which makes a
compromise between the margin and the amount of errors. The opti-
mal α∗

i are then obtained from the dual of the previous problem :

maxα −
∑�

i,j αiαjyiyj(k(xi, xj) + 1
C

δxi
(xj)) +

∑
i αi

st
∑

i αiyi = 0, αi ≥ 0
(15)

This problem is equivalent to the dual of a a large margin problem in
a feature space H′ in which the data are linearly separable.Thus one
can state the following proposition :

Proposition 3.6.1 Given a training set {xi, yi}
�
i=1, SVMs with

quadratic penalization maximize the area under the ROC curve for
this data set in some feature space H′ which inner product is :

k
′(x, x

′) = k(x, x
′) +

1

C
δx(x′)



Proof : Since the data sets are linearly separable in H′ then all
linear hypothesis of the version space correctly rank the positive and
negative examples of the training set. Hence, AUC is maximal with
value 1.

Usually in the 2-norm SVMs case, the optimal α obtained from
the dual optimization problem are then used for building a decision
function which is f(x) =

∑�

i=1 α∗
i yik(x, xi) + b∗. Thus, even if

the optimization problem (15) can be considered as a hard-margin
problem in a space H′, applying the decision function (13) to the
training examples can lead to misclassification since it is performed
in H. Hence for preserving the AUC-maximal property of this deci-
sion function on the training set, one should consider evaluating it in
H′ and not H and consequently the decision function should be :

f(x) =
�∑

i=1

α
∗
i yi

(
k(x, xi) +

1

C
δxi

(x)

)
+ b (16)

However, assuming that the training set and the set of points on
which f(x) is evaluated are disjoint, the above decision function and
the 2-norm SVMs one given in equation (13) are equivalent.

Let’s try to get some insights on the kernel k′(x, x′) and its role
in the AUC maximization. Suppose that X ∈ R

d, the positive defi-
nite kernel on X defined as : ∀x, x′ ∈ X , k2(x, x′) = 1

C
δx(x′) =

1
C

1x=x′ is the kernel of a reproducing kernel Hilbert space which
functions are null except on a countable set [1]. Thus H′ is a set
of functions that have the same values of function in H except that,
on a countable set of points, 1

C
is added. The influence of C is the

following :

• When C goes to infinity, k2(x, x′) vanishes in the Gram matrix of
the dual problem (equation (15)). Thus the resulting decision func-
tion converges towards the usual 2-norm SVMs decision function
(equation (13)) and it still maximizes the area under ROC curve.

• when C goes to zero, the influence of k2(x, x′) becomes more and
more important compared to k(x, x′), and thus the Gram matrix
tends to be diagonal. In this case, each example can be seen as
being orthogonal to any other, and the resulting decision function
will overfit the training data [19] although it still maximizes the
AUC.

Thus, any feature space H′ and any C can provide a linear hypoth-
esis that is AUC maximal with regards to the training set. However,
we have just noted that some feature space for maximizing AUC can
lead to overfitting when C is not chosen appropriately. In fact, one
conclusion that can be drawn is that C should not be set to a too small
a value. A rationale for that is because the space H′ in which AUC
has been maximized will be too different to the space H in which the
decision function will be tested (provided that the training set and
test set are disjoint), thus leading to poor generalization capability.

4 Numerical experiments

In this section, our aim is to provide some empirical analysis of our
ROC optimizer algorithm behaviour and to analyse AUC generaliza-
tion capability of the 2-norm SVMs.

4.1 Toy problem

The artificial toy problem used throughout this section (4.1) is the
one that has been introduced by Weston et al. [22] in their paper on

feature selection. This ten-dimensional non linear problem has been
built by drawing data from four 2-dimensional normal distributions
of equal covariance matrix but different means. The rest of the fea-
tures are independent gaussian noise with zero mean and unit vari-
ance. And each variable is then normalized to zero mean and unit
variance according to the training set scaling parameters.

In this first experiment, we have analysed the performance of the
ROC- optimizer SVMs with regards to its parameters ρ and the size
of the opposite class neighborhood m as specified in previous para-
graph.

Training set is composed of 200 data points in which positive and
negative classes are equally represented. Thus using the full data sets,
the original problem given in equation (3) would have 10000 con-
straints, hence it is necessary to reduce the problem size by limiting
the number of ranking comparisons between positive and negative
examples. Our experiments follow the procedure below.

We have used a gaussian kernel k(x, y) = exp− ‖x−y‖2

2σ2 for
which σ have been set to 3. The penalization term C is equal to
1000. These parameters have been chosen owing to our previous ex-
periments and knowledge about this data set. Since we are mainly
interested in how the algorithm behaves with regards to other pa-
rameters, it is natural to fix C and σ to some nearly optimal val-
ues. We have tested several pairs of ρ and m which respectively are
0.01, 0.1, 1 and 1, 5, 10, 50, 100. And for each couple, we have av-
eraged the performance results on 20 different trials of the data sets.

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Neighbors

R
a

te
 o

f 
P

e
rf

o
rm

a
n

c
e

Figure 2. Results of ROC optimizer SVM on toy problem. (solid) AUC vs
number of neighbors. (dotted) Accuracy vs number of neighbors.

Figure (2) depicts rate of performance on AUC and accuracy of
ROC-optimizer SVMs with regards to the size of the neighborhood.
It shows that AUC and accuracy both increase with m increases and
then they rapidly reach a “steady” value. For AUC, this steady value
is reached for m = 10 whereas for accuracy, a neighborhood of size
50 has to be considered before yielding to this maximum. These re-
sults can be explained by the fact that since ROC curve and AUC
are somewhat related to the distributions of classes and their over-
lapping, optimizing all example ranking is not useful but one should
rather focus on examples which correspond to distribution overlap-
ping. This is clearly depicted by Figure (2) plots. When m is small,
all examples that correspond to overlapping are not taken into ac-
count in the AUC optimization, thus leading to poor performance.
As m increases, more and more critical examples are included in the
optimization problem, thus leading to an increase of AUC. At last,
when m is such that all critical examples are optimized with regards



to their rankings, adding other “easy” examples for which ranking
are already correct do not improve AUC further.

Concerning margin effects on performances, this experiment has
also shown that ρ has no effect on both AUC and accuracy. For AUC,
this is trivial since the important point is to rank positive examples
higher than negatives ones no matter the difference of ranking score.

To summarize, this experiment allow us to draw the conclusion
that choosing a good parameter m is crucial for achieving good re-
sults in a reasonable time, and that the best value of m is problem-
dependent since it is related to class distributions.

Another experiment has been driven in order to get some insights
of how the kernel parameters and C parameter influence AUC per-
formances for both ROC optimizer SVMs and 2-norm SVMs. For
this latter algorithms, in other words, we are investigating on the in-
fluence of the feature space H′ on AUC maximization.

We have generated 100 negative examples and added different
amount of positive examples which depends on a predefined skew-
ness of the data sets. These relative frequencies of positive examples
have been chosen to be 0.1, 0.3 and 0.5. Again, we have used a gaus-
sian kernel. In this experiment, for ROC-SVMs, the margin ρ and the
size of neighborhood m have been respectively fixed to 0.01 and 10.
Then, for both methods, one parameter between C and σ has been
kept fixed whereas the other is varying within a given range.

Results have been evaluated from 1000 samples (in which positive
and negative examples are equally distributed) and are obtained from
the averaging of 20 trials. For a sanity check, we have verified that
for 2-norm SVMs, all training examples are correctly classified in H′

and that the resulting AUC is thus equal to 1.
Figures (4)and (3) depict the plots of the resulting AUC and ac-

curacy with respect to C or σ for ROC-SVMs and 2-norms SVMs.
The different curves in each figure are function of the data skewness.
Figures show that regardless of algorithms, how the data are skewed,
accuracy and AUC are somewhat related on average since the shapes
of the curves are similar. This is in accordance with Cortes et al. [3]
findings.

As expected for 2-norms SVMs, low values of C leads to overfit-
ting. However, it seems that if C and σ parameters are not chosen
properly, the resulting decision function will overfit the training data.
In fact, both accuracy and AUC curves show large ranges of param-
eters in which performances are particularly poor, and this, indepen-
dently to the considered parameter. For ROC-SVM, parameters tun-
ing seems to be less critical since except for accuracy performance
versus σ, there exists a large range of parameter values for which
performances are rather equal. For instance, only very small values
of C leads to poor performances.

Another interesting point is the error bars obtained for AUC
curves. In fact, they corroborate the claim of Cortes et al. [3] : “the
more the class distribution is skewed, the more the AUC variance will
be large”. This is clear when one compares error bars of the top and
bottom curve of each AUC figure independently to the algorithms.

When accuracy is considered, it seems that 2-norm SVMs are
more effective than ROC-SVM. Evidences for this claim are : per-
formance is less sensitive to parameters tuning and error bars are
smaller. However, this is understandable since 2-norms SVMs have
been designed for margin-maximization in some feature spaces and
thus are implicitly designed to optimize accuracy whereas ROC-
SVM are based on AUC maximization.

Hence, to sum up, this experiment has confirmed that i) accuracy
and AUC are on average related but AUC variance can be very large,
ii) model selection of these AUC maximization SVMs has to be car-
ried out carefully since they seems to be prone to overfitting.

4.2 Benchmark datasets

This part of the numerical experiments is devoted to show that SVMs
can, as well as other dedicated algorithms such as RankBoost, op-
timize the AUC. For this purpose, we have reproduced the experi-
ments carried out by Cortes et al [3]. For comparison, we have used
the following benchmark datasets, publicly available to the UCI Ma-
chine Learning repository : Breast-wpbc, Credit Ionosphere, Pima
and Spectf. For data sets with missing values, incomplete examples
have been discarded.

In order to measure accurately AUC value, a ten-fold cross-
validation has been performed. For each of the resulting train/test
splits, each numeric attribute has been normalized to zero mean and
unit standard deviation on the training set. Test sets have also been
rescaled according to the training set scaling parameters. For these
experiments, a gaussian kernel has been used and again parameters
C and σ are varying across a large range of values.

In this paragraph, we have compared AUC and accuracy perfor-
mances of four different algorithms : ROC-SVM, 2-norm SVMs,
RankBoost [7] and AUCSplit [5].

For ROC optimizer SVMs, several parameters have to be set, we
have arbitrarily decided to set ρ = 0.01 and m = 10. Although we
are convinced that fixing m to this value for all data sets is not opti-
mal, this is a good compromise between performance and time com-
plexity for solving optimization problem (3) (remind that the number
of constraints in the problem can reach m2 · n−).

Table (2) summarizes the results achieved by SVMs compared to
those obtained with RankBoost and AUCsplit. (results of these latter
algorithms are extracted respectively from Cortes et al. [3] and Ferri
et al. [5] papers and thus we are not able to perform some statistical
comparisons ). Reported AUC results are the best results achieved
by cross-validation for all couple of C and σ. Table (3) shows the
related accuracy of the best model in the AUC sense.

Table 2. Best AUC results achieved on datasets for different performance
measures with a gaussian kernel SVMs. For ROC optimizer SVMs, we have

set ρ = 0.01 and m = 10.

SET ROC-SVM 2-NORM SVM
BREAST-WPBC 73.77 ± 16.12 77.29 ±15.7
CREDIT 88.57 ± 14.90 92.05 ± 11.1
IONOSPHERE 95.85 ± 3.58 98.7 ±1.8
PIMA 83.01 ± 4.23 83.9 ±4.1
SPECTF 77.45 ± 12.15 86.0 ± 7.9

SET RANKBOOST AUC SPLIT

BREAST-WPBC 80.4 ± 8.0 59.3 ± 16.2
CREDIT 94.5 ± 2.9 N.A
IONOSPHERE 98.0 ± 3.3 89.7 ± 6.7
PIMA 84.8 ± 6.5 76.7± 6.0
SPECTF 93.4 N.A

The first thing that can be observed is that, when tuned appropri-
ately, the 2-norm SVMs can achieve AUC as high as those obtained
by RankBoost at least for some of the datasets used in this experi-
ments. The interesting point is that RankBoost is an algorithm which
induction principle is based on AUC maximization, and thus, it is ex-
pected to perform well under this criterion, whereas the kernel trick
and the large margin optimization principle can achieve same perfor-
mances in AUC sense. Unreported experiments have also shown that,
for the datasets in which gaussian kernel SVMs leads to lower AUC



Table 3. Best Accuracy results achieved on datasets for different
performance measures with a gaussian kernel SVMs. For ROC optimizer

SVMs, we have set ρ = 0.01 and m = 10.

NAME ROC-SVM 2-NORM SVM
BREAST-WPBC 79.15 ± 9.89 77.8 ± 8.15
CREDIT 82.50 ± 12.21 85.4 ± 19.5
IONOSPHERE 90.31 ± 4.90 94.0 ± 3.9
PIMA 74.72 ± 4.59 77.4 ± 3.8
SPECTF 78.30 ± 4.01 79.6 ± 6.8

NAME RANKBOOST AUC SPLIT

BREAST-WPBC 65.5 ± 13.8 69.5 ± 10.6
CREDIT 81.0 ± 7.4 N.A
IONOSPHERE 83.6 ± 10.9 89.6± 5.0
PIMA 69.7 ±7.6 72.5 ±5.1
SPECTF 67.3 N.A

values than RankBoost, other kernels (such as polynomial kernel)
can further increase the AUC. Hence these results allow to conclude
that when model selection is performed accurately, SVMs can indeed
maximize the area under the ROC curve. Besides, the accuracy table
also proves that the large margin principle can achieve AUC maxi-
mization without harming accuracy. In fact, one can see that SVMs
accuracy is always higher than those obtained with RankBoost and
AUCSplit.

Tables (2) and (3) also show that ROC-SVMs perform worse than
2-norm SVMs both from AUC and accuracy point of view. One may
argue that this is due to inappropriate choice of parameter m. Then, in
order to analyze again how m influences performance, we have run
the same experiments for different neighborhood size but only for
two data sets. Figure (5) plots AUC and accuracy rate for these two
data sets. It seems clear that m = 10 is not an optimal value although
it maximizes AUC for the wpbc data sets. However setting m to 50
does not always lead to performance improvement although the al-
gorithm time complexity becomes drastic. Hence for these cases, we
may conclude that m does influence slightly the results but perfor-
mance improvement seem not to worth the time spent for learning.

Hence, since 2-norm SVMs perform better and have a lower com-
plexity than ROC-Optimizer SVMs (the number of constraints in the
former is n+ · n− whereas for the latter it can reach m2 · n−), our
conclusion is that 2-norm SVMs are better for AUC maximization.

5 Discussions and conclusions

In this paper, we have proposed a SVMs based algorithm for Area
Under Roc curve maximization. For this, we have derived an nu-
merically tractable approximation of AUC criterion that leads to a
quadratic programming problem. Then we have also shown that 2-
norm SVMs maximize AUC in some feature space.

Experiments we carried out proved that ROC-SVMs and 2-norm
SVMs can actually maximize AUC and that their performances are
comparable to those of RankBoost, but they outperform algorithms
such as AUCSplit. Although comparable in the AUC sense, 2-norms
SVMs are cheaper in time complexity and also lead to good perfor-
mance in accuracy and thus makes them more appealing.

Further studies on this topic can be the development of a theoreti-
cal framework of generalization bound on AUC and a more extensive
comparison of SVMs to other algorithms and on a larger amount of
data sets.

REFERENCES
[1] S. Canu, X. Mary, and A. Rakotomamonjy, Functional learning

through kernels, volume 190, chapter 5, 89–110, IOS Press, advances in
learning theory: methods, models and applications, nato science series
III: computer and systems sciences edn., 2003.

[2] R. Caruana, S. Baluja, and T. Mitchell, ‘Using the future to sort out
the present : Rankprop and multitask learning for medical risk evalua-
tion’, in Advances in Neural Information Processing Systems, volume 8,
(1996).

[3] C. Cortes and M. Mohri, ‘AUC optimization vs error rate minimiza-
tion’, in Advances in Neural Information Processing Systems, vol-
ume 15, (2003).

[4] T. Fawcett, ‘Using rule sets to maximize ROC performance’, in Pro-
ceedings of the IEEE International Conference on Data Mining, (2001).

[5] C. Ferri, P. Flach, and J. Hernandez-Orallo, ‘Learning decision trees
using the area under the roc curve’, in Proceedings of the 19th Interna-
tional Conference on Machine Learning, (2002).

[6] P. Flach, ‘The geometry of roc space : understanding machine learning
metrics through roc isometrics’, in Proceedings of the 20th Interna-
tional Conference on Machine Learning, pp. 194–201, (2003).

[7] Y. Freund, R. Iyer, R. Schapire, and Y. Singer, ‘An efficient boosting
algorithm for combining preferences’, Journal of Machine Learning
Research, 4, 933–969, (Nov 2003).

[8] T. Joachims, ‘Transductive inference for text classification using svms’,
in Proceedings of The 16th International Conference on Machine
Learning, (1999).

[9] J. Kwok and I. Tsang, ‘Learning with idealized kernels’, in Proceedings
of the 20th International Conference on Machine Learning, pp. 400–
407, (2003).

[10] N. Lachiche and P. Flach, ‘Improving accuracy and cost of two-clas and
multi-class probabilistic classifiers using roc curves’, in Proceedings of
the 20th International Conference on Machine Learning, pp. 416–423,
(2003).

[11] Y. Lin, Y. Lee, and G.Wahba, ‘Support vector machines for classifica-
tion in non standard situation’, Machine Learning, 46, 191–202, (2002).

[12] C. Ling, J. Huang, and H. Zhang, ‘Auc: a better measure than accuracy
in comparing learning algorithms’, in Proceedings of 2003 Canadian
Artificial Intelligence Conference, (2003).

[13] C. Ling and J. Yan, ‘Decision tree with better ranking’, in Proceedings
of the 20th International Conference on Machine Learning, (2003).

[14] M. Maloof, ‘Learning when data sets are imbalanced and when costs
are unequal and unknown’, in ICML Workshop on Learning from Im-
balanced Data Sets II, (2003).

[15] M. Mozer, R. Dodier, and M. Colagrosso and. Guerra-Salcedo, ‘Prod-
ding the ROC curve’, in Advances in Neural Information Processing
Systems, volume 14, (2002).

[16] D. Musicant, V. Kumar, and A. Ozgur, ‘Optimizing f-measure with
support vector machines’, in Proceedings of the Sixteenth Interna-
tional Florida Artificial Intelligence Research Society Conference, eds.,
I. Russell and S. Haller AAAI Press, pp. 356–360, (2003).

[17] V. Raghavan, P. Bollmann, and G. Jung, ‘A critical investigation of re-
call and precision as measures of retrieval system performance’, ACM
Transactions on Information Systems, 7(3), 205–229, (1989).

[18] B. Scholkopf and A. Smola, Leaning with Kernels, MIT Press, 2001.
[19] B. Scholkopf, J. Weston, E. Eskin, C. Leslie, and W. Noble, Dealing

with Large Diagonals in Kernel Matrices, volume 243 of Lecture Notes
in Computer Science, Springer, 2002.

[20] V. Vapnik, Statistical Learning Theory, Wiley, 1998.
[21] H. Verrelst, Y. Moreau, J. Vandewalle, and D. Timmerman, ‘Use of a

multi-layer perceptron to predict malignancy in ovarian tumors’, in Ad-
vances in Neural Information Processing Systems, volume 10, (1998).

[22] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vap-
nik, ‘Feature selection for svms’, in Advances in Neural Information
Processing Systems, volume 13, (2001).

[23] L. Yan, R. Rodier, MC Mozer, and R. Wolniewicz, ‘Optimizing clas-
sifier performance via the wilcoxon-mann-withney statistics’, in Pro-
ceedings of the 20th International Conference on Machine Learning,
(2003).



−3 −2 −1 0 1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

log10(C)

A
U

C

−3 −2 −1 0 1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

log10(C)

A
c
c
u

ra
c
y
 R

a
te

0 1 2 3 4 5 6
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

σ

A
U

C

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

σ

A
c
c
u

ra
c
y
 R

a
te

Figure 3. 2-norm SVMs : (top) AUC and accuracy performances for a
fixed kernel parameter σ = 3 and a varying penalization parameter C.

(bottom) AUC and accuracy performances for a fixed penalization parameter
C = 10 and a varying kernel parameter . Curves in each plot correspond
from top to bottom to different results from different data set skewness c :

0.5, 0.3, 0.1.

−4 −3 −2 −1 0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

log10(C)

−4 −3 −2 −1 0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

log10(C)

A
c
c
u

ra
c
y
 R

a
te

0 1 2 3 4 5 6
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
A

U
C

σ

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

σ

A
c
c
u

ra
c
y
 R

a
te

Figure 4. ROC-SVM : (top) AUC and accuracy performances for a fixed
kernel parameter σ = 3 and a varying penalization parameter C. (bottom)

AUC and accuracy performances for a fixed penalization parameter C = 10

and a varying kernel parameter . Curves in each plot correspond from top to
bottom to different results from different data set skewness c : 0.5,0.3,0.1.



5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Neighbors

A
U

C

wpbc
spectf

5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Neighbors

A
c
c
u

ra
c
y

wpbc
spectf

Figure 5. Results of ROC optimizer SVM on benchmark datasets. (a) Best
AUC achieved over a range of kernel hyperparameters vs number of

neighbors. (b) Best accuracy achieved over a range of kernel
hyperparameters vs number of neighbors


