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Abstract. In the field of Text Mining, a key phase in data prepa-
ration is concerned with the extraction of terms, i.e. collocation of
words attached to specific concepts (e.g. Philosophy-Dissertation).
In this paper, Term Extraction is formalized as a supervised learning
task, extracting a ranking hypothesis from a set of terms labeled as
relevant/irrelevant by the expert. This task is tackled using the evolu-
tionary algorithm ROGER, optimizing the area under the ROC curve
attached to a ranking hypothesis.
Empirical validation on two real-world applications demonstrates
outstanding improvements compared to state-of-art interestingness
measures in Term Extraction. The approach is found robust across
domains (Molecular Biology, Curriculum Vitæ) and languages (En-
glish, French).

1 INTRODUCTION

Besides the known difficulties of data mining [19], text mining
presents specific difficulties due to the structure of documents and
natural language [15, 20]. In particular, the construction of ontologies
or terminologies [4, 22], a central task in text mining, aims at control-
ling the polysemy and synonymy phenomenons through structuring
the words and their meanings in the application domain.

A preliminary for ontology construction is to extract the domain
terms, or word collocations [4, 18, 22, 30]. Indeed, the meaning of a
term (e.g. attribute-value representation) is not related to the mean-
ing of its components in a simple way. Therefore, terms must be ex-
tracted to enable the conceptual analysis of the corpus documents.

Term extraction involves two tasks: detecting “interesting” col-
location of words (candidate terms); classifying them according to
classes predefined by the expert.

This paper focuses on the detection of interesting terms, and more
precisely on defining an interestingness measure on the word collo-
cations. The choice of an interestingness measure, mostly tackled in
the literature through statistical and linguistic criteria [11, 23, 33], is
currently viewed as a decision making problem, where the user has
to decide which one among a number of existing criteria, is the most
appropriate to her goals.

Taking its inspiration in [10], and after [32], this paper proposes
instead to formalize an interestingness measure as a solution of some
supervised learning problem (Learning to Order Things), or opti-
mization problem. Actually, an interestingness measure, or ranking
hypothesis, is assessed from its recall-precision tradeoff, measured
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with respect to its Receiver Operating Characteristics (ROC) curve
(see [5] for ample motivations about the use of ROC curves in
supervised learning). Another way to evaluate an interestingness
measures is using the lift chart. The lift chart measures the variation
of the precision as a function of the proportion of terms found by the
system.

Accordingly, a ranking function is learned by optimizing the area
under the ROC curve (AUC) [16, 21] from training examples, word
collocations labelled as relevant/irrelevant by the expert.

An earlier approach, concerned with the evaluation of medical risk
factors [28, 29], used a genetic algorithm termed ROGER(for ROc-
based GEnetic learneR) to construct linear hypotheses maximizing
the AUC criterion. In this paper, ROGERis extended in two ways.
Firstly, exploiting the flexibility of genetic search, ROGERis gener-
alized to construct non-linear hypotheses; secondly, taking advantage
of the stochastic nature of genetic search, the baggingof the ranking
hypotheses constructed along independent runs is considered.

The approach is shown to significantly outperform the state-of-
the-art statistical criteria in Term Extraction. The empirical valida-
tion on two corpus, related to distinct domains (Molecular Biology
and Curriculum Vitæ) and written in distinct languages (English and
French), reveals a good robustness across domains and languages.
Specifically, the ranking hypotheses learned from one corpus appear
to outperform the statistical criteria on the other corpus.

The paper is organised as follows. For the sake of completeness,
section 2 briefly reviews the main criteria used in Term Extraction.
Section 3 presents the ROGERalgorithm, and its extension to the
construction of interestingness measures. Section 4 describes our ex-
perimental setting and the goal of the experiments, comparing three
representations for term extraction respectively involving: i) statisti-
cal features; ii) statistical features plus information retrieval features;
iii) the above features plus linguistic features. Section 5 reports on
the experimental validation on two real-world corpora, and discusses
the results obtained with respect to the state-of-the-art. The paper
ends with perspectives for further research.

2 STATE OF THE ART

Without pretending at an exhaustive review, this section presents the
main criteria used in terminology extraction.

The corpus � is composed of a set of documents, where each doc-
ument � is composed of a sequence of sentences, and each sentence
is a sequence of words. Furthermore, each word noted � is labelled



with its type � � � � extracted using a part-of-speech tagger [8, 1].
Only collocations typed as Noun-Noun, Noun-Preposition-Noun,

Noun-Adjectiveand Adjective-Nounare considered throughout the
paper.

2.1 Mutual Information ( � � , � � 	 )

Mutual information [9] measures the correlation of words in a collo-
cation. Let 
 � �  � denote the frequency of the collocation �  in the
documents2, then the mutual information of �  is given as:

� � � �  � � � � � � 
 � �  �

 � � � � 
 �  � (1)

With no loss of generality, the same ranking function is obtained
by replacing 
 � �  � ! 
 � � � and 
 �  � in the above formula by their
number of occurrences, respectively noted # $ � �  � ! # $ � � � and # $ �  � .

A variant of Mutual Information noted
� � )

introduced by [11] in-
creases the score of frequent collocations; as reported by [32],

� � )
is empirically very performant.

� � ) � �  � � � � � � # $ � �  � )
# $ � � � � # $ �  � (2)

2.2 Dice coefficient (- / 1 3 )

The Dice coefficient [31] refines the correlation estimate, account-
ing for the specific types of the words in a collocation. Let # � � � �
define the number of words with same type as � in the documents
(the number of word instances with same tag as � , e.g. the number
of adjectives if � is an adjective).

� 5 7 8 � �  � � # $ � �  �
# � � � � � # $ �  � ; # $ � � � � # � �  � (3)

2.3 Loglikelihood (? )

Loglikelihood differs from the above measures as it takes into ac-
count the number of cases where none of the collocation words ap-
pear [13]. This measure is widely used in extraction terminology (see
e.g. [11, 23, 33]).

Let us denote # $ � �  @ � (respectively # $ � � @  � ) as the number of
occurrences of � followed by  D E�  (resp. the number of occur-
rences of � D  with � D E� � ), then the loglikelihood G � �  � is defined
up to a constant as:

G � �  � � K � �  � ; K � �  @ � ; K � � @  � ; K � � @  @ �
N K � � � N K �  � N K � � @ � N K �  @ �

O 5 � P K � R � � # $ � R � � � � � � # $ � R � �
(4)

Another widely used ranking function, referred to as T 7 7 V , is de-
fined by ranking terms according to their number of occurrences, and
breaking the ties based on the term likelihoods.

�
A document contains a collocation iff all collocated words contiguously
appear in at least one sentence of the document.

2.4 Information Retrieval-like measures

In the neighbour field of Information Retrieval [25], another widely
used measure is known as tf-idf (term frequency - inverse document
frequency). The tf-idf measure aims at filtering out the terms which
are present in most documents. Specifically, if 
 W � �  � is the fre-
quency of term �  in document � W , then the weight X W � �  � of � 
for � W is given as

X W � �  � � N 
 W � �  � � � � � � 
 � �  � (5)

Therefore, a high tf-idf score is obtained when a term is frequent in
at least one document ( 
 W � �  � is high) and appears in few documents
( N � � � � � 
 � �  � � is high).

Contrasting with Information Retrieval, Term Extraction is mainly
interested in terms appearing in many documents. For this reason,
an IR-inspired criterion referred to as term-and-document-frequency
(tdf) measure, is defined as:

X DW � �  � � N 
 W � �  �
� � � � 
 � �  � (6)

2.5 Learning interestingness measures

Another approach proposed by [32] is concerned by learning a linear
combination of the statistical criteria, based on a set of terms labelled
as relevant/irrelevant by the expert. This approach uses AdaBoost
algorithm [26].

Along the same lines, our goal is to find a ranking hypothesis,
based on a propositional description of terms. Specifically, a term is
represented as a vector, the components of which are i) the statistical
criteria used in [32], ii) the tf-idf and tdf criterions, and iii) additional
features, encapsulating shallow linguistic information.

As demonstrated by [6], such features (e.g. number of punctuation
signs before or after a term) can bring significant improvements in
text mining applications. In the following, two linguistic features are
considered: the total number of punctuation signs before the word
collocation (appearing between the beginning of the sentence and
the occurrence of the collocation) and after (appearing between the
end of the collocation occurrence and the end of the sentence).

The presented approach, similar in spirit to [32], presents two main
differences. On one hand, the description of terms is enriched with
additional features. On the other hand, this description is exploited
through a ROC-based genetic algorithm described in the next section.

3 ROC-BASED INTERESTINGNESS
MEASURES

This section describes the algorithm used to learn a term rank-
ing hypothesis. This algorithm, termed Bagged-ROGER, extends the
ROGERalgorithm first described in [28, 29], which will presented in
section 3.3 for the sake of completeness.

We first briefly review the state of the art related to ROC analysis
in Machine Learning.

3.1 State of the art

The use of Receiver Operating Characteristics (ROC) curve to com-
pare learning algorithms was first advocated in [5] to our best knowl-
edge. Let us restrict ourselves to supervised binary learning for the
sake of simplicity.

Then, the goal of learning algorithms can actually be seen as a
multi-objective optimization problem: maximizing the rate of true



positive examples (percentage of positive examples correctly classi-
fied) while minimizing the rate of false positive examples (percent-
age of negative examples misclassified as positive). One advantage
of this formalization is to naturally accommodate ill-balanced distri-
butions and cost-sensitive learning [12].

The ROC curve depicts the tradeoff between both objectives
achieved by a learning algorithm and represented in the False Pos-
itive, True Positive plane (Fig. 1). The ideal hypothesis corresponds
to point (0,1), with no false positive and 100% true positive exam-
ples.
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Figure 1. Example of ROC curves.

The area under the ROC curve (AUC) is thus viewed as a global
measure of the learning efficiency. As noted by [21], the area un-
der the ROC curve is equivalent to the Wilcoxon rank statistics, the
probability of ranking correctly a pair of (positive, negative) exam-
ples. Indeed the probability of swapping two irrelevant/relevant in-
stances constitutes an appropriate quality criterion for an interesting-
ness measure.

The bias and variance of the AUC criterion have been studied by
[24] and compared to that of the misclassification error. An analyti-
cal and empirical study suggests that, though the AUC bias might be
higher, its variance is lower; this can be explained as AUC is an order
� �

statistics, � being the number of examples, whereas the misclas-
sification cost is an order � statistics.

The optimization of AUC constitutes a NP-complete problem,
which has been tackled in the literature in a number of ways, ranging
from evolutionary programming of neural nets [17], to greedy op-
timization of decision trees [16]. Recently, this problem was turned
into a differentiable optimization problem by encapsulating the com-
parison of any two examples into a sigmoid function [21], and tack-
led by a gradient-based approach.

The ROGERalgorithm [28, 29] tackles the AUC optimization us-
ing evolution strategies, among the most efficient evolutionary algo-
rithms for numerical optimization [3, 27].

3.2 ROGER

ROGERinvestigates the space of continuous hypotheses, mapping
the example space onto the real-valued space � � . After the standard
notations, the dataset � is composed of � examples � � � � � � � � 	 � � 	 	 �
where � �  � denotes the 	 -th example description ( � � � � � , �

being the number of features) and � � denotes the associated label
( � � � � � ).

In a first version [29], ROGERwas exploring the space of lin-
ear hypotheses (hyperplanes) on � � � . To each genotype � �

�  � � 	 	 	 �  � �  � � � is associated a (phenotype) hypothesis � � de-
fined on � as:

� � � � � � � � � � #
The fitness $ � � � associated to genotype � is defined as the fraction
of pairs of (positive, negative) examples that are ranked correctly ac-
cording to � � :

$ �  � � � & � � � � � � � # � � � � � � ) � � # � � � (7)

A straigthforward extension, thank to the flexibility of evolution-
ary computation, allows for considering (a limited kind of) non-linear
hypotheses, by doubling the size of the search space. Specifically, a
genetic individual * � �  � � 	 	 	 �  � � � � � 	 	 	 � � � �  � � � � is associ-
ated the hypothesis � / defined as:

� / � � � � �
�

� 	 	 	 � � � � � �
�0

� 1 �
 � � ) � � � � � )

The associated fitness is computed as in equation (7).
In both cases, the optimization of $ is achieved by an evolution

strategy, using self-adaptive mutation and crossover with crossover
rate .6; same parameter values were used in both cases.

3.3 Bagged-ROGER

Another extension of ROGERnamed Bagged-ROGERis based on the
remark that independent runs of an evolutionary learning algorithms
provide diverse hypotheses, namely the hypothesis reaching the best
AUC value along each run.

Although these hypotheses cannot be considered truly indepen-
dent as they are optimized on the same training set, it makes sense
to consider their combination [7]. As noted in [14], the averaging
of randomized hypotheses can exponentially amplify their advantage
over the default accuracy.

Formally, let � � � 	 	 	 � � 4 denote the 5 hypotheses constructed
along 5 independent runs of ROGER, and normalized. Their agre-
gation noted 6 � , is defined as:

6 � � � � �  ! � 	 8 � � : � ; � � � � $ � � 	 	 5 < �

Only Bagged-ROGERwill be considered in the following, as it
significantly outperforms ROGERon the considered applications.

4 EXPERIMENTAL SETTING AND GOAL

The first goal of the experiments is to investigate the robustness of the
approach comparatively with the existing interestingness measures
(section 2).

A second goal is to study the impact on the performances of the
representation of examples, including respectively:

i) the statistical features
 '

,
 ' )

, Dice, Loglikelihood, * � � , ;
ii) the above plus IR-like features (section 2.4);
iii) the above plus shallow linguistic features (section 2.5).

Along the same lines, we investigate the impact of the hypothesis
space (linear, � � � , or non-linear, � � � � ).



Last and overall, the generalization properties of the interestingness
measures obtained are examined, considering:

i) a test set with different distribution as the training set;
ii) a test set extracted from another corpus: in another application

domain, and in another language.

Experimental setting.

In all experiments, Bagged-ROGER(with linear and non-linear
hypotheses) is implemented within a (20+200) Evolution Strategy,
with 20 parents selected deterministically from 20 parents plus
200 offspring, using self-adaptive mutation, uniform crossover with
crossover rate � � � [3].

Results are assessed using 10-fold stratified CV. On each train-
ing set, 20 independent ROGERruns are launched. The final ranking
function is obtained by bagging the ranking functions learned over
the � � folds. This ranking function allows us to determine the rank
of each example.

5 EXPERIMENTAL VALIDATION

Two corpora were considered, respectively related to Curriculum
Vitæ(in French) and Medline abstracts (in English).

5.1 Curriculum Vitæ

The first application aims at the automatic analysis of Curricu-
lum Vitæ, corpus kindly provided by the VediorBis Fundation (in
French). After a first data preparation step detailed in [23], the corpus
involves 582 documents (952 Ko). The study focuses on collocations
typed as Noun-Adjective, which represent 44% of all collocations.

Two sets of collocations are defined: the frequent collocations
( � � � collocations appearing at least three times in the documents),
and the rare collocations (all other 	 
 	 	 collocations).

Table 1. Learning and Validation Datasets.

Data # collocations relevant irrelevant
(class 2) (classes 0 and 1)

Frequent Collocations �
� � � � � � � � � �

�
�

(Learning dataset)
Rare Collocations � � � � � � � � � �

�
� � �

(Validation dataset)

The manual analysis of these documents leads to define several rel-
evant topics (e.g. Linguistic Competence, Commercial Competence,
Management Activity). All � � � frequent collocations are manually
and independently labelled by two experts (2 hours each), classified
in 4 classes :

-1 The expert cannot evaluate the collocation (“MBA CLS” )
0 Irrelevant collocation (“management year”)
1 Semantically relevant collocation, but not adapted to the expert

focus (too general or too specific wrt the concepts defined) (“sum-
mer holidays”)

2 Semantically relevant collocations, relevant to the expert concepts
(“part time jobs”)

Term extraction on frequent collocations

Tables 2 and 3 display the AUC performance obtained for lin-
ear and non-linear ranking hypotheses constructed with Bagged-
ROGER, compared to that of the standard statistical measures. The
corresponding ROC curves are displayed on Fig. 2.

Table 2. Frequent Collocations: Performance of ranking hypotheses based
on statistical criteria.

Statistical Criteria AUC� � � � 0.58�
0.43� � �
0.40�  � !
0.39� �
0.31

Table 3. Frequent Collocations: Performance of ranking hypotheses based
on Bagged-ROGERwith linear and non-linear hypotheses

Bagged-ROGER
representation Linear Non-Linear
of the domain AUC AUC

(i) 0.69 0.73
(ii) 0.69 0.74
(iii) 0.68 0.74
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Figure 2. ROC Curves on Frequent Collocations (Linear and Non-linear
Bagged-ROGER,

� � � � and
�

).

These experiments show that the best statistical criterion is the
� � � � measure. However, this criterion only slightly improves on
the default hypothesis (which would correspond to the diagonal line
� � 
 $ � ).

In opposition, Bagged-ROGERsignificantly improves on all statis-
tical measures, using either linear or non-linear hypotheses. Interest-
ingly, non-linear hypotheses appear slightly but significantly more
accurate than linear hypotheses. The computational runtime is one
hour on PC Pentium IV for each representation considered (i.e. a to-
tal of 200 ROGERruns).

The beginning of the ROC curve interestingly illustrates the trade-
off between true relevant and false relevant terms in the top ranked



terms. A more detailed picture is given by the lift chart (Fig. 3), plot-
ting the precision (percentage of relevant terms) versusthe fraction
of selected terms. Fig. 3 shows that the term ranking hypothesis con-
structed by non-linear Bagged-ROGERis significantly better than the
standard statistical criteria (e.g. out of the half top ranked colloca-
tions, 94.6% are relevant for Bagged-ROGERagainst 90% for � � � �
and 82% for � ).
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Figure 3. Lift Curves on Frequent Collocations (Linear and Non-linear
Bagged-ROGER,

� � � � and
�

).

Validation on rare collocations

Although the number of infrequent collocations forbids their
manual labelling in the general case, it is widely acknowledged in
the Text Mining domain that rare cases provide valuable information
[2]. For this reason, the ranking hypothesis learned from the frequent
collocations was finally tested on the rest of the collocations, the
rare ones (2822 collocations appearing at most twice in the corpus).

In order to evaluate the results, the rare collocations were labeled
manually by the first author (2 days).

The results obtained (Tab. 4, Fig. 4) confirm that statistical criteria
are not appropriate to deal with rare information (the ROC curves
attached to � � � � and � are below the default curve). Unexpectedly,
it appears on this problem that statistical criteria such as

� �
should

better be used in reverse order. It must be emphasized that the rel-
evance of a priori criteria strongly depends on the corpus and task
at hand. In opposition, the relevance of the ranking hypothesis ex-
tracted by Bagged-ROGERappears to hold beyond the specificities
of the training set, which is confirmed by the lift chart (Fig. 5).

It is no wonder that the best generalization performances are ob-
tained for the non linear hypotheses based on representation (i) (Tab.
5, Fig. 4).

Table 4. Rare Collocations: Performance of ranking hypotheses based on
statistical criteria

Statistical Criteria AUC
� � � � 0.37

� � � �
0.32

	 � 	
0.30

�
0.30

	 �
0.29

Table 5. Rare Collocations: Performance of ranking hypotheses based on
Bagged-ROGERwith linear and non-linear hypotheses learned from

Frequent Collocations.

Bagged-ROGER
representation Linear Non-Linear
of the domain AUC AUC

(i) 0.67 0.70
(ii) 0.65 0.69
(iii) 0.62 0.69
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Figure 4. ROC Curves on Rare Collocations (Linear and Non-linear
Bagged-ROGER,

� � � � and
�

).
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Figure 5. Lift Curves on Rare Collocations (Linear and Non-linear
Bagged-ROGER,
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5.2 Molecular Biology

A second application was considered, within the domain of Molec-
ular Biology. A corpus in English, composed of 6,119 abstracts (9,4
Mo), was gathered by querying Medline3.

Only Noun-Nouncollocations have been considered in this appli-
cation; all 1,028 frequent collocations (occurring at least 4 times)
have been labelled by a domain expert O. Matte-Tailliez (Table 6).

Table 6. Noun-Noun collocations with the Molecular Biology corpus.

Data # collocations relevant irrelevant
Frequent Collocations

� � � � � � � � � � � � �

Bagged-ROGERwas applied on this corpus with same experimen-
tal setting as for the former corpus (Tab. 7 and 8, Fig. 6 and 7). As
observed with the previous application, the best results are obtained
for non-linear ranking hypotheses (over .75) against over .65 for the
linear case. However Bagged-ROGERsignificantly outperforms the
statistical criteria, ranging from .30 to .57. As for the previous cor-
pus, the best statistical criterion is � � � � and the worst one is

� �
.

Table 7. Performance of ranking hypotheses based on statistical criteria
with the Molecular Biology corpus.

Statistical Criteria AUC� � � � 0.57

0.42�  	
0.35� � � �
0.31� 
0.30

Table 8. Performance of ranking hypotheses based on Bagged-ROGER
with linear and non-linear hypotheses learned from Molecular Biology

corpus and applied on the same corpus.

Bagged-ROGER
representation Linear Non-Linear
of the domain AUC AUC

(i) 0.68 0.76
(ii) 0.63 0.76
(iii) 0.66 0.76

5.3 Generality across domains and languages

Finally, we decided to apply the agregated hypothesis constructed by
Bagged-ROGERon one corpus, to the other corpus. Surprisingly, the
results obtained are good; though the interestingness measure learned
by Bagged-ROGERon the same corpus outperforms that learned on
the other corpus, still the latter significantly outperforms the statisti-
cal criteria (with confidence .95 using a 
 -test).

Table 9 shows the AUC criterion measured on the Molecular Bi-
ology corpus, of the interestingness measure learned from the CV
corpus.

	
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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Figure 6. ROC Curves with the Molecular Biology corpus (Linear and
Non-Linear Bagged-ROGER,

� � � � and
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Figure 7. Lift Curves with the Molecular Biology corpus (Linear and
Non-Linear Bagged-ROGER,

� � � � and



).

Table 9. Performance of ranking hypotheses based on Bagged-ROGER
with linear and non-linear hypotheses learned from CV corpus applied to

Molecular Biology.

Bagged-ROGER
representation Linear Non-Linear
of the domain AUC AUC

(i) 0.63 0.71
(ii) 0.64 0.69
(iii) 0.64 0.69



Table 10. Performance of ranking hypotheses based on Bagged-ROGER
with linear and non-linear hypotheses learned from the Molecular Biology

corpus applied to CV (Frequent Collocations).

Bagged-ROGER
representation Linear Non-Linear
of the domain AUC AUC

(i) 0.64 0.63
(ii) 0.54 0.65
(iii) 0.53 0.65
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Figure 8. ROC Curves with ranking function learned with the CV applied
on the Molecular Biology corpus (Linear and Non-Linear Bagged-ROGER,

� � �
� and

�
).
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Figure 9. Lift Curves with ranking function learned with the CV applied
on the Molecular Biology corpus (Linear and Non-Linear Bagged-ROGER,

� � �
� and

�
).

These results show that Bagged-ROGERimproves in all consid-
ered experiments on the standard statistical criteria; in opposition,
ROGERstandalone shows a behavior similar to that of � � � � and � ,
in particular in the beginning of the ROC curve (Fig. 8 and 9).

Table 10 symmetrically shows the performance of the interesting-
ness measure learned from the Molecuar Biology corpus, on the CV
one.

Similarly, the differences between the interestingness measure
learned from the CV corpus and the Medline corpus on the latter
corpus are not that much (Tab. 8 and 9, Fig. 10).

Such good robustness was not expected, even more so as both ap-
plications regard distinct domains and languages. Ongoing research
is examining in more depth the ranking hypotheses obtained and val-
idating them on other corpora.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
re

le
va

nt
 r

at
e

False relevant rate

Roger NL
Roger NL (from CV)

Figure 10. ROC Curves with the Molecular Biology corpus (Non-Linear
Bagged-ROGER) learned from CV and Biology.

6 CONCLUSION AND PERSPECTIVES

This paper proposes the use of techniques from Supervised Machine
Learning for the Term Extraction task in Text Mining. Specifically,
from a small set of terms, manually labelled as relevant/irrelevant by
the expert, a ranking hypothesis is extracted using the ROC-based
evolutionary optimization algorithm Bagged-ROGER.

The experimental validation on a real-world domain application
demonstrates that the approach significantly improves on the
standard statistical and IR-related criteria on the frequent terms.
Interestingly, the ranking hypotheses learned from the frequent
terms appear to be relevant on the infrequent terms too, which
might significantly reduce the expert effort during the intensively
time-consuming phase of text preparation.

Further research will investigate in more depth the strength and
weaknesses of the presented approach, considering more corpora,
various types of target concepts, and involving additional linguistic
features.

In parallel, an incremental extension of the approach will be con-
sidered, iteratively proposing the expert the top ranked term wrt the



current ranking hypothesis, and refining the hypothesis according to
the expert answer.
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scores for word association’, in J.Ginzburg, Z. Khasidashvili, C. Vo-
gel, J.-J. Levy, and E. Vallduvi (eds) The Tbilisi Symposium on Logic,
Language and Computation: Selected Papers, CSLI Publications, pp.
177–188, (1998).

[12] P. Domingos, ‘Meta-cost: A general method for making classifi ers cost
sensitive’, in Knowledge Discovery from Databases, pp. 155–164. Mor-
gan Kaufmann, (1999).

[13] T.E. Dunning, ‘Accurate methods for the statistics of surprise and coin-
cidence’, Computational Linguistics, 19(1), 61–74, (1993).

[14] R. Esposito and L. Saitta, ‘Monte Carlo Theory as an Explanation of
Bagging and Boosting’, in Proceeding of the Eighteenth International
Joint Conference on Artificial Intelligence, eds., Georg Gottlob and
Toby Walsh, pp. 499–504. Morgan Kaufman Publishers, (2003).

[15] D. Faure and C. Nédellec, ‘ASIUM: Learning subcategorization frames
and restrictions of selection’, in 10th European Conference on Machine
Learning (ECML 98) – Workshop on Text Mining, eds., C. Nédellec and
C. Rouveirol, Chemnitz Allemagne, (Avril 1998).

[16] C. Ferri, P. A. Flach, and J. Hernndez-Orallo, ‘Learning decision trees
using the area under the ROC curve’, in Proceedings of the 19� � Inter-
national Conference on Machine Learning, ed., Morgan Kaufmann, pp.
179–186, (2002).

[17] D.B. Fogel, E.C. Wasson, and E.M. Boughton, ‘Evolving neural net-
works for detecting breast cancer’, Cancer Letters, 96, 49–53, (1995).

[18] M. A. K. Halliday, System and Function in Language, Oxford Univer-
sity Press, 1976.

[19] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Mor-
gan Kaufmann, 2000.

[20] C. Jacquemin, ‘A symbolic and surgical acquisition of terms through
variation’, in Statistical and Symbolic Approaches to Learning for Nat-
ural Language Processing, ed., Springer Verlag, pp. 425–438, (1996).

[21] R. Jin, Y. Liu, L. Si, J. Carbonell, and A. Hauptmann, ‘A New Boosting
Algorithm Using Input-Dependent Regularizer’, in ICML 2003, eds.,
Tom Fawcett and Nina Mishra. AAAI Press, (2003).
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[32] J. Vivaldi, L. Màrquez, and H. Rodrı́guez, ‘Improving term extraction
by system combination using boosting’, Lecture Notes in Computer Sci-
ence, 2167, 515–526, (2001).

[33] F. Xu, D. Kurz, J. Piskorski, and S. Schmeier, ‘A Domain Adaptive
Approach to Automatic Acquisition of Domain Relevant Terms and
their Relations with Bootstrapping’, in LREC 2002, Third international
conference on language resources and evaluation, (2002).


