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Abstract  
In this paper we analyse three different 
techniques to establish an optimal-cost class 
threshold when training data is not available. 
One technique is directly derived from the 
definition of cost, a second one is derived from a 
ranking of estimated probabilities and the third 
one is based on ROC analysis. We analyse the 
approaches theoretically and experimentally, 
applied to the adaptation of existing models. The 
results show that the techniques we present are 
better for reducing the overall cost than the 
classical approaches (e.g. oversampling) and 
show that cost contextualisation can be 
performed with good results when no data is 
available.  

 

1.  Introduction 

The traditional solution to the problem of contextualising 
a classifier to a new cost is ROC analysis. In order to 
perform ROC analysis (as well as other techniques), we 
need a training or validation dataset, from which we draw 
the ROC curve in the ROC space. In some situations, 
however, we don't have any training or validation data 
analysis available. 

This situation is frequent when we have to adapt an 
existing method which was elaborated by a human expert, 
or the model is so old that we do not have the old training 
data used for constructing the initial model available. This 
is a typical situation in many areas such as engineering, 
diagnosis, manufacturing, medicine, business, etc. 
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Therefore, the techniques from machine learning or data 
mining, although they are more and more useful and 
frequent in knowledge acquisition, cannot be applied if 
we have models that we want to adapt or to transform, but 
we do not have the original data. 

An old technique that can work without training data is 
the recently called "cost-sensitive learning by example 
weighting" (Abe et. al., 2004). The methods which follow 
this philosophy modify the data distribution in order to 
train a new model which becomes cost-sensitive. The 
typical approach in this line is stratification (Breiman et. 
al., 1984; Chan and Stolfo, 1998) by oversampling or 
undersampling. 

An alternative approach is the use of a threshold. A 
technique that could be adapted when data is not available 
can be derived from the classical formulas of cost-
sensitive learning. It is straightforward to see (see e.g. 
Elkan, 2001) that the optimal prediction for an example x 
in class i is the one that minimises 
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where P(j|x) is the estimated probability for each class j 
given the example x, and C(i,j) is the cell in the cost 
matrix C which defines the cost of predicting class i when 
the true class is j. From the previous formula, as we will 
see, we can establish a direct threshold without having 
any extra data at hand. In fact, some existing works 
(Domingos, 1999) have used the previous formula to 
establish a threshold which generates a model which is 
cost sensitive. 

One of the most adequate ways to establish a class 
threshold is based on ROC analysis. (Lachiche & Flach, 
2003) extend the general technique and show that it is 
also useful when the cost has not changed. However, in 
these cases we need additional validation data, in order to 
draw the curves. 

In order to tackle the problem that we have described at 
the beginning (adapting an existing model without data), 
it would be interesting, then, to analyse some techniques 



 

 

which combine the direct threshold estimation based on 
formula 1 (which ignores any estimated probabilities) and 
methods which take them into account (either their 
ranking or their absolute value) in a similar way ROC 
analysis works, but without data. 

In order to adapt the existing models, we use the mimetic 
technique (Domingos, 1997, 1998; Estruch, Ferri, 
Hernández & Ramírez, 2003; Blanco, Hernández & 
Ramírez, 2004) to generate a model which is similar to 
the initial model (oracle) but contextualised to the new 
cost. In order to do this, we propose at least six different 
ways to diminish the global cost of the mimetic model. 
Three criteria for adapting the classification threshold, as 
we have mentioned, and several different schemas for the 
mimetic technique are set out (without counting on the 
original data). We have centered our study on binary 
classification problems. 

The mimetic method is a technique for converting an 
incomprehensible model into one simple and 
comprehensible representation. Basically, it considers the 
incomprehensible model as an oracle, which is used for 
labelling an invented dataset. Then, a comprehensible 
model (for instance, a decision tree) is trained with the 
invented dataset. The mimetic technique has usually been 
used for obtaining comprehensible models. However, 
there is no reason for ignoring it as a cost-sensitive 
adaptation technique since it is in fact a model 
transformation technique.  

Note that the mimetic technique is a transformation 
technique which can use any learning technique, since the 
mimetic model is induced from (invented) data. 

 
Figure 1. The mimetic context. 

The mimetic context validation (see Figure 1) that we 
propose allows us to change the context of the initial 
model (oracle) so that it becomes sensitive to the new 
cost. 

The main advantages of our proposal are that it does not 
require a retraining of the initial model with the old data 
and, hence, it is not necessary to know the original data. 
The only thing we need from the original data or for the 
formulation of the problem is to know the maximum and 
minimum values of its attributes. 

From these maximum and minimum values and applying 
the uniform distribution we can obtain an invented 
dataset, which is labelled by using the oracle. We can use 
the cost information in different points: on the invented 
dataset, on the labelling of the data or on the thresholds. 
This settles three moments at which the cost information 
is used (see Figure 1, the points Mim1, Mim2 and Mim3). 
One of the points (Mim2) is especially interesting from 
the rest because it generates a “specific rule formulation” 
for the model, which might serve as any explanation of 
the adaptation to the new costs. 

The paper is organised as follows. In section 2 we 
describe the three methods to determine the thresholds 
and analyse theoretically the relationships between them. 
In section 3 we describe the four styles for the generation 
of invented data and, the schemes used in this work for 
the learning of the mimetic models. In section 4 we 
describe the different configurations. We also include the 
experimental evaluation conducted and the general 
results, which demonstrate the appropriateness and 
benefits of our proposal to contextualise any model to a 
new cost context. Finally, section 5 presents the 
conclusions and future work. 

2.  Threshold Estimation 

In this section, we present three different methods to 
estimate an optimal threshold following different 
philosophies. We also study some theoretical properties of 
the methods. 

In contexts where there are different costs associated to 
the misclassification errors, or where the class 
distributions are not identical, a usual way of reducing 
costs (apart from oversampling) is to find an optimal 
decision threshold in order to classify new instances 
according to their associated cost. Traditionally, the way 
in which the threshold is determined is performed in a 
simple way (Elkan, 2001), only taking the context skew 
into account.  

As we have said in the introduction, the methods based on 
ROC analysis (e.g. Lachiche & Flach, 2003) require a 
validation dataset, which is created at the expense of 
reducing data in the training dataset. Here, we are only 
interested in threshold estimation methods that don’t 
require extra data, since we do not have any data available 
(either old or new training or test). Therefore, we will not 
study this method or others which are related which 
require a dataset. We will just present methods which can 
work without it. 
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In this section we consider two-class problems, with class 
names 0 and 1. Given a cost matrix C, we define the cost 
skew as: 
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2.1  Direct Threshold 

The first method to obtain the threshold completely 
ignores the estimated probabilities of the models, i.e., to 
estimate the threshold it only considers the cost skew. 
According to (Elkan, 2001), the optimal prediction is 
class 1 if and only if the expected cost of this prediction is 
lower than or equal to the expected cost of predicting 
class 0: 

)1,0()1()0,0()0()1,1()1()0,1()0( Cx|PCx|PCx|PCx|P ⋅+⋅≤⋅+⋅
 

If p = P(1|x) we have: 
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Then, the threshold for making optimal decisions is a 
probability p* such that: 
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Assuming that C(1,0)>C(0,0) and C(0,1)>C(1,1) (i.e. 
misclassifications are more expensive than right 
predictions), we have 
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Finally, we define the threshold as: 
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2.2  Ranking or Sorting Threshold 

The previous method for estimating the classification 
ignores the estimated probabilities in a proper way. This 
can be a problem for models that do not distribute the 
estimated probabilities. Imagine a model that only assigns 
probabilities within the range 0.6-0.7. In this situation, 
most of the skews will not vary the results of the model. 

In order to partially avoid this limitation, we propose a 
new method to estimate the threshold. The idea is to 
employ the estimated probabilities directly to compute the 

threshold. For this purpose, if we have n examples, we 
rank these examples according to their estimated 
probabilities of being class 0. We select a point (Pos) 
between two points (a,b) in this rank such that there are 
(approximately) n/(skew+1) examples on the left side and 
(n* skew/(skew+1)) examples on the right side. In this 
division point we can find the desired threshold. We can 
illustrate this situation with Figure 2: 

 

Figure 2. Position of the threshold in the sorting method 

Following this figure, we have 
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where Lower computes the integer part of a real number. 
Then we estimate the threshold as: 

fracpppThreshold baaOrd ⋅−−= )(  (4) 

where 

aPosfrac −=  

In the case we find more than one example with the same 
estimated probability, we distribute these examples in a 
similar way. A complete explanation of the procedure can 
be found in (Blanco, 2006). 

2.3  ROC Threshold 

Although the previous method considers the skew and the 
estimated probabilities to compute the threshold, it has an 
important problem because the value of the threshold is 
restricted to the range of the probabilities computed by 
the model. I.e, if a model always computes probability 
estimates between 0.4 and 0.5, the threshold will be 
within this range for any skew. 

Motivated by this limitation, we have studied a new 
method to compute the threshold based on ROC analysis. 
Suppose that a model is well calibrated, this fact means 
that if a model gives a probability 0.8 of being class 0 to 
100 examples, 80 should be of class 0, and 20 should be 
of class 1. In the ROC space, this will be a segment going 
from point (0,0) to the point (20,80) with a slope of 4. 

In order to compute this new threshold we define a 
version of the ROC curve named NROC. This new curve 
is based on the idea that a probability represents a 
percentage of correctly classified instances (calibrated 
classifier).  
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If we have a set of n examples ranked by the estimated 
probability of being class 0, we define Sum0 as the sum of 
these probabilities. We consider normalised probabilities, 
then Sum0

 + Sum1
 = n. The space NROC is a 2 dimension 

square limited by (0,0) and (1,1). In order to draw a 
NROC curve, we only take the estimated probabilities 
into account, and we proceed as follows. If the first 
example has an estimated probability p1 of being class 0, 
we draw a segment from the point (0,0) to the point 
((1−p1)/Sum1, p1/Sum0). The next instance (p2) will 
correspond to the second segment will be from 
((1−p1)/Sum1,p1/Sum0) to (((1−p1)+(1−p2))/Sum1, 
((p1+p2)/Sum0). Following this procedure, the last segment 
will be between the points (Sum1−(1−pn))/Sum1, 
(Sum0−pn)/Sum0) and (1,1). 

Once we have defined the NROC space, let us explain 
how we use it to determine the threshold. First, since we 
work on a normalised ROC space (1×1) and Sum0 is not 
always equal to Sum1, we need to normalise the skew. 
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If skew’ is exactly parallel to a segment, then the 
threshold must be exactly the probability that corresponds 
to that segment, i.e if skew’=pi/(1−pi) the threshold must 
be pi. This means: 
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2.4  Theoretical analysis of the threshold methods 

Now, we study some properties of the methods for 
obtaining the threshold which we have described in the 
previous subsections. First, we show that the threshold 
which is calculated by each of the three methods is well-
defined, that is, it is a real value between 0 and 1, as 
expected. Secondly, we analyse which the relationship 
between the three thresholds is. 

The maximum and minimum values of the ThresholdDir 
and ThresholdROC depend on the skew by definition 
(formulae 3 and 5). Trivially, ThresholdOrd belongs to the 
interval [0..1] since it is defined as a value between two 
example probabilities. 

Maximum: For the direct and the ROC methods, the 
maximum is obtained when skew=∞: 
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The upper limit of ThresholdOrd is not necessarily 1, since 
it is given by the example with highest probability. 

Minimum: For the direct and the ROC methods, the 
minimum is obtained when skew=0: 
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As in the previous case, the lower limit of ThresholdOrd is 
not necessarily 0, since it is given by the example with 
lowest probability. 

Regarding the relationship among the three threshold 
methods, it is clear that we can found cases for which 
ThresholdDir > ThresholdOrd, and viceversa, because, as 
we have just said, the ThresholdOrd value depends on the 
example probability of being of class 0. A similar 
relationship holds between ThresholdROC and 
ThresholdOrd. 

However, the relationship between ThresholdROC and 
ThresholdDir depends on the relationship between Sum1 
and Sum0, as the following proposition shows: 

Proposition 2. Given n examples, let Sum0
 be the sum of 

the n (normalised) example probabilities of being in class 
0, and let Sum1

 be 1−Sum0
. If Sum0/Sum1 > 1 then 

ThresholdROC > ThresholdDir, if Sum0/Sum1 < 1 then 
ThresholdROC < ThresholdDir, and if Sum0/Sum1 = 1 then 
ThresholdROC = ThresholdDir . 

The following theorem shows that the three thresholds 
coincide when the probabilities are uniformly distributed.  

.Proposition 3. Given a set of n examples whose 
probabilities are uniformly distributed. Let P0 be the 
sequence of these probabilities ranked downwardly: 
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such that the probability of example i being in class 0 and 
class 1 are given respectively by 

m
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m
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where m=n−1. 

 Then, ThresholdROC=ThresholdDir=ThresholdOrd. 

3.  Mimetic Context 

In this section we present the mimetic models we will 
study experimentally in the next section along with the 
threshold estimation seen in Section 2. For this purpose, 
we first introduce several ways to generate the invented 
dataset, as well as different learning schemes. Then, each 
configuration to be considered will be obtained by 
inventing its training dataset in a certain way, by applying 
one of the learning schemes and by using one of the 
thresholds defined in the previous section. 

3.1  Generation of the training dataset for the mimetic 
technique 

As we said in the introduction, we are assuming that the 
original dataset used for training the oracle is not 
available. Hence, the mimetic model is training by using 
only an invented dataset (labelled by the oracle) which is 
generated using the uniform distribution. This is a very 
simple approach, because in very few cases data follow 
this distribution. If we could know the a priori distribution  
of the data or we could have a sample where we could 
estimate this distribution, the results would be probably 
better. Note that, in this way we only need to make use of 
the range value of each attribute (that is, its maximum and 
minimum values). 

In general, the invented dataset D can be generated by 
applying one of the following methods: 

• Type a: A priori method. In this method, D preserves 
the class distribution of the original training dataset. 
To do this, the original class proportion has to be 
known at the time of the data generation. 

• Type b: Balanced method. The same number of 
examples of each class is generated by this method. So 
D is composed by a 50% of examples of class 1 and a 
50% of examples of class 0. 

• Type c: Random method. The invented dataset D is 
obtained by only using the uniform distribution as it is 
(that is, no conditions about the class frequency in D 
are imposed).   

• Type d: Oversampling method. This method makes 
that the class frequencies in the invented dataset are 
defined in terms of the skew, such that D contains a 
proportion of 1/(skew+1) of instances of class 0 and a 
proportion of skew/(skew+1)  of instances of class 1. 

In order to obtain the four types, we generate random 
examples and  then we label them using the oracle. This 
process is finished when we obtain the correct percentage 
according to the selected type. 

3.2  Mimetic Learning Schemes 

In order to use the mimetic approach for a context 
sensitive learning, different mimetic learning schemes can 
be defined depending on the step of the mimetic process 
the context information is used: at the time of generating 
the invented dataset (scheme 3), at the time of labelling 
the invented dataset (scheme 1) or at the time of 
application of the mimetic model (scheme 2). We also 
consider another scheme (scheme 0) which corresponds to 
the situation where the context information is not used (as 
a reference). More specifically, we define the following 
mimetic learning schemes: 

• Scheme 0 (Mim0 model): This is the basic mimetic 
scheme. The mimetic model is obtained by applying a 
decision tree learner to the labelled data, namely the 
J48 classifier with pruning (Figure 3). Then, Mim0 is 
applied as a non sensitive context model that classifies 
a new example of class 0 if the probability for this 
class is greater or equal to 0.5 (threshold=0.5).  

 

Figure 3. Scheme 0: The simple mimetic learning method. 

• Scheme 1 (Mim1 model): This is a posteriori scheme 
in that the context information is used when the 
mimetic model is applied. First, the mimetic model is 
obtained as usually (by using the J48 classifier 
without pruning). Then, the threshold is calculated 
from the mimetic model and the invented dataset. 
Finally, the Mim1 model uses these parameters to 
classify new examples. Figure 4 shows this learning 
scheme. 

 

Figure 4. Scheme 1: The context information is used at the time 
of the mimetic model application. 

• Scheme 2 (Mim2 model): This is a priori scheme in 
which the context information is used before the 
mimetic model is learned. Once the invented dataset 
has been labelled by the oracle, the threshold and the 
Ro index (if it is needed) are calculated from them. 
Then, the invented dataset is re-labelled using these 
parameters. The new dataset is used for training the 
mimetic model which is applied as in scheme 0. This 
learning scheme is very similar to the proposal of  
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(Domingos, 1999). Figure 5 illustrates this learning 
scheme. 

 

Figure 5. Scheme 2: The context information is used to re-label 
the invented dataset before the mimetic model is trained. 

• Scheme 3 (Mim3 model): This is a scheme in which 
the context information is used for generating the 
invented dataset using oversampling. Then, the 
mimetic model is generated and applied as in scheme 
0 (Figure 6).  

 

Figure 6. The context information is used at the time to generate 
the invented dataset by oversampling. 

Note that the J48 learning method has been used with 
pruning in all the schemes except to scheme 1. This is due 
to the fact that, in this case, we need that the mimetic 
model provides good estimations of probabilities in order 
to calculate the threshold from them. 

4.  Experiments 

In this section, we present the global results of the 
experimental evaluation of the mimetic technique as a 
model contextualization approach. A more exhaustive 
experimental evaluation can be found in (Blanco, 2006). 
The combinations we will analyse are obtained as 
follows. First, we combine the Mim1 and Mim2 models 
with the three thresholds defined in Section 2. This gives 
6 different configurations. We also consider the Mim0 
and Mim3 models. Finally, we combine all these models 
(except from Mim3) with the different ways of inventing 
the training dataset defined in Section 3. Summing up, the 
experimental configuration is composed by 22 mimetic 
models to be studied. In that follows, a mimetic model is 
denoted as MimnConfigType, where n denotes a learning 
scheme (0≤n≤3), Config denotes the threshold used (Ord, 
Dir, ROC), and Type denotes the different types of 
invented dataset generation (a,b,c,d) described in section 
3.1. 

4.1  Experimental Setting  

For the experiments, we have employed 20 datasets from 
the UCI repository (Black & Merz, 1998) (see Table 
1¡Error! No se encuentra el origen de la referencia.). 

Datasets from 1 to 10 have been used for the experiments 
in an (almost)-balanced data scenario, whereas the rest of 
them have been used for two unbalanced data situations: 

first, considering class 1 as the majority class and, 
secondly, as minority class. In all cases, we use cost 
matrices with skew values of 1, 2, 3, 5, and 10. The 
mimetic models have been built using the J48 algorithm 
implemented in Weka (Witten & Frank, 2005). Also, we 
have used two oracles: a Neural Network and a Naive 
Bayes algorithm (their implementations in Weka). This 
allows us to analyse our approach both when the oracle is 
calibrated (the case of the neural network which provides 
good calibration) and non-calibrated (the Naive Bayes 
classifier). The size of the invented dataset is 10,000 for 
all the experiments and we use Laplace correction for all 
the probabilities. For all the experiments, we use 10x10-
fold cross-validation. Finally, when we show average 
results, we will use the arithmetic mean. We show the 
means because the number of variants is too large to 
include here the table with the paired t-tests.  You can see 
these results in (Blanco, 2006). 

Table 1. Information about the datasets used in the experiments. 

Attributes Size  No. Dataset Balanced Num. Nom. Size Class 0 Class 1
1 credit-a Almost 6 9 690 307 383
2 heart-statlog Almost 13 0 270 150 120
3 monks1 yes 0 6 556 278 278
4 monks3 Almost 0 6 554 266 288
5 monks2 Yes 0 6 412 206 206
6 tic-tac Yes 0 8 664 332 332
7 breast-cancer Yes 0 9 170 85 85
8 labor Yes 8 8 40 20 20
9 vote Yes 0 16 336 168 168
10 diabetes Yes 8 0 536 268 268
11 haberman-breast No 3 0 306 81 225
12 monks2 No 0 6 601 206 395
13 abalone-morethan No 7 1 4177 1447 2730
14 tic-tac No 0 8 958 332 626
15 breast-cancer No 0 9 286 85 201
16 labor No 8 8 57 20 37
17 vote No 0 16 435 168 267
18 credit-g No 7 13 1000 300 700
19 diabetes No 8 0 768 268 500
20 liver No 6 0 345 145 200

 

4.2  General Results 

An overview of our approach is shown in Table 2, which 
presents the cost average of the mimetic models obtained 
in all experiments grouped by skew. As can be observed, 
for skew=1, the cost is quite similar in all mimetic models. 
However, as the skew value increases, the cost differences 
are more meaningful. Globally, and for skew values 
greater than 2, Mim2Ordb model presents the best 
behaviour, followed by Mim2Orda. For lower skew 
values, the best models are Mim2Dira and Mim2Dirb. 
Hence, from a cost point of view, it seems preferable to 
apply the cost information before the mimetic model is 
built (Mim2 configurations). 
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Table 2. Cost averages of all the mimetic models grouped by 
skew. In bold those with the lowest global cost. 

skew Model  1 2 3 5 10 Mean 

Mim0a 19.74 29.58 39.68 59.53 109.81 51.67 
Mim0b 20.24 30.30 40.27 60.91 114.45 53.24 
Mim0c 20.56 31.35 41.95 63.39 116.87 54.82 
Mim1Dira 20.00 29.41 38.03 51.34 75.88 42.93 
Mim1Dirb 20.37 30.05 38.37 51.19 73.11 42.62 
Mim1Dirc 20.72 30.82 39.29 51.74 73.16 43.15 
Mim1Orda 25.20 32.00 34.32 36.86 39.07 33.49 
Mim1Ordb 20.67 29.36 33.03 36.43 38.76 31.65 
Mim1Ordc 26.17 34.85 39.49 43.84 47.22 38.32 
Mim1ROCa 20.25 29.65 37.80 51.03 71.92 42.13 
Mim1ROCb 20.37 29.84 37.66 50.60 72.49 42.19 
Mim1ROCc 20.73 29.31 36.54 48.25 68.92 40.75 
Mim2Dira 19.74 27.00 31.86 39.25 51.74 33.92 
Mim2Dirb 20.24 27.58 32.24 39.67 51.91 34.33 
Mim2Dirc 20.56 29.02 34.69 42.98 58.87 37.22 
Mim2Orda 23.80 29.98 32.75 35.77 37.42 31.94 
Mim2Ordb 20.61 28.51 31.69 34.84 37.03 30.54 
Mim2Ordc 24.75 33.26 38.11 41.83 45.74 36.74 
Mim2ROCa 20.43 27.77 32.65 39.10 50.22 34.03 
Mim2ROCb 20.58 28.13 33.75 40.83 53.47 35.35 
Mim2ROCc 20.83 29.30 34.92 44.46 60.12 37.93 
Mim3 20.33 28.51 34.85 44.69 61.65 38.01 

Table 3. Accuracies and cost averages of all the models 
according to the experiment type. Acc is Accuracy. 

Balanced Majority Minority Model Acc. Cost Acc. Cost Acc. Cost 
Mim0a 77.40 23.32 73.62 52.76 73.65 78.93
Mim0b 77.53 23.46 72.09 64.49 72.32 71.75
Mim0c 76.24 29.53 72.92 63.73 73.01 71.22

Mim1Dira 76.22 20.30 73.36 41.73 70.84 66.76
Mim1Dirb 76.32 20.34 73.06 47.58 69.27 59.94
Mim1Dirc 75.62 22.98 72.98 47.77 70.34 58.69
Mim1Orda 65.38 17.39 69.53 33.69 50.70 49.39
Mim1Ordb 65.49 17.44 70.40 30.51 55.04 46.99
Mim1Ordc 63.88 20.87 68.03 41.35 54.28 52.72
Mim1Roca 76.31 20.28 73.42 46.78 68.27 59.33
Mim1Rocb 76.37 20.29 73.29 46.48 68.71 59.81
Mim1Rocc 75.81 19.52 73.36 45.30 67.74 57.43
Mim2Dira 75.05 14.59 74.11 35.63 67.92 51.53
Mim2Dirb 75.06 14.59 73.37 39.25 66.46 49.14
Mim2Dirc 73.75 20.96 73.33 40.68 66.77 50.03
Mim2Orda 67.58 16.53 71.32 32.59 54.77 46.71
Mim2Ordb 67.64 16.50 71.56 30.18 58.03 44.94
Mim2Ordc 65.98 20.39 69.82 39.31 57.17 50.51
Mim2ROCa 75.64 15.50 73.86 38.76 65.53 47.83
Mim2ROCb 75.57 15.65 73.21 40.51 66.42 49.90
Mim2ROCc 74.73 20.03 72.81 42.26 67.07 51.48

Mim3 76.08 19.44 73.38 39.98 68.02 54.60
Oracle 81.43 20.61 77.57 54.70 77.55 60.47

Let us see now the effect of working with balanced or 
non-balanced datasets on the accuracy and cost 
average(Table 3). Regarding the cost, we observe the 
same minima as in the overview. The greater increase 
w.r.t. the cost of the oracle is due to those datasets in 
which the skew acts positively over the majority class. 

The improvement of cost w.r.t. Mim3, which represents 
the approach by oversampling, is also meaningful. In the 
cases in which the skew acts positively over the minority 
class, the reduction of cost is also important for some 
methods (like Mim2Ordb) but not for all (for instance, 
Mim1Dira). Concerning accuracy, we do not observe a 
meaningful decrease. Note that the mimetic technique 
itself provides models whose accuracy is always lower 
than the accuracy of the oracle. Nevertheless, as expected, 
the success ratio in the case of minority class has been the 
most affected. Finally, the balanced situation shows an 
intermediate behaviour. 

Table 4 shows the AUC of the models depending on the 
type of datasets. From these results, we can conclude that 
Mim1 obtains slightly better AUC than the rest of models. 
The differences are more important for the non-balanced 
datasets. Comparing and we can see that Mim2Roca is a 
good option if we look between a compromise between 
cost and AUC. 

Table 4 AUC of all the models according to the experiment type. 

Model Balanced Majority Minority 
Mim0a 0.811 0.722 0.722 
Mim0b 0.812 0.727 0.727 
Mim0c 0.804 0.726 0.726 

Mim1Dira 0.813 0.731 0.732 
Mim1Dirb 0.814 0.733 0.733 
Mim1Dirc 0.811 0.731 0.731 
Mim1Orda 0.813 0.731 0.732 
Mim1Ordb 0.814 0.733 0.733 
Mim1Ordc 0.811 0.731 0.731 
Mim1Roca 0.813 0.731 0.732 
Mim1Rocb 0.814 0.733 0.733 
Mim1Rocc 0.811 0.731 0.731 
Mim2Dira 0.796 0.707 0.721 
Mim2Dirb 0.797 0.710 0.722 
Mim2Dirc 0.786 0.706 0.717 
Mim2Orda 0.758 0.688 0.693 
Mim2Ordb 0.758 0.673 0.684 
Mim2Ordc 0.738 0.668 0.684 

Mim2ROCa 0.799 0.714 0.721 
Mim2ROCb 0.799 0.712 0.722 
Mim2ROCc 0.790 0.708 0.717 

Mim3 0.807 0.716 0.723 
Oracle 0.862 0.798 0.798 

5.  Conclusions 

In this paper, we have presented several methods to derive 
a class threshold without training or validation data and 
we have analysed them theoretically and experimentally. 
As a result we can affirm that the introduced techniques 
are useful to reduce the costs of the model, being superior 
to the classical approach based on oversampling. So, not 
having data is not an obstacle if we want to adapt an 
existing model to a new cost context. 



 

 

Theoretically, we have seen that the three approaches are 
similar if the probabilities are uniform. This is rarely the 
case. The approach based on ROC analysis is optimal, if 
the probabilities are well calibrated. However, this is not 
the case in many situations either. Consequently, the 
approach based on sorting the probabilities only assumes 
that the probabilities are reasonably well ordered and 
works well in this case. In general, this method seems to 
be better if no assumption is made on the quality of the 
probabilities. 

From all the proposed configurations, Mim2 (a priori) is 
preferable and the reason can be found in the fact that the 
oracle is almost always better than its imitation (the 
mimetic model). So, the search of the threshold can be 
performed on the oracle more reliably. Secondly, from the 
three main types for the generation of the invented 
dataset, the results show that a) (a priori) and b) 
(balanced) are clearly better than c) (random). Hence, it is 
important to tune the proportion of classes which are 
labelled by the oracle. Although the differences between 
a) and b) are not high, they depend on the configuration 
and whether the dataset is balanced or not. Thirdly, 
regarding the method for determining the threshold, we 
can say that the direct method would work very well if the 
probabilities would be calibrated. Since this is not 
generally the case, we have to take the order of the 
probabilities into account as a more reliable thing and 
obtain the threshold according to this order (the sort 
method). This option seems to give the best results w.r.t. 
costs. Nonetheless, given that the threshold method is 
affected by the range in which the estimated probabilities 
can vary, we devised a method based on ROC analysis, 
and we proposed a threshold derivation based on the 
newly introduced NROC curves. Although they are worse 
on costs, they present a good compromise between cost, 
accuracy and AUC. The recommendation from the 
general results is that when the goal is to minimise the 
global cost the preferable configuration is to use the a 
priori method (i.e. Mim2), with the sort threshold and 
with the invented data in a balanced way (Mim2Ordb). 

As future work it would be interesting to analyse the 
threshold derivation methods after performing a 
calibration. In this situation, we think that the method 
based on ROC analysis can be better than the other two. 
We have not tried this calibration for this paper since here 
we have considered a situation with almost no 
assumptions, in particular we do not have training or 
validation sets and, hence, we cannot calibrate the 
probabilities. An additional future work could be to find 
hybrid techniques between the Ord and ROC methods. 
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