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Abstract

We present abstention cost curves, a new
three-dimensional visualization technique to
illustrate the strengths and weaknesses of ab-
staining classifiers over a broad range of cost
settings. The three-dimensional plot shows
the minimum expected cost over all ratios of
false-positive costs, false-negative costs and
abstention costs. Generalizing Drummond
and Holte’s cost curves, the technique allows
to visualize optimal abstention settings and
to compare two classifiers in varying cost sce-
narios. Abstention cost curves can be used
to answer questions different from those ad-
dressed by ROC-based analysis. Moreover, it
is possible to compute the volume under the
abstention cost curve (VACC) as an indicator
of the classifier’s performance across all cost
scenarios. In experiments on UCI datasets
we found that learning algorithms exhibit dif-
ferent “patterns of behavior” when it comes
to abstention, which is not shown by other
common performance measures or visualiza-
tion techniques.

1. Introduction

In many application areas of machine learning it is
not sensible to predict the class for each and every
instance, no matter how uncertain the prediction is.
Instead, classifiers should have the opportunity to ab-
stain from risky predictions under certain conditions.
Our interest in abstaining classifiers is motivated by
specific applications, for instance in chemical risk as-
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sessment, where it is considered harmful to predict
the toxicity or non-toxicity of a chemical compound
if the prediction is weak and not backed up by suffi-
cient training material.

Abstaining classifiers can easily be derived from non-
abstaining probabilistic or margin-based classifiers by
defining appropriate thresholds which determine when
to classify and when to refrain from a prediction. The
lower and upper thresholds, within which no classi-
fications are made, constitute a so-called abstention
window (Ferri et al., 2004). Making use of absten-
tion windows, a recent approach based on ROC anal-
ysis (Pietraszek, 2005) derives an optimal abstaining
classifier from binary classifiers. In this approach the
thresholds can be determined independently of each
other from the convex hull of ROC curves. However,
ROC-based approaches assume at least known mis-
classification costs. Moreover, classifiers and optimal
abstention thresholds cannot be compared directly for
a range of possible cost matrices, as it is usually done
in cost curves (Drummond & Holte, 2000).

In this paper, we propose an alternative approach to
ROC-based analysis of abstaining classifiers based on
cost curves. The advantage of cost curves is that cost-
related questions can be answered more directly, and
that the performance over a range of cost scenarios can
be visualized simultaneously. The proposed general-
ization of cost curves plots the optimal expected costs
(the z-axis) against the ratio of false positive costs to
false negative costs (the x-axis) and the ratio of ab-
stention costs to false negative costs (the y-axis). The
fundamental assumption is that abstention costs can
be related to misclassification costs. As pointed out by
other authors (Pietraszek, 2005), unclassified instances
might take the time or effort of other classifiers (Ferri
et al., 2004), or even human experts. Another sce-
nario is that a new measurement has to be made for
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the instance to be classified. Thus, abstention costs
link misclassification costs with attribute costs. Con-
sequently, the setting is in a sense related to active
learning (Greiner et al., 2002). Along those lines, we
also assume that abstention costs are the same inde-
pendently of the true class: Not knowing the class, the
instances are handled in the very same way.

We devised a non-trivial, efficient algorithm for com-
puting the three-dimensional plot in time linear in the
examples and in the number of grid points (Friedel,
2005). The algorithm takes advantage of dependen-
cies among optimal abstention windows for different
cost scenarios to achieve its efficiency. However, the
focus of this paper is not on the algorithm, but on
actual abstention cost curves of diverse classifiers on
standard UCI datasets. We present abstention cost
curves as well as “by-products”, showing the absten-
tion rates and the location of the abstention window
(the lower and upper interval endpoints). Moreover, a
new aggregate measure, the volume under the absten-
tion cost curve (VACC), is presented. VACC is related
to the expected abstention costs, if all cost scenarios
are equally likely.

2. Abstaining in a Cost-Sensitive
Context

Before going into detail, we need to specify some ba-
sic concepts and introduce the overall setting. First of
all, we assume that a classifier Cl has been induced by
some machine learning algorithm. Given an instance
x taken from an instance space X , this classifier as-
signs a class label y(x) taken from the target class
Y = {P,N}, where P denotes the positive class and
N the negative class. To avoid confusion, we use cap-
ital letters for the actual class and lowercase letters
for the labels assigned by the classifier. We would
now like to analyze this classifier on a validation set
S = {s1, s2, . . . , sr} containing r instances with classes
{y1, y2, . . . , yr}. As argued in the work on ROC curves
(e.g. in (Provost & Fawcett, 1998)), it can make sense
to use a different sampling bias for the training set
than for the validation set. In this case, the class
probabilities in the validation set might differ from
the class probabilities of the training set or the true
class probabilities. Thus, we do not explicitly assume,
that the validation set shows the same class distribu-
tion as the training set, even though this is the case
in many practical applications. However, we demand
that the classifier outputs the predicted class label as
well as some confidence score for each instance in the
validation set. For simplicity we model class label and
confidence score as one variable, the margin. The mar-

gin m(s) of an instance s is positive, if the predicted
class is p and negative otherwise. The absolute value
of the margin is between zero and one and gives some
estimate of the confidence in the prediction. Thus, the
margin m(s) of an instance s ranges from -1 (clearly
negative) over 0 (equivocal) to +1 (clearly positive).

Applying the classifier to the validation set, yields a
sequence of r (not necessarily distinct) margin values
M = (m(s1),m(s2), . . . ,m(sr)). Sorting this sequence
in ascending order yields a characterization of the un-
certainty in the predictions. The certain predictions
are located at the left and right end of the sequence
and the uncertain ones somewhere in between. Based
on the information in this sequence one can then al-
low the classifier Cl to abstain for instances with mar-
gin values between a lower threshold l and an upper
threshold u. Any such ordered pair of thresholds con-
stitutes an abstention window a := (l, u). A specific
abstaining classifier is defined by an abstention win-
dow a and its prediction on an instance x is given as

π(a, x) =

 p if m(x) ≥ u
⊥ if l < m(x) < u
n if m(x) ≤ l

(1)

where ⊥ denotes “don’t know”.

As both the upper and lower threshold of an absten-
tion window are real numbers, the set of possible ab-
stention windows is uncountably infinite. Therefore,
we have to restrict the abstention windows considered
in some way. If we are given the margin values as
a sorted vector (m1, . . . ,mk) of distinct values – i.e.,
m1 < · · · < mk – it is sensible to choose the thresholds
just in between two adjacent margin values. To model
this, we define a function v : {0, . . . , k} → R which
returns the center of the margin with index i and the
next margin to the right. We extend the definition of
v to the case where i < 1 or i = k to allow for absten-
tion windows that are unbounded on the left or on the
right:

v(i) =


mi+mi+1

2 if 1 ≤ i < k
−∞ if i = 0
+∞ if i = k.

(2)

Note that the original margin sequence may contain
the same margin value more than once, but v is de-
fined only on the k ≤ n distinct margin values. The
set of abstention windows A(Cl) for a classifier Cl is
then A(Cl) := {(v(i), v(j))|0 ≤ i ≤ j ≤ k}. Where
the classifier is clear from the context, we omit it and
denote the set just by A.

The performance of an abstention window is assessed
in terms of expected cost on the validation set. To
calculate this, we need information about the costs
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associated with each combination of true target class
and predicted target class. For our purposes, the costs
are given in a cost matrix C such that C(θ, π) is the
cost of labeling an instance of true class θ ∈ {P,N}
with π ∈ {p, n,⊥}:

C :=
(

C(P, p) C(P, n) C(P,⊥)
C(N, p) C(N,n) C(N,⊥)

)
(3)

As the relative frequency on the validation set
can be considered as a probability measure, we
use conditional probabilities to denote the classifica-
tion/misclassification rates of an abstention window
a = (l, u) on the validation set S. For example, the
false positive rate of the abstention window a on S is
denoted by

PS,a(p|N) :=

∣∣{s ∈ S|y(s) = N ∧ π(a, s) = p}
∣∣∣∣{s ∈ S|y(s) = N}

∣∣ (4)

Similarly, we have the true positive rate PS,a(p|P ), the
false negative rate PS,a(n|P ), the positive abstention
rate PS,a(⊥ |P ), the true negative rate PS,a(n|N), and
the negative abstention rate PS,a(⊥ |N). With this
we can calculate the expected cost of an abstention
window a on S for cost matrix C as the sum of the
products of cost and probability over all events:

EC (C, a, S) :=∑
θ∈{N,P}

∑
π∈{n,p,⊥}

C(θ, π)PS,a(π|θ)P (θ). (5)

In this equation P (θ) denotes the probability of an
example belonging to class θ ∈ {N,P}. In most appli-
cations this is just the fraction of positive and negative
examples in the validation set. Sometimes, one might
want to use other values for those quantities, for ex-
ample to accommodate for a resampling bias.

For a given cost matrix C, we are primarily in-
terested in the optimal abstention window aopt :=
argmina∈A EC (C, a, S), that is, the abstention win-
dow with the lowest expected cost on the validation
set. We observe that the optimal abstention window
does not depend on the absolute values of the costs,
but only on the relation of the individual costs to each
other and the class probabilities P (P ) and P (N). For
example, multiplying all values in the cost matrix by
a constant factor cm does not change the optimal win-
dow. Similarly, adding a constant cP to the upper row
and a constant cN to the lower row of the cost matrix
also has no effect on the optimal abstention window.
Let C ′ denote C with cP added to the upper row and

cN added to the lower row. Then:

EC (C ′, a) =

P (P )
∑

π∈{n,p,⊥}

(C(P, π) + cP )P (π|P )

+ P (N)
∑

π∈{n,p,⊥}

(C(N,π) + cN )P (π|N)

= EC (C, a) + P (P )cP + P (N)cN

Thus, argmina∈A EC (C ′, a, S) =argmina∈A EC (C, a, S)
and the optimal abstention window remains the same.
Consequently, we can transform any cost matrix
in a normal form C ′ by adding cP = −C(P, p)
and cN = −C(N,n) to the upper and lower
rows respectively and then multiplying with
cm = 1/(C(P, n) − C(P, p)). This “normalization”
operation does not change the optimal abstention
window, but it ensures that C ′(P, p) = C ′(N,n) = 0
and that C ′(P, n) = 1. In the following we always
assume a normalized cost matrix C ′ such that the
optimal abstention window depends only on the
relative false positive costs C ′(N, p) and abstention
costs C ′(P,⊥) and C ′(N,⊥):

C ′ :=
(

0 1 C ′(P,⊥)
C ′(N, p) 0 C ′(N,⊥)

)
(6)

In many applications abstaining on an instance results
in additional tests. As the true class of an instance is
not known at that point, the cost of such a test is the
same for both types of instances, i.e. the cost of ab-
stention is independent of the true class of an instance.
In the following we will therefore focus on cases where
C ′(P,⊥) = C ′(N,⊥) := C ′(⊥)1. This means that
the optimal window of a given cost matrix in normal
form is uniquely determined by just two parameters
µ := C ′(N, p) and ν := C ′(⊥). The normalized ex-
pected cost of an abstention window a can then be
written as a function of µ and ν:

c (a, µ, ν) :=
PS,a(n|P )P (P ) + µPS,a(p|N)P (N) + νPS,a(⊥) (7)

In this problem formulation µ represents the false pos-
itive costs relative to the false negative costs, while ν
controls the abstention costs relative to the false neg-
ative costs. As it turns out, abstention does not make
sense for all possible settings of µ and ν. For instance,
if ν is greater than µ, we can do better by classify-
ing an instance as positive instead of abstaining. The

1If this condition is not fulfilled, it is is still possible to
compute optimal abstention windows. However, the com-
putational efficiency suffers from more complicated cost
settings.
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following lemma quantifies this phenomenon. For the
sake of simplicity, we use the fractions of positive and
negative instances in the validation set for P (P ) and
P (N). Therefore, we can determine PS,a(n|P )P (P ),
PS,a(p|N)P (N) and PS,a(⊥) by counting the occur-
rences of each event and then dividing by the number
of instances r.

Lemma 1. Let S, µ and ν be defined as before. If
ν > µ

1+µ , the optimal abstention window aopt is empty,
i.e. lopt = uopt (proof omitted).

3. Cost Curves for Abstaining
Classifiers

If the cost matrix and the class probabilities in a learn-
ing setting are known exactly, one can determine the
optimal abstention window aopt simply by calculat-
ing the expected costs for all windows. However, for
most applications costs and class distributions are un-
certain and cannot be determined exactly. In such a
setting one would like to assess the performance of an
abstaining classifier for a broad range of cost settings.
Even in the case of non-abstaining classifiers one might
want to illustrate a classifier’s behavior for varying cost
matrices or class distributions. The two most promi-
nent visualization techniques to do so are ROC curves
(Provost & Fawcett, 1998) and cost curves (Drum-
mond & Holte, 2000). In the following we present a
novel method that allows to visualize the performance
of abstaining classifiers. In principle, one could ex-
tend ROC curves or cost curves with a third dimension
to accomodate for abstention. However, the meaning
of the new axis in such an “extended” cost curve is
not very intuitive, making it rather hard to interpret.
Since visualization tools rely on easy interpretability,
we follow a different approach2.

The presented cost curve simply plots the normalized
expected cost as given in equation (7). It is created
by setting the x-axis to µ, the y-axis to ν and the z-
axis to the normalized expected cost. Without loss of
generality, we assume that the positive class is always
the one with highest misclassification costs, so that
µ ≤ 1 (if this is not the case, just flip the class labels).
Furthermore, we can safely assume that ν ≤ 1, because
otherwise the optimal abstention window is empty (as
stated by lemma 1).

2Technically, the presented cost curve assumes a fixed
class distribution to allow for easier interpretation. We feel
that the gain in interpretability outweighs the need for this
additional assumption. In some settings cost curves that
extend (Drummond & Holte, 2000) might be more suited;
see (Friedel, 2005, section 3.4) for an elaborate comparison
with the cost curves presented in this paper.
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Figure 1: Example cost curves for uncertain costs, but
fixed class distributions. (a) shows a cost curve for a spe-
cific abstention window, (b) a cost curve for an example
classifier.

We can apply the cost curves in two ways. In the first
case, we plot the normalized expected cost against the
false positive and abstention costs for one fixed absten-
tion window a. Then the resulting cost curve is just a
plane, because z = c(a, x, y) is linear in its parameters
(see Figure 1(a)). This illustrates the performance of
a classifier for one particular abstention window. In
the second case, the cost curve is the lower envelope of
all abstention windows, i.e. z = mina∈A(Cl) c(a, x, y)
(see Figure 1(b)). This scenario is well suited for com-
paring two classifiers independently of the choice of
a particular abstention window. For easier analysis,
the curves can be reduced to two dimensions by color
coding of the expected cost (see Section 4).

Using the information from cost curves, several ques-
tions can be addressed. First, we can determine for
which cost scenarios one abstaining classifier Cls out-
performs another classifier Clt. This can be done by
examining a so-called differential cost curve D(s, t),
which is defined by di,j(s, t) := ki,j(s) − ki,j(t).
di,j(s, t) is negative for cost scenarios for which Cls
outperforms Clt and positive otherwise. Obviously, we
can also compare a non-trivial classifier with a trivial
one, which either always abstains or always predicts
one of the two classes. Second, we can determine which
abstention window should be chosen for certain cost
scenarios by plotting the lower and the upper threshold
of the optimal window for each cost scenario. Third,
we can plot the abstention rate instead of expected
costs in order to determine where abstaining is of help
at all.

Although cost curves are continuous in theory, the vi-
sualization on a computer is generally done by calcu-
lating the z-values for a grid of specific values of x
and y. The number of values chosen for x and y de-
termines the resolution of the grid and is denoted as
∆. For computational considerations, we can thus de-
fine a cost curve for a classifier Cl as a ∆ × ∆ ma-
trix K(p) with ki,j(p) := mina∈A(Cl) c(a, i/∆, j/∆)
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Figure 2: Schematic illustration of optimal abstention win-
dows (upper threshold above the plane, lower threshold be-
low) for various µ and ν. For the same µ and ν1 < ν2, the
optimal window for ν2 is contained in the window for ν1.

for 0 ≤ i, j ≤ ∆. Calculating such a cost curve for
moderately high values of ∆ can be computationally
demanding, as we have to determine the optimal ab-
stention window for a large number of cost settings.

A naive algorithm would compute the cost curve by
calculating the expected cost for each possible absten-
tion window for each cost scenario. As the number of
abstention windows is quadratic in the number of in-
stances, this results in an algorithm in O(∆2n2). Our
more efficient algorithm (Friedel, 2005) for computing
cost curves largely relies on two observations:

1. The optimal abstention window aopt can be com-
puted in linear time by first determining the op-
timal threshold for zero abstention for the respec-
tive µ, and then finding the best abstention win-
dow located around this threshold.

2. for fixed µ and ν1 < ν2, the optimal abstention
window for ν2 is contained in the optimal absten-
tion window for ν1.

Thus, the optimal thresholds and abstention windows
are arranged as illustrated by the schematic drawing
in Figure 2: The plane in the center gives the opti-
mal threshold between positive and negative classifi-
cation; above we have the upper threshold of the op-
timal abstention window, and below the lower thresh-
old. Based on these observations, it possible to design
an efficient algorithm linear in the number of exam-
ples: In the first step, the optimal thresholds for non-
abstention and the various values of µ are computed.
Subsequently, the precise upper and lower thresholds
around the optimal threshold found in the first step
are determined.

4. Experiments

To analyze and visualize the abstention costs, we
chose six two-class problems from the UCI repository:

Alg. Acc. AUC VACC Nrm. Nrm. Nrm.
(%) Acc. AUC VACC

breast-w
J48 95 0.96 0.032 0.98 0.96 1.00
NB 96 0.98 0.018 0.99 0.99 0.58
PART 95 0.97 0.030 0.98 0.98 0.95
RF 95 0.99 0.016 0.98 0.99 0.50
SVM 97 0.99 0.014 1.00 1.00 0.44

bupa
J48 65 0.67 0.16 0.97 0.90 0.93
NB 55 0.64 0.18 0.82 0.87 1.00
PART 62 0.67 0.17 0.93 0.91 0.97
RF 67 0.74 0.15 1.00 1.00 0.84
SVM 64 0.70 0.17 0.95 0.95 0.96

credit-a
J48 87 0.89 0.082 1.00 0.97 0.88
NB 78 0.90 0.093 0.90 0.98 1.00
PART 85 0.89 0.089 0.98 0.98 0.95
RF 85 0.91 0.088 0.99 1.00 0.94
SVM 85 0.86 0.081 0.98 0.95 0.87

diabetes
J48 73 0.75 0.15 0.96 0.90 1.00
NB 76 0.82 0.14 0.99 0.98 0.92
PART 74 0.79 0.14 0.96 0.95 0.94
RF 75 0.78 0.15 0.98 0.94 0.98
SVM 76 0.83 0.13 1.00 1.00 0.87

haberman
J48 69 0.61 0.12 0.93 0.87 1.00
NB 75 0.65 0.11 1.00 0.93 0.95
PART 71 0.59 0.11 0.96 0.84 0.95
RF 68 0.65 0.12 0.91 0.93 1.00
SVM 74 0.70 0.11 1.00 1.00 0.96

vote
J48 97 0.97 0.021 1.00 0.98 0.44
NB 90 0.97 0.046 0.93 0.98 1.00
PART 97 0.95 0.022 1.00 0.96 0.48
RF 96 0.98 0.021 1.00 0.99 0.44
SVM 96 0.99 0.022 0.99 1.00 0.47

Table 1: Summary of quantitative results of five learning
algorithms applied to six UCI datasets

breast-w, bupa, credit-a, diabetes, haberman and vote.
Five different machine learning algorithms, as imple-
mented in the WEKA workbench (Witten & Frank,
2005), were applied to those datasets: J48, Naive
Bayes (NB), PART, Random Forests (RF) and Sup-
port Vector Machines (SVM).

Our starting point is a summary of all quantitative re-
sults from ten-fold cross-validation on the datasets (see
Table 1).3 In the table, the predictive accuracy, the
area under the (ROC) curve (AUC) and the volume
under the abstention cost curve (VACC) are shown.
The volume under the abstention cost curve can be

3In the experiments, we assume that the class distribu-
tion observed in the data resembles the true class distribu-
tion. Experiments assuming a uniform distribution (50:50)
changed the absolute VACC numbers, but not their order-
ing.
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Figure 3: Abstention cost curves, optimal abstention rates and lower/upper thresholds of the optimal abstention window
on the breast-w dataset. From top to bottom: J48, NB, PART, RF, and SVM (as in Table 1)

defined as the double integral over µ and ν. VACC is
related to the expected value of the abstention costs
if all cost scenarios are equally likely. Moreover, the
normalized values of those measures are given, that is,
the value of the measure divided by the maximum over
the classifiers’ performance for the particular dataset.
The normalized values are given to facilitate an easier
comparison between the measures.

Overall, one can see that VACC in fact captures a
different aspect than accuracy or AUC. In the follow-
ing, we discuss the quantitative results from the ta-
ble one by one. On breast-w, the VACC measure in-
dicates significant differences in terms of abstention
costs, which is neither reflected in predictive accuracy
nor in AUC. For instance, we can see that there is
a clear order over the classifiers from different learn-
ing algorithms: SVMs perform best, followed by RF
and NB, whereas PART and J48 lag behind. This
is also illustrated by the plots in Figure 3, which are
discussed below. On the bupa dataset, NB performs
worst and RF performs best according to all measures.
However, the differences are not equally visible in all
measures (see, e.g., RF vs. SVM or, vice versa, NB
vs. PART). On credit-a, the comparison between J48
and NB hints at a marked difference in accuracy and
VACC, not shown by AUC. PART vs. SVM is a differ-
ent case: Comparable values for accuracy and AUC,
but a considerable gap in VACC. For the diabetes data,

a distinct difference is detected for RF vs. SVM in
AUC/VACC, but not in terms of accuracy. On the
haberman dataset, the variation in the quantitative
results is negligible (for details, see below). Finally,
the results on vote reveal that NB performs dramati-
cally worse than all other approaches, perhaps due to
the violated independence assumption on this partic-
ular dataset. This drop in performance is particularly
visible in the VACC results.

Next, we have a closer look at the abstention cost
curves and derived plots for all five learning algorithms
on the breast cancer data (see Figure 3). In the left-
most column, the optimal abstention costs over all cost
scenarios are visualized. Note that all plots are cut
at ν = 0.5, because for greater values of abstention
costs, the abstention window is already degenerate,
with l = u. The plots reflect the numbers from Table
1 adequately, but additionally show in which regions
of the space the majority of costs occur. The second
column from the left visualizes the abstention rate,
that is, the fraction of instances the classifiers leaves
unclassified. For instance, we can infer that PART
should refrain from 10% to 15% of the predictions if
the abstention costs are about one tenth of the false
negative costs. The two right-most colums visualize
the lower and the upper interval endpoints of the ab-
stention window. To enable a visual comparison, all
curves are plotted on the same scale. Considerable dif-
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Figure 4: Differential cost curves for large differences ((a) and (b)) and small differences in VACC ((c) and (d)), differential
cost curve SVMs vs. trivial classifier(s) on bupa (e), lower (f) and upper (g) thresholds of abstention window

ferences in the classifiers’ abstention behavior become
apparent.

In the plots, the isolines of l and u have a remark-
ably different shape. This can be explained as follows:
First, both the upper and lower thresholds increase
not continuously with ν or µ, but in steps. This is due
to the fact that a critical value has to be reached for
the cost of abstaining or classifying the instances be-
tween different threshold values, before thresholds are
adjusted. Second, we observe that for values of ν for
which abstaining is too expensive, the upper and the
lower threshold are equal, as shown before.

The threshold shows a different behaviour only for
those values of ν and µ that allow abstaining. In this
range, the lower threshold depends only on the ratio
between false negative costs (which are constant) and
abstaining costs, and is thus independent of the false
positive costs. The upper threshold on the other hand
depends on both the abstaining costs ν and the false
positive costs µ. In the same way as the lower thresh-
old is effectively not affected by changes in µ in the
range for which abstaining is reasonable, the upper
threshold is not affected by changes in the false nega-
tive costs, which can easily be confirmed by switching
the positive and negative labels.

Next, we take a look at differential cost curves. Differ-
ential cost curves are a tool for the practitioner to see
in which regions of the cost space one classifier is to
be preferred over another. In Figure 4, differential cost
curves with large differences in VACC (upper row, (a)
and (b)) and small differences in VACC (upper row,
(c) and (d)) are shown. In Figure 4(a) and (b), J48 de-
cision trees have smaller abstention costs than PART
rules only in the bluish areas of the space. Differential
cost curves also shed light on differences that do not
appear in VACC, if a classifier is dominating in one
region as it is dominated in another (Figure 4 (c) and

(d)). The regions can be separated and quite distant
in cost space, as illustrated by Figure 4 (c). The differ-
ential cost curve of NB vs. PART on haberman (Fig-
ure 4 (d)) demonstrates that even for datasets with no
clear tendencies in accuracy, AUC or VACC, the plot
over the cost space clearly identifies different regions
of preference not shown otherwise.

Another interesting possibility is the comparison with
the trivial classifier that always predicts positive, neg-
ative, or always abstains. In Figure 4 (e), we compare
SVMs with trivial classifiers on the bupa dataset. In
the black areas near the left upper and the right lower
corner, the trivial classifer performs better than the
SVM classifier. To explain this, we take a look at the
lower and upper thresholds of the abstention window
in Figure 4 (f) and (g). Strikingly, we find that in
the upper left part l = u = −1, that is, everything is
classified as positive, because false positives are very
inexpensive compared to false negatives. However, in
the lower right part l = −1 and u = 1, i.e., not a
single prediction is made there, because abstention is
inexpensive.

It is clear that the discussion of the above results re-
mains largely on a descriptive level. However, ide-
ally we would like to explain or even better, predict
the behavior of classifiers on particular datasets. Un-
fortunately, this is hardly ever achieved in practice:
In the majority of cases it is not possible to explain
the error rate or AUC for a particular machine learn-
ing algorithm on a particular dataset at the current
state of the art. To learn more about the behavior
of the abstention cost curve and the VACC measure,
we performed preliminary experiments with J48 trees,
varying the confidence level for pruning, and SVMs,
varying the penalty/regularization parameter C. Over
all datasets, we observed only small, gradual shifts in
VACC and in the shape of the curves. While it is
hard to detect a general pattern, it is clear that no
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abrupt changes occur. It was also striking to see that
the changes over varying parameter values were con-
sistent for both learning schemes. It seems that the
VACC depends, to some extent, on the noise level of
a dataset.

5. Related Work

The trade-off between coverage and accuracy has been
addressed several times before, such as in articles by
(Chow, 1970), who described an optimum rejection
rule based on the Bayes optimal classifier, or (Pazzani
et al., 1994), who showed that a number of machine
learning algorithms can be modified to increase accu-
racy at the expense of abstention. Tortorella (Tor-
torella, 2005) and Pietraszek (Pietraszek, 2005) use
ROC analysis to derive an optimal abstaining clas-
sifier from binary classifiers. Pietraszek extends the
cost-based framework of Tortorella, for which a simple
analytical solution can be derived, and proposes two
models in which either the abstention rate or the error
rate is bounded in order to deal with unknown absten-
tion costs. Nevertheless, all of these ROC-based ap-
proaches assume at least known misclassification costs.
In contrast, abstention cost curves, as shown in this
paper, visualize optimal costs over a range of possi-
ble cost matrices. Ferri and Hernández-Orallo (Ferri
& Hernández-Orallo, 2004) introduce additional mea-
sures of performance for, as they call it, cautious clas-
sifiers, based on the confusion matrix. Our definition
of an abstention window can be considered as a spe-
cial case of Ferri and Hernández-Orallo’s model for
the two-class case. However, no optimization is per-
formed when creating cautious classifiers and only the
trade-off between abstention rate and other perfor-
mance measures such as accuracy is analyzed. Cau-
tious classifiers can be combined in a nested cascade
to create so-called delegating classifiers (Ferri et al.,
2004). Cost-sensitive active classifiers (Greiner et al.,
2002) are related to abstaining classifiers as they are
allowed to demand values of yet unspecified attributes,
before committing themselves to a class label based on
costs of misclassifications and additional tests.

6. Conclusion

In this paper, we adopted a cost-based framework to
analyze and visualize classifier performance when re-
fraining from prediction is allowed. We presented a
novel type of cost curves that makes it possible to
compare classifiers as well as to determine the cost sce-
narios which favor abstention if costs are uncertain or
the benefits of abstaining are unclear. In comprehen-
sive experiments, we showed that adding abstention

as another dimension, the performance of classifiers
varies highly depending on datasets and costs. View-
ing the optimal abstention behavior of various classi-
fiers, we are entering largely unexplored territory. We
performed preliminary experiments to shed some light
on the dependency of VACC on other quantities, such
as the noise level in a dataset. However, more work
remains to be done to interpret the phenomena shown
by the curves. Finally, we would like to note that an-
other, more qualitative look at abstention is possible.
In particular on structured data, refraining from clas-
sification is advisable if the instance to be classified is
not like any other instance from the training set.
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