
Generalisation Operators for Lists Embedded in
a Metric Space

V. Estruch C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, Univ. Politècnica de València
Camı́ de Vera s/n, 46020 València, Spain.

{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. In some application areas, similarities and distances are used
to calculate how similar two objects are in order to use these measure-
ments to find related objects, to cluster a set of objects, to make classifi-
cations or to perform an approximate search guided by the distance. In
many other application areas, we require patterns to describe similarities
in the data. These patterns are usually constructed through generalisa-
tion (or specialisation) operators. For every data structure, we can define
distances. In fact, we may find different distances for sets, lists, atoms,
numbers, ontologies, web pages, etc. We can also define pattern languages
and use generalisation operators over them. However, for many data
structures, distances and generalisation operators are not consistent. For
instance, for lists (or sequences), edit distances are not consistent with
regular languages, since, for a regular pattern such as ∗a, the covered
set of lists might be far away in terms of the edit distance (e.g. bbbbbba
and aa). In this paper we investigate the way in which, given a pattern
language, we can define a pair of generalisation operator and distance
which are consistent. We define the notion of (minimal) distance-based
generalisation operators for lists. We illustrate positive results with two
different pattern languages.

Keywords: Distance-based methods, inductive operators, induction with
distances, list-based representations

1 Introduction

Distance-based (or more generally, instance-based) methods are a powerful tool
in the field of machine learning. Several reasons back its popularity, among them,
we must stand out its capability to cope with different data representations: these
methods are designed on the basis of a similarity principle (similar examples
should share similar properties) which makes them easily adaptable to different
datatypes via redefining the similarity (distance) function. In this sense, multiple
distances and similarity functions can be found in the literature.

However, in the area of Inductive Programming, the use of distances is still at
a very incipient state. Inductive Programming is concerned with the automated

construction of declarative programs from data. We can distinguish several ap-
proaches to this problem according to the knowledge representation adopted. For
instance, the field known as Inductive Logic Programming (ILP) [13] aims to in-
duce consistent first order theories from data represented as first order objects
(atoms or clauses). A natural extension of this comes when we move to higher-
order logics [1, 12]. The synthesis of functional programs arises when training
data consist in a sample of inputs and outputs of a evaluation function [14, 16].
A more generic framework corresponds to the induction of functional-logic the-
ories. This paradigm centres on performing induction within a formal context
that combines the strengths of logic and functional programming [7, 10, 9].

In this area, the use of similarity functions and distances has been restricted
to ILP, and very specially for machine learning applications of ILP and not for
program synthesis. The reason for this limited success of the use of distances
in inductive programming is twofold. First, distances and similarities return nu-
merical values which are difficult to integrate with declarative models. A model
such as “the sequence aabb has been classified as positive since it is similar to
the sequence aaba which is also positive” cannot reduce the part “similar to”
to a traditional declarative notation, since it usually involves an external func-
tion similarity(s1, s2) and a numerical threshold. In other words, no declarative
pattern has been defined to capture the notion of similarity or, at least, to be
consistent with the notion. Second, although declarative languages constitute an
elegant and powerful framework for program synthesis, they show some limita-
tions when the semantics of the data representation does not match the implicit
semantics managed by these declarative languages. An example of this is found
when working with lists or sequences. From a declarative point of view, lists are
recursively defined in terms of a special item (head) and a tail, which is another
(sub)list. This perspective makes it difficult for the search of patterns in data
that does not suit this definition. For instance, if we are given the lists abaca and
bc, it is not immediate to learn a pattern of the form ∗b∗c∗ because of the simple
fact that the heads of the lists do not match. Unfortunately, list-based repre-
sentations appear in many real-world domains, which might put some limits on
the applicability of declarative tools. For instance, in bioinformatics, compounds
such as amino-acids have a direct representation as sequences of symbols. Fur-
thermore, other much more complex molecules can also be described in terms of
sequences by using the so-called 1-D or SMILE representation [17]. Another ex-
ample is found in text or web mining where documents are usually transformed
into sequences of words. Very common software utilities such as command line
completion or orthographic correctors work on lists as well.

In general, we could wonder if some of the tools employed in inductive pro-
gramming (generalisation operators) could be upgraded to deal with list-based
representations in a more satisfactory way and overcome this limitation. In [4,
6], we consider the possibility by analysing the relationship between distance
and generalisation. In [5] we analysed this framework employing distances and
generalisations for graphs.

Note that most of the applications that handle sequences usually employ dis-
tances in order to find the most similar sequences in data. Distances (and conse-
quently, metric spaces) play an important role in many inductive techniques that
have been developed to date. Similarity offers a well-founded inference principle
for learning and reasoning since it is commonly assumed that similar objects
have similar properties. Given the importance of lists as a datatype for knowl-
edge representation, several distances can be found in the literature, being the
edit distance [11] the best-known. The drawback is that these methods do not
infer a model (or patterns) from data as declarative inductive (or more general,
symbolic) learners do.

Therefore, if we were able to find out a connection between distance and
generalisation we could, on the one hand, define more suitable generalisation
operators to work with structured data in general and with lists in particular;
and on the other hand, we could come up with induction techniques capable of
transforming distance-based method outputs into symbolic models, and conse-
quently, more comprehensible explanations for the user.

There might be many different ways to establish a connection between dis-
tance and generalisation. Ensuring the consistency between them is a compelling
one. Note that if the generalisation process is not driven by the distance, this
might result in patterns that do not capture the semantics of the distance, so
giving wrong explanations about why objects are similar. Let us see an example
of this. If we consider the edit distance over the lists bbab, bab and aaba, we see
that the list ab is close to the previous lists (distances are 2, 1, and 2 respec-
tively). However, a typical pattern that can be obtained by some model-based
methods, *ba*, does not cover the list ab. The pattern does cover the list ded-
edfafbakgagggeewdsc, which is at distance 20 from the three original lists. The
pattern and the distance are up to some point inconsistent since those elements
that are most similar to the initial examples which are excluded.

Although there are other important works on hybridisation, they tend to
ignore the problem of consistency between the semantic of the model learnt and
the semantic of the underlying distance. Basically, what we do is to define some
simple conditions that a generalisation operator should have in order to behave
in a consistent way wrt. a distance. These operators are called distance-based
generalisation operators.

In this paper, we address the problem of inducing patterns from lists of sym-
bols embedded in a metric space. In other words, the work we present here can
be seen as an instantiation for lists of the general framework aforementioned.
It is noteworthy that, even though first-order logic constitutes an elegant and
powerful framework for symbolic knowledge representation, lists have a complex
and a little intuitive representation by means of first-order formulas which im-
plies that patterns over lists have also a complex representation. This fact makes
rather complicated that the ILP techniques can find patterns over lists by ap-
plying a generalisation operator like the lgg. In fact, one of the consequences
derived of this term-based representation is that we need auxiliary predicates
to extract requested information which is packed in a term (like member, head,

tail, previous, , . . .). Hence, useful patterns might not be learnt if we have not
previously defined the correct auxiliary predicates [3].

This paper is organised as follows. Section 2 contains an overview of our
proposal. In Section 3, we analyse how our framework could be used to learn
symbolic patterns from lists. To this end, we introduce two different pattern lan-
guages: L0 and another more expressive L1, and study how to define (minimal)
distance-based operators in all of them. Finally, conclusions and future work are
given in Section 4.

2 Framework

In this section we summarise the main concepts of our setting which integrates
distances and generalisation. For a more detailed presentation of it we refer the
reader to [3].

The underlying idea in our proposal is that, in order to have a true con-
nection between distance and generalisation, the generalisation process have to
take the underlying distance into consideration (or at least the two must be con-
sistent). This special relation is formalised through three notions: reachability,
intrinsicality and minimality.

Reachability implies that the generalisation of two elements ought to include
those paths (a sequence of elements in the metric space) that allow us to reach
both elements from each other by making small “steps”. The concept of short
step must be understood in the sense of the distance.

The second property arises from the observation that the distance between
two elements is always given by the length of the shortest paths. Thus, if we
want our generalisation to be compatible with the distance, we need the ele-
ments belonging to the shortest paths to be covered by the generalisation. This
condition is called intrinsicality.

The two above properties have been defined for two elements since they are
established in terms of the distance which is a binary function. But generalisa-
tion operators are not binary, thus for more than two elements, the connection
between distance and generalisation turns a bit unclear. It seems that the prop-
erties of reachability and intrinsicality must be extended for this generic case.
Distance-based algorithms suggest that it would make sense to impose the no-
tion of intrinsicality for some pairs of elements. The pairs of elements that will
have to comply with the intrinsicality property will be set by a path or con-
nected graph which we will call nerve. Furthermore, we obtain with this a more
generic notion of reachability since all the elements in the set are reachable from
any of them by moving from one element to another through combinations of
(intrinsical) paths.

In Figure 1, generalisations G1 and G2 do not connect the three elements to
be generalised. Only the generalisations G3 and G4 connect the three elements
through combinations of straight segments.

Finally, the last property concerns with the notion of minimality, which is
understood not only in terms of fitting the set (i.e., semantic minimality) but

G2G1

A

B

C
A

B

C
A

B

C A

B

C

G4G3

Fig. 1. Generalising the elements E = {A,B,C}. Elements in E are not reachable
through a path of segments in generalisations G1 and G2. For any two elements in E,
generalisations G3 and G4 include a path of segments connecting them.

also as the simplicity of the pattern (i.e., syntactic minimality). In Figure 1, G3
is an example of a very specific and rather complicated generalisation of A, B
and C.

2.1 Distance-based Inductive Operators

Next, we formally show how the three previous notions are employed in order to
define the so-called distance-based generalisation operators.

A generalisation of a finite set of elements E ⊂ X could be seen as any su-
perset of E in X. Therefore, a generalisation operator (denoted by ∆) simply
maps sets of elements E into supersets. As known, this superset can be exten-
sionally or intensionally defined, being the latter one more useful from a pre-
dictive/explanatory point of view. Symbolic patterns constitute a widely-spread
manner of representing intensional generalisations. For instance, the pattern a∗
denotes all the lists headed by the symbol a. We denote by L the pattern lan-
guage and by Set(p) the set of all the elements in X that the pattern p ∈ L
represents. For instance, Set(a∗) = {a, aa, ab, . . .}. If necessary, L expressive-
ness can always be increased by combining patterns via logical operators (e.g.
pattern disjunction). In this work, disjunction is denoted by the symbol + and
the expression p1 + p2 represents the set Set(p1) ∪ Set(p2). For simplicity, the
pattern p = p1 + . . .+ pn will be expressed as p =

∑n
i=1 pi.

Now, we can already introduce the definition of binary distance-based pattern
and binary distance-based generalisation operator.

Definition 1. (Binary distance-based pattern and binary distance-based
generalisation operator) Let (X, d) be a metric space, L a pattern language,
and a set of elements E = {e1, e2} ⊂ X. We say that a pattern p ∈ L is a
binary distance-based (db) pattern of E if p covers all the elements between e1
and e2

1. Additionally, we say that ∆ is a binary distance-based generalisation
(dbg) operator if ∆(e1, e2) always computes a binary distance-based pattern.

1 Given a metric space (X, d) and two elements e1, e2 ∈ X, we say that an element
e3 ∈ X is between e1 and e2, or is an intermediate element wrt. d, if d(e1, e2) =
d(e1, e3) + d(e3, e2)

As previously said, for the case of more than two elements to be generalised,
the concept of “nerve” of a set of elements E is needed to define non-binary dbg
operators. Informally, a nerve of E is simply a connected2 graph whose vertices
are the elements belonging to E. Observe that if E = {e1, e2}, the only possible
nerve is a one-edged graph. Formally,

Definition 2. (Nerve function) Let (X, d) be a metric space and let SG be
the set of undirected and connected graphs over subsets of X. A nerve function
N : 2X → SG maps every finite set E ⊂ 2X into a graph G ∈ SG, such that each
element e in E is inequivocally represented by a vertex in G and vice versa. We
say the obtained graph N(E) is a nerve of E.

e1 e2

e3 e4

e1

e2

e3 e4

E={e1, e2, e3, e4}
!2!1

Fig. 2. Two nerves for the set E. (Left) ν1 is a complete graph. (Right) ν2 is a 3-star
graph.

Some typical nerve functions are the complete graph, and a radial/star graph
around a vertex (see Figure 2).

Recall that the nerve corresponds to the notion of reachability and indicates
which intermediate elements must be covered by the generalisations. In a more
precise way,

Definition 3. (Skeleton) Let (X, d) be a metric space, L a pattern language,
a set E ⊆ X, and ν a nerve of E. Then, the skeleton of E wrt. ν, denoted
by skeleton(ν), is defined as a set which only includes all the elements z ∈ X
between x and y, for every (x, y) ∈ ν.

Consequently, we look for generalisations that include the skeleton. From
here, we can define the notion of distance-based pattern wrt. a nerve.

Definition 4. (Distance-based pattern and distance-based pattern wrt.
a nerve ν) Let (X, d) be a metric space, L a pattern language, E a finite set of
examples. A pattern p is a db pattern of E if there exists a nerve ν of E such
that skeleton(ν) ⊂ Set(p). If the nerve ν is known, then we will say that p is a
db pattern of E wrt. ν.

And, from here, we have:

2 Here, the term connected refers to the well-known property for graphs.

Definition 5. (Distance-based generalisation operator) Let (X, d) be a
metric space and L be a pattern language. Given a generalisation operator ∆,
we will say that ∆ is a dbg operator if for every E ⊆ X, ∆(E) is a db pattern
of E.

The above definition can be characterised for one nerve function in particular.

Definition 6. (Distance-based generalisation operator wrt. a nerve func-
tion) Let (X, d) be a metric space and L a pattern language. A generalisation
operator ∆ is a dbg operator wrt. a nerve function N if for every E ⊆ X then
∆(E) is a db pattern of E wrt. N(E).

In general it is quite hard to prove that a generalisation operator is db wrt.
any nerve function. Fortunately, for most of the applications it is enough to
exist a particular nerve function wrt. ∆ is distance-based. If the nerve is known
beforehand, we speak of distance-based generalisation operators wrt. a nerve
function N .

Proposition 1. Let L be a pattern language endowed with the operation + and
let ∆b be a binary dbg operator in L. Given a finite set of elements E and a
nerve function N , the generalisation operator ∆N defined as follows is a dbg
operator wrt. N .

∆N (E) =
∑

∀(e1,ej)∈N(E)

∆b(ei, ej)

Proof. It follows from the definition of dbg operator.

2.2 Minimality

Given the definition of dbg operator in the previous section, we can now guar-
antee that a pattern obtained by a dbg operator from a set of elements ensures
that all the original elements are reachable inside the pattern through intrinsic
(direct) paths. However, the generalisation can contain many other, even distant,
elements.

An abstract, well-founded and widely-used principle that connects the no-
tions of fitness and simplicity is the well-known MDL/MML principle [15, 19].
According to this principle, in our framework, the optimality of a generalisation
will be defined in terms of a cost function, denoted by k(E, p), which considers
both the complexity of the pattern p and how well the pattern p fits E in terms
of the underlying distance.

From a formal viewpoint, a cost function k : 2X×L → R+∪{0} is a mapping
where we assume that E is always finite, p is any pattern covering E and k(E, p)
can only be infinite when Set(p) = X.

As usual in MDL/MML approaches, most of the k(E, p) functions will be
expressed as the sum of a complexity (syntactic) function c(p) (which measures
how complicated the pattern is) and a fitness function c(E|p) (which measures

how the pattern fits the data E). As said, the most novel point here is that
c(E|p) will be expressed in terms of the distance employed.

As c(p) measures how complex a pattern is, this function will strongly depend
on the sort of data and the pattern space L we are dealing with. For instance, if
the generalisation of two real numbers is a closed interval containing them, then
a simple choice for c(p) would be the length of the interval.

As c(E|p) must be based on the underlying distance, a lot of definitions are
based on or inspired by the well-known concept of border of a set3. But as the
concept of border of a set is something intrinsic to metric spaces, several general
definitions of c(E|p) can be given independently from the datatype as shown in
Table 1.

L c(E|p)

1 Any
P
∀e∈E re

re = infr∈RB(e, re) 6⊂ Set(p)
2 Any

P
∀e∈E re

re = supr∈RB(e, re) ⊂ Set(p)
3 Any

P
∀e∈E mine′∈∂Set(p)d(e, e′)

4 Set(p) is a
P
∀e∈E mine′∈∂Set(p)d(e, e′)

bound set +maxe′′∈∂Set(p)d(e, e′′)

Table 1. Some definitions of the function c(E|p): 1-Infimum of uncovered elements, 2-
Supremum of covered elements, 3-Minimum to the border, 4-Minimum and maximum
to the border.

Now, we can introduce the definition of minimal distance-based generalisa-
tion operator and minimal distance-based generalisation operator relative to one
nerve function.

Definition 7. (Minimal distance-based generalisation operator and min-
imal distance-based generalisation operator relative to one nerve func-
tion N) Let (X, d) and N be a metric space and a nerve function, and let ∆ be
a dbg operator wrt. N defined in X using a pattern language L. Given a finite
set of elements E ⊂ X and a cost function k, we will say that ∆ is a minimal
distance-based generalisation (mdbg) operator for k in L relative to N , if for
every dbg operator ∆′ wrt. N ,

k(E,∆(E)) ≤ k(E,∆′(E)), for every finite set E ⊂ X. (1)

In similar terms, we say that a dbg operator ∆ wrt. a nerve function N is
a mdbg operator relative to N if the expression (1) holds for every dbg operator
∆′ wrt. N .

The previous definition says nothing about how to compute the mdbg operator,
and as we will see later, this might be difficult. A way to proceed is to first try
3 Intuitively, if a pattern p1 fits E better than a pattern p2, then the border of p1

(∂p1) will somehow be nearer to E than the border of p2 (∂p2).

to simplify the optimisation problem as much as possible, as the next definition
shows:

Definition 8. (Skeleton generalisation operator wrt. a nerve function
N) Let (X, d) be a metric space and N a nerve function. The skeleton generali-
sation operator ∆̄N is defined for every set E ⊂ X as follows:

∆̄N (E) = argmin∀p∈L:skeleton(N(E))=Set(p) k(E, p)

which means the simplest pattern that covers the skeleton of the evidence (given
a nerve) and nothing more. Clearly, it is a dbg operator because it includes the
skeleton, but it might not exist because it cannot be expressed.

The following section is devoted to defining db and mdbg operators for the
list data type.

3 Inductive Operators for Lists

Lists or sequences is a widely-used datatype for data representation in different
fields of automatic induction such as structured learning, bioinformatics or text
mining. In this section, we apply our framework to finite lists of symbols by
introducing two cost functions and two pattern languages for this sort of data
and studying different dbg and mdbg operators for each particular combination
of language and cost function. Due to space limitations as well as comprehensi-
bility’s sake, we sketch those proofs that are excessively long and would make
the reading unnecessarily difficult. If needed, a complete detail of them can be
found in [3].

3.1 Metric space, pattern languages and cost functions

Several distance functions for lists have been proposed in the literature. For
instance, the Hamming distance defined for equally-length lists in [8], or the
distance in [2], defined for infinite-length lists but which can easily be adapted
for finite lists.

However, the most widely used distance function for lists is the edit distance
(or Levenshtein distance [11]), which is the one we are working with. Specifically,
we set the edit distance in such a way that only insertions and deletions are
allowed (a substitution can be viewed as a deletion followed by an insertion or
vice-versa).

Two different pattern languages L0 (single-list pattern language) and L1

(multiple-list pattern language) will be introduced in this section. The patterns
in L0 are lists that are built from the extended alphabet Σ′ = {λ}∪Σ∪V where
λ denotes the empty list, Σ = {a, b, c, . . .} is the alphabet (also called ground
symbols) from which the lists to be generalised are defined, and V = {V1, V2, . . .}
is a set of variables. The same variable cannot appear twice in a pattern. Each
variable in a pattern represents a symbol from {λ}∪Σ. Finally, the pattern lan-
guage L1 is defined from L0 by means of the operation + (see Subsection 2.1)

and aims to improve the expressiveness of L0. For instance, if we let Σ = {a, b},
then, the patterns p1 = aV1V2 and p2 = bV1V2b belong to L0 where Set(p1) =
{aaa, aab, aba, abb, aa, ab, a} and Set(p2) = {baab, babb, bbab, bbbb, bab, bbb, bb}.
In other words, the pattern p1 denotes all those lists headed by the symbol
a whose length ranges between 1 and 3. In a similar way, p2 contains all the
lists headed and ended by b whose length ranges between 2 and 4. Likewise,
the pattern p3 = p1 + p2 belongs to L1 and Set(p3) = Set(p1) ∪ Set(p2) =
{aaa, aab, aba, abb, aa, ab, a, baab, babb, bbab, bbbb, bab, bbb, bb}.

With regard to the cost function, it is convenient to discuss some issues about
the computation of the semantic cost function c(·|·) for this particular setting.
We will do this by means of an example. Suppose we are given the pattern
p = V1V2V3V4aV5V6V7V8 and the element e = ccaba which is covered by p. The
computation of c(e|p) is equivalent to find one of the nearest elements to e,
namely e′, which is not covered by p. Note that e′ is not covered by p when the
symbol a does not occur in e′ (e.g. e′ = ccb) or the number of symbols before or
after each occurrence of a in e′ is greater than 4 (e.g. e′ = ccbbbaba). From this
two possibilities, it is clear in this case that e′ = ccb is the nearest element to e
not covered by p. This simple example allows us to affirm that the calculus c(e|p)
can be as complicated as determining the number of times a sequence s1 occurs
in a sequence s2. Generally speaking, if sp is the sequence of ground symbols in
a pattern p and e′ is the nearest element to e not covered by p, then e′ will be a
supersequence or a subsequence of e which will be obtained by modifying all the
occurrences of sp in e. Of course, as for the general form c(E|p), this operation
must be repeated for all the elements in E.

Therefore, if the learning problem requires the use of a cost function (e.g.
because we are interested in minimal generalisations), it might be more con-
venient to approximate c(E|p), instead of handling the original definition. For
instance, we propose a naive but intuitive approximation of c inspired on the
one we introduced in [3] for sets:

c′(E|p =
n∑

i=1

pi) =

 |E − E1|+ c(E1|pk),∃pk = V1 . . . Vj

and E1 = {e ∈ E : length of e ≤ j}
|E|, otherwise.

The justification is as follows. If there exists a pattern pk = V1 . . . Vj in p,
then it is immediate that for every element e such that its length l is equal to
or less than j, its nearest element not covered by p is, at least, at a distance
j − l + 1, which is the value computed by c(e|V1 . . . Vj). Otherwise, we assume
that the nearest element of e is, at least, at a distance of 1. Implicitly, we are
assuming that the nearest element to e can be obtained by removing (or adding)
one specific ground symbol from (to) e.

The simplicity of c′(·|·) will help us to study and compare the computation
of the mdbg in L0 and L1. As for L0, the cost function is directly defined as
k0(E, p) = c′(E|p) (that is, the complexity of the pattern is disregarded). As for
L1, we use k1(E, p) = c1(p) + c′(E|p) where c1(p) measures the complexity of a
pattern p ∈ L1 by counting both the ground and variable symbols in p.

3.2 Notation and previous definitions

The function Seq(·) defined over a pattern p ∈ L0 returns the sequence of ground
symbols in p. For example, setting p = V1aaV2b, then Seq(p) = aab. The bar
notation | · | denotes the length of a sequence (here a sequence can be an element,
a pattern, etc.). For instance, in the previous case, |p| = 5. The i-th symbol in a
sequence p is denoted by p(i). Following with the example, p(1) = V1, p(2) = a,
. . . , p(5) = b. Any sequence is indexed starting from 1. The set of all the indices
of p is denoted by I(p). Thus, I(p) = {1, 2, 3, 4, 5}. We sometimes use superscript
as a shorthand notation to write sequences and patterns. For instance, V 5a3V 2 is
equivalent to V1 . . . V5aaaV6V7, and V 2(ab)3c is the same as V1V2abababc. Finally,
we will often introduce mappings that are defined from one sequence to another.
By Dom(·) and Im(·) we denote the domain and the image, respectively, of a
mapping.

The first concept that is required is:

Definition 9. (Maximum common subsequence) Given a set of sequences
E = {e1, . . . , en}, and according to [18], the maximum common subsequence
(mcs, to abbreviate) is the longest (not necessarily continuous) subsequence of
all the sequences in E.

This concept is already widely used in pattern recognition. Note that the mcs of
a group of sequences is not necessarily unique. The following definitions will let
us work with the concept of common subsequence in a more algebraic fashion.

Definition 10. (Alignment) Given two elements e1 and e2, we say that the
mapping Me1

e2
: I(e1)→ I(e2) is an alignment of e1 with e2 if:

i) ∀i ∈ Dom(Me1
e2

), e1(i) = e2(Me1
e2

(i))
ii) Me1

e2
is a strictly increasing function in Dom(Me1

e2
).

(Remark 1) If Dom(Me1
e2

) = ∅, we say that Me1
e2

is the empty alignment of e1
with e2. Thus, for every pair of elements we can affirm that there is always at
least one alignment between them.
(Remark 2) Note that the alignment definition does not exclude the case
e1 = e2.
(Remark 3) We call e1(i) = e2(Me1

e2
(i)) a (symbol) matching. Thus, |Dom(Me1

e2
)|

(or equivalently, |Im(Me1
e2

)|) is the number of matchings between e1 and e2 cap-
tured by Me1

e2
, and the subsequence obtained by considering the i-th symbols of

e1 where i ∈ Dom(Me1
e2

) is the sequence of matchings. For the sake of simplicity,
we denote this sequence by Seq(Me1

e2
).

Definition 11. (Optimal alignment) Given two elements e1 and e2, if Seq(Me1
e2

)
is a mcs of e1 and e2, then we say that Me1

e2
is an optimal alignment.

Since I(e1) and I(e2) are finite sets, an alignment Me1
e2

can be written as a 2×n
matrix where n (which we denote as Rang(Me1

e2
)) is the number of matchings.

Hence,

Me1
e2

=
(
a11 . . . a1n

a21 . . . a2n

)
where e1(a1i) = e2(a2i) for all 1 ≤ i ≤ n (condition i) from Definition 10) and
a1i < a1(i+1) and a2i < a2(i+1) for all 1 ≤ i ≤ (n − 1) (condition ii) from
Definition 10). An element of Me1

e2
placed at row i and column j is denoted by

(Me1
e2

)ij .
Let us illustrate all these ideas by means of an example.

Example 1. Given the elements e1 = caabbc and e2 = aacd where I(e1) =
{1, 2, 3, 4, 5, 6} and I(e2) = {1, 2, 3, 4}. An alignment Me1

e2
(M in short) is

M =
(

2 3 6
1 2 3

)
≡ c a a b b c

a a c d

Note that M satisfies both conditions from Definition 10. Following with M , we
have thatDom(M) = {2, 3, 6}, Im(M) = {1, 2, 3},Rang(M) = 3 and Seq(M) =
aac. Finally, M is an optimal alignment.

Given that different optimal alignments can be defined over two elements e1 and
e2, we might be interested in obtaining a concrete optimal alignment. To do
this, we define a total order over all of them which lets us formally specify which
optimal alignment we want.

Definition 12. (Total order for optimal alignments) Given two elements
e1 and e2 and given the optimal alignments Me1

e2
(M in short) and Ne1

e2
(N in

short) defined as

M =
(
a11 . . . a1n

a21 . . . a2n

)
N =

(
b11 . . . b1n

b21 . . . b2n

)
we say that M < N iff (a11, . . . , a1n, a21, . . . , a2n) <LO (b11, . . . , b1n, b21, . . . , b2n)
where <LO is the Lexicographical Order for numerical tuples.

Example 2. Given e1 = aab and e2 = ab, we define the optimal alignments

Me1
e2

=
(

1 3
1 2

)
Ne1

e2
=
(

2 3
1 2

)
Then Me1

e2
< Ne1

e2
.

Every alignment between two elements e1 and e2 induces a special pattern p
which covers both e1 and e2. This pattern is unique and we call it the pattern
associated to an alignment.

Definition 13. (Pattern associated to an alignment and optimal align-
ment pattern) Let e1 and e2 be two elements in Σ∗ and let Me1

e2
(M in short)

be an alignment of e1 with e2. We say that a pattern p ∈ L0 is a pattern associ-
ated to the alignment M (denoted by pM), if

i) Seq(M) = Seq(p)
ii) the variable symbols in p are distributed as follows (letting n = Rang(M),
l1 = |e1|, l2 = |e2|):

– The number of variables in the pattern p before the first ground symbol is
equal to

((M)11 − 1) + ((M)21 − 1)

– The number of variables between whatever two ground symbols p(i) and p(j)
(i < j) in Seq(p) such that there does not exists i < k < j where p(k) is a
ground symbol, is equal to

((M)1(i+1) − (M)1i − 1) + ((M)2(i+1) − (M)2i − 1)

– The number of variables after the last ground symbol in p is equal to

(l1 − (M)1n) + (l2 − (M)2n)

If Me1
e2

is an optimal alignment of e1 with e2, we say that pM
e1
e2

is an optimal
alignment pattern.

For instance, the pattern associated to the alignment M in Example 1 is pM =
V1aaV2V3cV4, which is an optimal alignment pattern because M is an opti-
mal alignment. Note that if M is the empty alignment then pM = V l1+l2 and
Seq(M) = λ.

The alignment and optimal alignment concepts (Definitions 10 and 11) can
be easily extended to cope with patterns. Given two patterns p1 and p2, Mp1

p2

is an alignment of p1 with p2 where only matchings between ground symbols
are taken into account, that is, ∀i ∈ Dom(Mp1

p2
), p1(i) = p2(Mp1

p2
(i)), p(i) ∈ Σ

and p2(Mp1
p2

(i)) ∈ Σ. Analogously, Mp1
p2

is an optimal alignment if Seq(Mp1
p2

) is
a msc of p1 and p2.

To conclude, we introduce a binary bottom-up generalisation operator (called
↑-transformation) defined over L0, which allows us to move through the pattern
language.

Definition 14. Given two patterns p1 and p2 in L0 we define the binary map-
ping

↑ (·, ·) : L0 × L0 → L0

(p1, p2) → ↑ (p1, p2) = p, such that

1. Let Mp1
p2

(M in short) be the minimum optimal alignment of p1 with p2, then
Seq(p) = Seq(M).

2. If Seq(M) = λ then p = V max{|p1|,|p2|}. Otherwise, the distribution of the
variables in p is:
– Before the first ground symbol in p, the number of variable is equal to:

max{(M)11 − 1, (M)21 − 1}

– Between two consecutive ground symbols in p, the number of variables is
equal to:

max{(M)1(i+1) − (M)1i − 1, (M)2(i+1) − (M)2i − 1}

– After the last ground symbol in p, the number of variables is equal to
(letting n = Rang(M), l1 = |p1| and l2 = |p2|):

max{l1 − (M)1n, l2 − (M)2n}

Example 3. Given the patterns p1 = abcV1, p2 = V1abcccV2 and p3 = dV1, then
↑ (p1, p2) = V abcV 3 and ↑ (p1, p3) = V 4.

Proposition 2. For every pair of patterns p1 and p2 in L0, if p =↑ (p1, p2) then
Set(p1) ⊂ (p) and Set(p2) ⊂ (p).

Proof. It directly comes from the definition of the ↑-transformation.

Next, we explain how to define dbg operators for the different pattern languages,
and we study the possibility of finding mdbg operators for (L0, k0) and (L1, k1).

3.3 Single list pattern language (L0)

One would expect that if ∆(E) computes a pattern p such that Seq(p) is a mcs
of the lists in E, then ∆(·) is a dbg operator. However, we find that this operator
is not, in general, distance-based. The following example illustrates this:

Example 4. Let E = {e1, e2, e3} where e1 = c5a3b3, e2 = c5a2d4 and e3 =
a3b3d4c5 are the elements to be generalised. Initially, we are going to fix a nerve
for these elements, namely, the complete nerve (see Figure 3).

e1=cccccaaabbb

e2=cccccaadddd e3=aaabbbddddccccc

Fig. 3. A complete nerve ν for the evidence E = {e1, e2, e3}.

The pattern p = V 10c5V 6 generalises E, and Seq(p) is a mcs of the lists in E.
However, this pattern is not a db pattern of E since, for example, the element
a3b3 (which is between e1 and e3) and the element a2d4 (which is between e2
and e3) are not covered by p. As a matter of fact, no pattern containing the
ground symbol c will be db and this result is independent of the nerve chosen.

The explanation for this apparently counterintuitive result is based on how the
distance between the different pairs of elements ei and ej is calculated. In fact,
although all the lists in E have subsequence c5 in common, this subsequence is
never taken into account to compute the distance d(ei, ej), for any pair (ei, ej) in
ν. Therefore, the operator definition we propose next not only uses the concept
of mcs but also uses others such as the ↑-transformation and the concept of
nerve which ensures the condition of being db. First, we deal with the binary
generalisation operator, and then we extend it for the n-ary case.

In the first stage, for any two elements e1 and e2 to be generalised, we need
to somehow find out which patterns in L0 can cover those elements between e1
and e2.

Proposition 3. Given the elements e1, e2 and e, if e is between e1 and e2, then
there exists an optimal alignment pattern p associated to an optimal alignment
of e1 and e2 such that e ∈ Set(p).

Proof. (Sketch) Let Me1
e and Me

e2
be the optimal alignments of e1 with e and

e with e2, respectively. We define the mapping M between e1 and e2 as the
composition of Me1

e and Me
e2

. The goal is to prove first that M is an optimal
alignment of e1 with e2 and then, see that the associated pattern p

M
covers e.

For this last step we distinguish two cases: i) M is the empty alignment and
consequently p

M
= V |e1|+|e2|. According to Proposition 21 in [3], if e is between

e1 and e2, then |e| ≤ |e1|+ |e2|, hence e ∈ Set(p
M

). ii) M is not empty and we
aim to prove that the variable symbols in M are distributed in such a way that
we can ensure that e ∈ Set(p

M
).

We will use the proposition above along with the ↑-transformation to define
binary db operators.

Corollary 1. Given the elements e1 and e2, if {pi}ni=1 is the set of all the
optimal alignment patterns of e1 and e2, then the generalisation operator defined
as follows is db.

∆b(e1, e2) =↑ (p1, ↑ (p2, . . . ↑ (pn−1, pn)) . . .)

Proof. For every optimal alignment pattern, we know from Proposition 2, that

Set(pi) ⊂ Set(∆b(e1, e2)) (2)

Then, from Proposition 3, we can write that

∀ element e between e1 and e2 ⇒ ∃pi : e ∈ Set(pi) (3)

Now, combining (2) and (3), we can affirm that

∀ element e between e1 and e2 ⇒ e ∈ Set(∆b(e1, e2)) (4)

Hence, the generalisation operator is distance-based.

Next, we extend Corollary 1 for an arbitrary number of elements.

Corollary 2. Given a finite set of elements E ⊂ X and a function nerve N ,
the generalisation operator ∆ defined in Algorithm 1 (where ∆b is defined in
Corollary 1) is db wrt. N .

Proof. For every (ei, ej) ∈ N(E), Set(∆b(ei, ej)) ⊂ Set(∆(E)) by the definition
of the ↑-transformation. Therefore, for every finite set E, ∆(E) is distance-based
w.r.t. N(E).

Data: E = {e1, . . . , en}, ∆b (binary dbg operator) and ν (a nerve of E)
Result: Distance-based pattern of E wrt. ν
begin1

k ← 0;2

L← []/ ∗ empty list ∗ /;3

for (ei, ej) ∈ N(E) do4

L[k]← ∆b(ei, ej);5

k ← k + 1;6

end7

S ← {ai ∈ Σ : ∀0 ≤ j ≤ k : ai ∈ Seq(L[j]);8

if S = ∅ then return V max{|L[j]|:∀0≤j≤k} ;9

else10

p← First(L);11

Remove(L, p);12

while L 6= ∅ do13

Find pi ∈ L: ∃aj ∈ S, aj ∈ Seq(↑ (p, pi));14

p←↑ (p, pi);15

Remove(L, pj);16

end17

return p;18

end19

end20

Algorithm 1: An algorithm to compute a db pattern of a set of lists E
wrt. a nerve ν.

Algorithm 1 returns a pattern p such that Set(∆b(ei, ej)) ⊂ Set(p), for every pair
of elements in N(E), by iteratively applying the ↑-transformation over all the
patterns ∆b(ei, ej). The else-block is important since it ensures that Seq(p) 6= λ,
if all the sequences Seq(∆b(e1, ej)) have a subsequence in common. Let us see
an example of this.

Example 5. Given E = {e1, e2, e3, e4} where e1 = abc, e2 = cabcd, e3 = c,
e4 = cab and the nerve N(E) = {(e1, e2), (e2, e3), (e2, e4)}. The binary distance-

based generalisations (lines 5-7 in the algorithm) are:

L[0] = ∆b(e1, e2) = V abcV
L[1] = ∆b(e2, e3) = V cabV
L[2] = ∆b(e2, e4) = V 3cV 4

If we applied the ↑-transformation in any arbitrary order over the set of binary
patterns, we could obtain for example:

p← V abcV
p← ↑ (p, V cabV) = V 2abV 2

p← ↑ (p, V 3cV 4) = V 9

However, if the ↑-transformation is applied as the algorithm indicates (lines 8-
17), then S = {c} and the patterns would be merged in the following order:

p← ↑ V abcV
p← ↑ (p, V 3cV 4) = V 3cV 4

p← ↑ (p, V cabV) = V 3cV 4

With regard to the computation of mdbg operators in (L0, k0), the algorithm
above always return the mdbg. On the one hand, if all the binary patterns have
a subsequence in common, the algorithm computes a distance-based pattern p
such that Seq(p) 6= λ and the function c′(E|p) = |E| which attains a minimum
value. On the other hand, the algorithm returns a pattern with variable symbols
only, and whose length is the minimum length required to be distance-based.
Therefore, p is minimal as well.

3.4 Multiple list pattern language (L1)

We will define dbg operators in L1 via ∆N (Proposition 1). The binary operator
∆b required by ∆N is the one introduced in Corollary 1. An example of how this
operator works is shown below:

Example 6. Given a finite set of elements E = {e1, e2, e3, e4} where e1 = a2b2d,
e2 = da2c2, e3 = c2db2 and e4 = ad and the nerveN(E) = {(e1, e2), (e1, e3), (e1, e4)}.

∆b(e1, e2) = p1 = V a2V 5

∆b(e1, e3) = p2 = V 5b2

∆b(e1, e4) = p3 = V aV 3d

Finally,
∆N (E) = V a2V 5 + V 5b2 + V aV 3d

Observe that the solution for this example in L0 is just a pattern consisting of
variable symbols only, which shows the utility of L1. Next, let us see how to
obtain mdbg operators in L1.

Since the only way we know to define a distance-based operator in L1 consists
in fixing a nerve beforehand, it is reasonable to study how to define mdbg oper-
ators relative to a nerve function. However, the calculus of the mdbg operator is
not easy at all. Basically, the question is whether the mdbg operators relative to a
nerve function N can be defined in terms of ∆N and the ↑-transformation. How-
ever, this result seems hard to be established. On the one hand, we ignore how
to explicitly define most of the ∆b operators (since Corollary 1 only establishes
a sufficient condition) and on the other hand, we must take into consideration
some inherent limitations of the ↑-transformation:

1. The mdb pattern might not be found by applying the ↑-transformation over
∆N if this one uses the binary operator ∆b defined in Corollary 1: we will
illustrate this by means of an example.

Example 7. Given the set E = {e1, e2, e3}, where e1 = a1a2a3, e2 = a1a6a7

and e3 = a2a4a5, and N(E) = {(e1, e2), (e1, e3)}. The optimal alignment
patterns which are associated to (e1, e2) and (e1, e3), respectively, are a1V

4

and V a2V
3. Then a1V

4 is a db pattern of (e1, e2) (since it is the only optimal
alignment pattern) and V a2V

3 is a db pattern of (e2, e3) (since it is the only
optimal alignment pattern). Hence, the pattern p = a1V

4 + V a2V
3 is db

w.r.t. N(E). However, the pattern p′ = a1V
4 + a2V

3 is distance-based (the
only element between e1 and e2, which is not covered by a2V

3, is a1a2a4a5

but this is covered by a1V
4) but Set(p′) 6⊂ Set(p). The mdb pattern for E

will have |p′| or even fewer symbols and this will never be achieved by the
↑-transformation over the optimal alignment patterns.

Therefore, given that ∆b is defined from the concept of optimal alignment
patterns and ∆N is defined from ∆b, it is not possible that the mdbg operator
can be expressed in terms of the ↑-transformation and ∆N .

2. The mdbg pattern might not be found by applying the ↑-transformation over
skeleton(N(E)): from the previous point, we could think that the mdb pat-
tern cannot be found because the optimal alignment patterns are excessively
general. However, if it was so, it would mean that starting the search from
something extremely specific, namely the skeleton, the mdb pattern should
be found. However, this is not true as the next example reveals:

Example 8. Given E = {e1, e2, e3, e4, e5} where e1 = ac3b2, e2 = ab2, e3 =
ab2ce, e4 = d and e5 = fgh and the nerve depicted below:
If we group the elements according to its similarity and then apply the ↑-
transformation over the different groups, the pattern obtained would attain
a lower value for k1(E, ·). Taking this strategy into account, we can dis-
tinguish several meaningful grouping criteria. For instance, those elements
which contain the subsequence abb (G1) and those which do not (G2). That
is,

G1 = {ac3b2, acb2, ac2b2, ab2, . . . , ab2d}
G2 = {dfgh, fdgh, fgdh, fghd}

e1=acccbb e2=abb e3=abbce

dfgh
fdgh
fgdh
fghd

abdb
abbd

adbb
dabb

accbb
acbb abbc

abbe

e4=d e5=fgh

Fig. 4. A naive generalisation of the set E w.r.t. the nerve N(E). Circled elements are
the intermediate elements.

In this particular case, it does not matter how the elements in the groups are
ranked in order to apply the ↑-transformation since the final result remains
invariable. Thus, we can write

p1 =↑ (G1)+ ↑ (G2) = V aV 3bV bV 2 + V fV gV hV

For any other binary splitting, we would have elements having no subse-
quence in common in the same group (e.g. abb and dfgh). The shortest
patterns would be

p2 = aV 3b2V 2 + V 4

p3 = V 6

Using three groups, another interesting possibility can be explored. For in-
stance, G1 = {fgh}, those elements containing the subsequence d (G2) and
the remaining ones (G3). Depending on the order of the elements in G2 we
could obtain by applying the uparrow-transformation.

p4 = V 5 + aV 3b2V 2

p5 = V 3dV 3 + aV 3b2V 2 + fgh

Finally, it is not worth using more than three groups because of the excessive
length of the pattern obtained. Evaluating the different patterns, we have
that:

k1(E, p1) = c(p1) + c′(E|p1) = 17 + 5 = 22
k1(E, p2) = c(p2) + c′(E|p2) = 12 + 10 = 22
k1(E, p3) = c(p3) + c′(E|p3) = 6 + 17 = 23
k1(E, p4) = c(p4) + c′(E|p4) = 13 + 13 = 26
k1(E, p5) = c(p5) + c′(E|p5) = 18 + 5 = 23

But the following patterns are also distance-based for E:

p6 = V 3cV 2 + V 4

p7 = aV 5 + V 4

where
k1(E, p6) = c(p6) + c′(E|p6) = 10 + 10 = 20
k1(E, p7) = c(p7) + c′(E|p7) = 10 + 10 = 20

However, neither p6 nor p7 can be derived from a ↑-transformation since
this tends to extract the longest common subsequence. Observe that all the
elements which have the subsequence c or a also contain the subsequence
abb in common.

From this previous analysis, we can conclude that the ↑-transformation is not
enough in itself to explore the search space. We need a generalisation tool which
is not based on the concept of the longest common subsequence. For this purpose,
we introduce the so-called inverse substitution.

Definition 15. (Inverse substitution) Given a pattern p in L0 or in L1 an
inverse substitution σ−1 is a set of indices where each index denotes a ground
symbol in p to be changed by a variable. Thus, pσ−1 represents the new pattern
which is obtained by applying σ−1 over p.

Basically, an inverse substitution just changes ground symbols by variables.
For example, given p = V aabV and σ−1 = {2, 4} then pσ−1 = V 2aV 2. Now, we
are in conditions to introduce the next proposition:

Proposition 4. Given a finite set of elements E = {e1, . . . , en} and a nerve
function N . If we set S = skeleton(N(E)) then there exists a partition P of
the set S and a collection of inverse substitutions {σ−1

1 , . . . , σ−1
n } such that the

pattern
p =

∑
∀Pi={eki

}mi
ki=1∈P

↑ ({eki
σ−1

ki
}mi

ki=1)

is a mdb pattern of E relative to N(E).

Proof. (Sketch). We can assume that there exists a pattern p =
∑n

i=1 pi such
that k(E, p) attains a minimum value. The pattern p induces a partition of
E = ∪Ei in such a way that ei ∈ Ei iff ei ∈ Set(pi). Next, we remove repeated
elements in the different Ei in order to make sure that the subsets Ei are pairwise
disjoints. Finally, the proposition can be proved using the concepts of inverse
substitution and ↑-transformation over the partition we have set.

This latter proposition leads to an exhaustive search algorithm in order to
compute the mbdg operator. This algorithm turns out to be useless in general
due to the size of the search space (the number of different possibilities for the
partition of skeleton(N(E)) and substitutions). In fact, for a particular version
of L1, we have proved that this optimisation problem is NP -Hard (see [3]).

Hence, the other option is to approximate the calculus of the mdb patterns.
To do this, we use a greedy search schema driven by the cost function. That is,
for each iteration, the ↑-transformation is applied over the pair of patterns that
reduces th cost function most. This idea is formalised in the Algorithm 2 and
illustrated in Example 9.

Input: E = {e1, . . . , en}, ∆b (binary dbg operator) and N (nerve function)
Output: A pattern which approximates a mdb pattern of E w.r.t. N(E)
∆̃N (E)1

begin2

k ← 1;3

for (ei, ej) ∈ N(E) do4

pk ← ∆b(ei, ej);5

k ← k + 1;6

end7

p =
Pn

k=1 pk;8

do9

kp ← k1(E, p);10

p′ ← argmin{k1(E, pij) : ∀1 ≤ i, j,≤ n, pij =↑ ({pi, pj}) + (p− pi − pj)};11

k′p ← k1(E, p′);12

if kp′ < kp then p← p′;13

while kp′ < kp14

return p;15

end16

//The notation p− pi − pj employed in the algorithm means all the patterns in17

p except pi and pj .;

Algorithm 2: A greedy algorithm which approximates the mdbg operator.

Example 9. Let E and N(E) be the set of examples and the nerve employed in
Example 6. Remember that,

p1 = ∆b(e1, e2) = V a2V 5

p2 = ∆b(e1, e3) = V 5b2

p3 = ∆b(e1, e4) = V aV 3d

and
p = V a2V 5 + V 5b2 + V aV 3d

see lines 4-8 in the algorithm. Next, we have to apply the ↑-transformation over
each pair of binary generalisations and we choose the one which attains a lower
value of k1(E, ·) (see lines 9-14). In our case, we must consider two possibilities:

p1 = ↑ (V a2V 5, V 5b2) + V aV 3d = V 8 + V aV 3d
= V 8

p2 = ↑ (V a2V 5, V aV 3d) + V 5b2 = V aV 6 + V 5b2

Since k1(E, p2) = 19 is less than k1(E, p1) = 27, we choose the pattern p2. The
process stops when the pattern cannot be further improved. Note that the next
iteration leads to

↑ (V aV 6, V 5b2) = V 8

which performs worse than p2. Therefore, the algorithm returns p2.

4 Conclusions and Future Work

We have followed the connection between two major concepts in inductive pro-
gramming, the concept of distance and generalisation, when applied to lists. This
work is based in a correct integration of distance-based methods with symbolic
inductive learners we introduced in [4][6]. This proposal relies on the novel con-
cept of (minimal) distance-based generalisation operator, which aims to induce
consistent (minimal) patterns from data embedded in a metric space.

The main contribution of this paper consists in studying how to apply our
framework in order to infer consistent symbolic patterns from a particular struc-
tured data type (lists) and a distance function (edit distance). More concretely,
we have seen how to define (minimal) distance-based generalisation operators
for this domain. To do this, we have introduced two different pattern languages
L0 and L1. The first language is made up of patterns which consist of finite
sequences of ground and variable symbols. The language L1 extends L0 in that
the disjunction of patterns is permitted. Additionally, we have defined a cost
function for each language in order to study the minimality of the patterns we
can obtain.

We have proved that for more than two sequences, the widely-used concept
of maximum common subsequence does not necessarily lead to distance-based
generalisation operators. In order to obtain this sort of operators, we need to
introduce a new concept: namely, the concept of sequence associated to an op-
timal alignment. This kind of sequences leads to certain patterns that when
combined, allows us to define distance-based operators. As for the minimality
of these operators, we have shown this is a computational hard problem in L1.
For this reason, we have introduced a greedy search algorithm which allows us
to approximate minimal generalisations.

There are some work ahead to ease the integration of these generalisation
operators into inductive programming tools. For instance, the computational
complexity of the greedy search algorithm which approximates minimal patterns
is a concern. This has a quadratic complexity with the number of subpatterns
in the pattern obtained by Proposition 1. Unfortunately, this operation still has
a high cost, if we want to run our algorithm over large data sets. Thus, it would
be convenient to try other heuristics with a lower complexity that ensure a good
approximation. Another one is devoted to the pattern languages that have been
investigated. Note that both L0 and L1 are subfamilies of regular languages.
A very interesting line of work would consist in extending all the results pre-
sented in this paper in order to include pattern representations based on other

more expressive subfamilies of regular languages. By doing this, we could ob-
tain not only new grammar inference algorithms but also new grammar learners
that would ensure the consistency of the inferred model wrt. the underlying dis-
tance, something which does not happen when traditional grammar learners are
applied.

5 Acknowledgments

This work was partially supported by the EU (FEDER) and the Spanish Gov-
ernment MEC/MICINN, under grant TIN 2007-68093-C02, the Spanish project
“Agreement Technologies”(CONSOLIDER-INGENIO CSD2007-00022) and the
Valencian project PROMETEO/2008/051.

References

1. A.F. Bowers, C. G. Giraud-Carrier, and J. W. Lloyd. Classification of individuals
with complex structure. In Proc. of the 17th International Conference on Machine
Learning (ICML’00), pages 81–88. Morgan Kaufmann, 2000.

2. G. A. Edgar. Measure, Topology and Fractal Geometry. Springer-Verlag, 1990.
3. V. Estruch. Bridging the gap between distance and generalisa-

tion: Symbolic learning in metric spaces. PhD Thesis, DSIC-UPV
http://www.dsic.upv.es/ vestruch/thesis.pdf, 2008.

4. V. Estruch, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Distance
based generalisation. In Proc. of the 15th Int. Conf. on ILP, volume 3625 of LNCS,
pages 87–102, 2005.

5. V. Estruch, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Distance
based generalisation for graphs. In Proc. Work. of Machine and Learning with
Graphs, pages 133–140, 2006.

6. V. Estruch, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Minimal
distance-based generalisation operators for first-order objects. In In Proc. of the
16th Int. Conf. on ILP, pages 169–183, 2006.

7. C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Incremental learning
of functional logic programs. In H. Kuchen and K. Ueda, editors, FLOPS, volume
2024 of Lecture Notes in Computer Science, pages 233–247. Springer, 2001.

8. R. W. Hamming. Error detecting and error correcting codes. Bell System Technical
Journal., 26(2):147–160, 1950.

9. J. Hernández-Orallo and M.J. Ramı́rez-Quintana. Inverse narrowing for the induc-
tion of functional logic programs. In 1998 Joint Conference on Declarative Pro-
gramming, APPIA-GULP-PRODE’98, A Coruña, Spain, July 20-23, 1998, pages
379–392, 1998.

10. J. Hernández-Orallo and M.J. Ramı́rez-Quintana. A strong complete schema for
inductive functional logic programming. In Proceedings of the 9th International
Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes in Ar-
tificial Intelligence, pages 116–127. Springer-Verlag, 1999.

11. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady., 10:707–710, 1966.

12. J. W. Lloyd. Learning comprehensible theories from structured data. In Advanced
lectures on machine learning, pages 203–225. Springer-Verlag, 2003.

13. S. H. Muggleton. Inductive logic programming: Issues, results, and the challenge
of learning language in logic. Artificial Intelligence, 114(1–2):283–296, 1999.

14. R. Olsson. Inductive functional programming using incremental program transfor-
mation. Artifificial Intelligence, 74(1):55–81, 1995.

15. J. Rissanen. Hypothesis selection and testing by the MDL principle. The Computer
Journal, 42(4):260–269, 1999.

16. U. Schmid. Inductive synthesis of Functional Programs-Universal Planning, Fold-
ing of Finite Programs, and Schema Abstraction by Analogical Reasoning. Springer,
2003.

17. S.H. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, and P. Baldi. Kernels
for small molecules and the prediction of mutagenecity, toxicity and anti-cancer
activity. Bioinformatics, 21:359–368, 2005.

18. R. Rivest T.H. Cormen, C. Leiserson and C. Stein, editors. Introduction to Algo-
rithms. The MIT Press, 2000.

19. C. S. Wallace and D. L. Dowe. Minimum Message Length and Kolmogorov Com-
plexity. Computer Journal, 42(4):270–283, 1999.

