Defining inductive operators using distances over lists

Authors: V. Estruch, C. Ferri, J. Hernández-Orallo & M.J. Ramírez-Quintana
(Univ. Politècnica de València)

3rd WS on Approaches and Applications of Inductive Programming
Index of Contents

- Introduction
- Motivation
- Distance-based generalisation (dbg) operators
- Dbg operators for lists
- Future work
Index of Contents

Lists are all round

- Bioinformatics
- Text mining
- Command line completion
- Ortographic correctors
Introduction

Learning from lists

Distance-based methods

- Inductive bias: near examples

<table>
<thead>
<tr>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Algorithms can be adapted to any data representation</td>
<td>- No or little expressive hypothesis</td>
</tr>
</tbody>
</table>

K-Means, etc.
Index of Contents

- Introduction
- Motivation
- Distance-based generalisation
 - (dbg) operators
- Dbg operators lists
- Future work
Motivation

Could it be possible to transform distances into patterns?
Motivation

Naive approach: \textit{db method + symbolic method (pattern)}

data lists → DB METHOD
Hierarchical clustering

clusters → CLUSTER

\begin{align*}
e_1 &= c^5a^3b^3 \\
e_2 &= c^5a^2d^4 \\
e_3 &= a^3b^3d^4c^5
\end{align*}

SYMBOLIC METHOD
Longest com. subsequence

PATTERN
\[^*c^5* \]
Motivation

Little certainty about the consistency between the distance and the patterns.
Index of Contents

- Introduction
- Motivation
- Distance-based generalisation (dbg) operators
- Dbg operators for lists
- Future work
Distance-based generalisation operators

Proposed approach:

- Distances count differences between objects
- Patterns drop differences between objects
- So, drop what you count!

How can we formalise the relation of consistency between patterns and distances?

- It must be independent of the data/pattern language and the distance definition
Distance-based generalisation operators

Projecting patterns in metric spaces
Making patterns and distance agree

Near elements should be covered (closed balls)

Near elements lying in smooth paths should be covered (ε-path)

Intrinsic paths must be covered (intermediate elements)
Distance-based generalisation operators

Definition

Binary distance-based (db) pattern

Given \(E = \{ e_1, e_2 \} \), a pattern \(p \) is a binary db pattern of \(E \), if

\[p \text{ covers all the intermediate elements of } e_1 \text{ and } e_2. \]

Definition

Binary distance-based generalisation (dbg) operator

Additionally, \(\Delta \) is a binary dbg operator if,

\[\Delta(e_1, e_2) \text{ is a binary db pattern, for every } e_1 \text{ and } e_2. \]
Distance-based generalisation operators

Playing with patterns and distances

\[d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \]
Distance-based generalisation operators

Playing with patterns and distances

\[d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \]

\[d(x, y) = |x_1 - y_1| + |x_2 - y_2| \]

\[d(e_1, e_3) + d(e_3, e_2) = 0.75 + 1.25 = 2 = d(e_1, e_2) \]
Distance-based generalisation operators
Moving to n-ary generalisations

- Generalisation can be an n-ary operator but distance is binary.

Reachability through combinations of intrinsic paths.
Distance-based generalisation operators

Moving to n-ary generalisations

- **Nerve**: undirected connected graph whose vertices correspond to examples

 \[
 N_1 \quad \begin{array}{c}
 e_1 & e_2 \\
 e_3 & e_4
 \end{array} \quad N_2 \quad \begin{array}{c}
 e_1 & e_2 \\
 e_3 & e_4
 \end{array}
 \]

- **Nerve function**: from examples to nerves

 \[
 N(\cdot) \quad \begin{array}{c}
 e_1 & e_2 \\
 e_3 & e_4
 \end{array} \quad \begin{array}{c}
 e_1 & e_2 \\
 e_3 & e_4
 \end{array}
 \]

- **Skeleton**(N_i): filling the nerve\((\forall (e, e) \in N_i, \forall e \in X : \text{if } e \text{ is between } e_i \text{ and } e_j \Rightarrow e \in \text{skeleton}(N_i))\)
Distance-based generalisation operators

Moving to n-ary generalisations

Definition

N-ary db pattern

Given a finite set of elements E, a pattern p is a *n-ary db pattern* of E, if there exists a nerve ν of E such that $\text{skeleton}(\nu) \subseteq \text{Set}(p)$.

Definition

N-ary distance-based generalisation (dbg) operator

Additionally, Δ is a *n-ary dbg operator*, if

$\Delta(E)$ is a *n-ary db pattern* of E (for every E).
Distance-based generalisation operators
Moving to n-ary generalisations

Definition

N-ary db pattern relative to a nerve ν

Given a finite set of elements \(E \), \(p \) is a *n-ary db pattern of \(E \) relative to \(ν \), if

\[
skeleton(ν) \subseteq Set(p)
\]

Definition

N-ary dbg operator relative to a nerve function \(N \)

Additionally, \(Δ \) is a *n-ary dbg operator relative to \(N \), if

\(Δ(E) \) is a *n-ary db pattern relative to \(N(E) \) (for every finite set \(E \))
Distance-based generalisation operators
From binary to n-ary db generalisations

Proposition

Let \mathcal{L} be a pattern language endowed with the operation $+$ and let Δ^b be a binary dbg operator in \mathcal{L}. Given a finite set of elements E and a nerve function N, then

$$\Delta_N(E) = \sum_{(e_i, e_j) \in N(E)} \Delta^b(e_i, e_j)$$

is a dbg operator w.r.t. N.
Minimal dbg operators

How to organise the hypothesis space?
Minimal dbg operators

- A \(db \) cost function is introduced (a \(db \) MML/MDL formulation)

\[
K(E,p) = c(E|p) + c(p)
\]

Semantic cost function \(\rightarrow \) Syntactic cost function

- Hypotheses are organised according to its fitness (in terms of the distance) and (if necessary) complexity
Minimal dbg operators

- $c(E|p)$ can be expressed as:

| \mathcal{L} | $c(E|p)$ | Description |
|----------------|----------|-------------|
| Any | $\sum r_e$ | Uncovered balls of infimum radius |
| $r_e = \inf_{r \in R} B(e,r) \not\subset Set(p)$ | | |
| Any | $\sum r_e$ | Covered balls of supremum radius |
| $r_e = \sup_{r \in R} B(e,r) \subset Set(p)$ | | |
| Sets with border | $\sum \min_{e \in \partial Set(p)} d(e,e')$ | Minimum to the border |
| Set(p) is a bound set | $\sum \min_{e \in \partial Set(p)} d(e,e') + \max_{e \in \partial Set(p)} d(e,e'')$ | Minimum and maximum to the border |
Minimal dbg operators

- $c(p)$ can be expressed as:

<table>
<thead>
<tr>
<th>Sort of data</th>
<th>L</th>
<th>$c(p)$</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical</td>
<td>Closed intervals</td>
<td>Length of the interval</td>
<td>$c([a,b])=b-a$</td>
</tr>
<tr>
<td>Finite lists over an alphabet of symbols</td>
<td>Patterns built from the alphabet and variable symbols</td>
<td>Number of symbols in the pattern</td>
<td>$c(V_0abV_1V_2)=5$</td>
</tr>
<tr>
<td>First order atoms</td>
<td>Herbrand base with variables</td>
<td>Number of symbols</td>
<td>$c(q(a,X,X))=4$</td>
</tr>
<tr>
<td>Any</td>
<td>Any</td>
<td>Constant function</td>
<td>$c(p)=constant$</td>
</tr>
</tbody>
</table>
Minimal dbg operators

Definition

Minimal distance-based generalisation (*mdbg*) operators

Given a cost function \(k \), \(\Delta \) is a *mdbg* operator, if

\[
k(E, \Delta(E)) \leq k(E, \Delta'(E)), \text{ for every } E \text{ and } dbg \Delta'
\]

Definition

Mdbg operator relative to a nerve function \(N \)

Additionally, given a nerve function \(N \), \(\Delta \) is a *mdbg* operator relative to \(N \), if

\[
k(E, \Delta(E)) \leq k(E, \Delta'(E)), \text{ for every } E \text{ and } dbg \Delta' \text{ relative to } N
\]
Index of Contents

- Introduction
- Motivation
- Distance-based generalisation (dbg) operators
- Dbg operators for lists
- Future work
Dbg operators for lists

Preliminaries

- **Metric space** \((X,d)\)
 - \(X = \sum^*\) E.g. \(X = \{\text{a, aa,..., ab, abb, ...}\}\)
 - \(d \equiv\) Edit distance where \(\text{ins} = \text{del} = 1\)

- **↑-Transformation** (binary operator)
 - \(p_1 = V^3bcV^2\)
 - \(p_2 = V^2caV^3\)
 - \(p_3 = ↑(p_1,p_2) = V^4cV^4\)

- **≤** (strategy to apply \(↑(\cdot,\cdot)\) over an n-ary set of patterns)
 - \(\{p_i\}_{i=1..n}, S = \{a_j \text{ in } \sum: a_j \text{ in } \text{Seq}(p_i)_{1 \leq i \leq n}\}\)
 - \(≤ \equiv\) Find \(p_i, p_j\): exists \(a_k\) in \(S\) and \(a_k\) in \(\text{Seq}(↑(p_i,p_j))\)
Dbg operators for lists

Setting 1

<table>
<thead>
<tr>
<th>Pattern language</th>
<th>Cost Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{I}_0: lists with variables $p = a_1 a_2 V_1 V_2 V_3$</td>
<td>$k_0 (E, p) = c'(E</td>
</tr>
</tbody>
</table>

Proposition

Let P be the set all of the *optimal alignment patterns* of the lists e_i and e_j. Given a nerve function N then

$$\Delta^b(e_i, e_j) = \uparrow ((P, \leq))$$

$$\Delta(E) = \uparrow (\{\Delta^b(e_i, e_j)\}_{e_i, e_j \in N(E), \leq})$$

are *mdbg* operators relative to N.

Dbg operators for lists

An illustrative example

c^5a^2V^7

\[e_1 = c^5a^3b^3 \]

\[e_2 = c^5a^2d^4 \]

\[e_3 = a^3b^3d^4c^5 \]

\[V^5a^2V^3d^4V^5 \]

\[\uparrow(\{\text{Patterns,} \leq\}) = V^{10}a^2V^{12} \]
Dbg operators for lists

Setting 2

<table>
<thead>
<tr>
<th>Pattern language</th>
<th>Cost Function</th>
</tr>
</thead>
</table>
| $\mathcal{I}_1 = (L_0,+)$
$p = a_1a_2V_1V_2V_3 + V_1a_3$ | $k_1 (E,p) = c(p) + c'(E|p)$ |

\[\Delta_N = \sum \Delta^b(e_i, e_j) \]
\[\Delta^\sim(E) = \uparrow(\Delta_N, \leq), \text{ where } \leq: \uparrow \text{ driven by } k_1 \]

The *mdbg* is not always obtained via \uparrow

NP-Hard for a version of L_1
Index of Contents

- Introduction
- Motivation
- Distance-based generalisation (
* dbg*) operators
- *Dbg* operators for lists
- Future work
Future work

- Including other similarity functions
 - Normalised distances (0 ≤ d ≤ 1)
 - Pseudo-distances (weighted edition distance, kernel functions, etc.)

- Making \textit{dbg} operators more practical
 - Formalisation of the notion of weak \textit{dbg} operator
 - Further results about composability of \textit{dbg} operators
 - Overlapping control in cluster descriptions

- Exploring new pattern languages
 - Regular languages.

- Studying new cost functions
 - Improving the semantic cost function
Thanks for your attention!
Semantic cost functions

\[L_0 \ (\text{single list pattern language}) \]

\[
C'(E|p) = \begin{cases}
 \text{j-max}\{\text{Length}(e)\}_{e \in E}, & \text{if } p = V^j \\
 |E|, & \text{otherwise}
\end{cases}
\]

\[L_1 \ (\text{multiple list pattern language}) \]

\[
C'(E|p) = \begin{cases}
 |E-E_1| + c(E_1|p_k), & p_k = V^j \land E_1 = \{e \in E: \text{Length}(e) \leq j\} \\
 |E|, & \text{otherwise}
\end{cases}
\]
Distance-based generalisation operators

Common concepts in metric spaces

(closed ball)
$$B(e_i, r) = \{e_i \in X : d(e_i, e) \leq r\}$$

(ε - path)
$$\forall 1 \leq i \leq 3 : d(e_i, e_{i+1}) \leq \varepsilon$$

(intermediate element)
$$d(e_1, e_2) + d(e_2, e_3) = d(e_1, e_3)$$
Distance-based generalisation operators

Moving to n-ary generalisations

Given $N(\cdot)$,

$N(\cdot)$

$skeleton(\nu)$

$e_2(2,2)$

$e_1(1,1)$

$e_3(3,1.5)$

(Euclidean distance)

$skeleton(\nu)$

$e_2(2,2)$

$e_1(1,1)$

$e_3(3,1.5)$

(Manhattan distance)
Minimal dbg operators

Limitations of inclusion (⊂)

- Distance function is ignored (many patterns become incomparable)

 E.g.: Neither p_1 is more general than p_2 nor vice versa
Minimal dbg operators

Limitations of inclusion (⊂)

The complexity of the pattern is ignored

Least general generalisation might not exist!