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Abstract A general approach to classifier combination

considers each model as a probabilistic classifier which

outputs a class membership posterior probability. In

this general scenario, it is not only the quality and di-
versity of the models which are relevant, but the level

of calibration of their estimated probabilities as well.

In this paper, we study the role of calibration before
and after classifier combination, focusing on evaluation

measures such as MSE and AUC, which better account

for good probability estimation than other evaluation
measures. We present a series of findings that allow

us to recommend several layouts for the use of cali-

bration in classifier combination. We also empirically

analyse a new non-monotonic calibration method that
obtains better results for classifier combination than

other monotonic calibration methods.

Keywords Classifier combination · Classifier calibra-

tion · Classifier diversity · Probability estimation ·
Calibration measures · Separability measures

1 Introduction

The problem of combining multiple decisions from a set

of classifiers is known as classifier combination or clas-
sifier fusion [31]. The need for classifier combination in

many real applications is well-known [18][43]. On the

one hand, more and more applications require the inte-

gration of models and experts that come from different
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sources (human expert models, data mining or machine

learning models, etc.). On the other hand, it has been

shown that an appropriate combination of several mod-

els can give better results than any of the single models
alone [11][31][34][35][42], especially if the base classifiers

are diverse [33].

The term ensembles [16][31] is used especially when

the set of base classifiers are created on purpose for the

problem and are homogeneous. Some ensemble tech-

niques show an excellent performance, such as boost-
ing [23][41][44], bagging [8][44], and randomisation [17].

If the set of classifiers is created on purpose but not

homogeneous, the term ensemble is not so frequently
used. Some of these techniques are stacking [46], cas-

cading [24][29] and delegating [19]. However, in many

situations, there is no on-purpose generation of a set of
classifiers and we have to combine opinions from many

sources (either human or machines) into a single deci-

sion. In these cases, we have no control over the set of

classifiers that we have to combine and heterogeneity is
very high. In this paper, we cover these three types (or

degrees) of classifier combination. Since the latter case

is more challenging and general, no assumption will be
made about the way in which the set of classifiers have

been obtained. Consequently, we will study classifier

combination from an uncontrolled and heterogeneous
set of models, where some (or all) of them may be ma-

chine learning models, or models that have been con-

structed by human experts. The only (mild) assumption

is that we expect all these classifiers to be able to out-
put a posterior probability, a reliability value or score

for their prediction.

Hence, given a set of (heterogeneous) classifiers, it
is very important to assess and use their individual

quality for a proper classifier combination. Typically,

an overall weighting is used in such a way that more
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reliable classifiers are given more weight than other less

reliable classifiers. The way in which ‘reliability’ is mea-
sured and the way in which it is used in the combina-

tion make up different weighted combination schemes

(see, e.g., [31]). In the same way, diversity has typically
been analysed in terms of qualitative measures, over a

given dataset, such as disagreement, Q-statistic, Kappa

statistic, etc. [33][32].

When classifiers are considered as rankers or prob-
ability estimators there are many more available op-

tions. If we understand probabilities as an indicator of

reliability, we can have a double-weighting combination

scheme, where overall classifier accuracy is used as a
first weight while estimated class probabilities are used

as a second weight. For instance, given two classifiers

a and b where the accuracy (or any other performance
measure) of a is worse than the accuracy of b, we can

still have that, for a particular item i, classifier a may

be very sure (with extreme probabilities) while classifier
b may be more uncertain (with medium probabilities).

Of course, for other items, this might be the other way

round. If probabilities are well estimated, this second

weight will give different levels of credit to each clas-
sifier depending on the example at hand, and might

be more precise than the overall weight given to each

classifier.

Therefore, the key point in this combination scheme
is the quality of probability estimations. When the set

of classifiers is heterogeneous and originates from dif-

ferent sources, we cannot assume that these estimations

are evenly accurate and reliable. In fact some classifiers
may output more extreme probabilities (closer to 0 or

to 1) than others, meaning that they will have more

(second) weight in the combination. This is the typical
issue of integrating opinions from several experts, when

some experts express less or more confidence than they

really have. We say these experts are uncalibrated. It is
well known [30] that bad classifiers in an ensemble will

probably deteriorate the overall result if we combine la-

bel (class) predictions. But it is not so well-known that

when we combine estimated probabilities, a single very
bad classifier with very extreme probabilities may have

a devastating effect.

It is then of the utmost importance to analyse the

effect of calibration in classifier combination by study-
ing several combination layouts and several calibration

methods, and their impact on the quality of the com-

bined classifier, according to several evaluation metrics.
This is the goal of the paper.

The paper is structured as follows. In Section 2, we
give further motivation for this study and we also point

out to related (but partial) analyses on this issue in

the literature. Section 3 summarises the most common

evaluation measures and calibration methods. Section

4 includes a conceptual study on calibration and classi-
fier combination, using several examples and identifying

several important factors. Section 5 presents the exper-

imental evaluation of the previous analysis. In Section
6, we show that monotonic calibration techniques are

non-monotonic when applied to more than two classes.

This justifies the application and analysis of a new non-
monotonic calibration technique known as Multivari-

ate Similarity-Binning Averaging. The whole picture is

studied in Section 7 with several combination layouts.

Finally, Section 8 gives an overall view of the messages
that can be conveyed from this paper, leading to the

conclusions and future work.

2 Context and Objectives

Classifier combination has been extensively analysed in

the past few decades, establishing very important re-

sults about the number of classifiers, their diversity, the
combination method, etc. In this paper, we focus on one

factor that has not been properly addressed to date: the

role of probability calibration in classifier combination.
This role has many aspects: different probability cal-

ibration measures, different calibration methods, differ-

ent layouts where calibration has to be arranged, etc. In
addition, we must consider the relation with other fun-

damental issues in classifier combination, such as clas-

sification quality and diversity (which can be evaluated

by different families of evaluation measures). However,
only a few research efforts have been done for address-

ing some of these issues.

There are, for instance, some approaches which use
combination and calibration, but generally with a very

specific layout. For example, in [38], the Expectation-

Maximization algorithm was used to modify the weights
of a Bayesian Model Averaging [28] method and to ob-

tain a calibrated ensemble, but the effect of calibration

methods before the combination was not studied.

Caruana et al [12] also used calibration and combi-
nation together. The experimental setting in [12] anal-

ysed many other factors altogether but only included

one calibration method (Platt), it was restricted to bi-
nary datasets, and the double weighting effect was not

evaluated (a uniform weighting was used for Bayesian

Averaging).
In Bennett’s Ph.D. thesis [5], a methodology is in-

troduced to build a metaclassifier for classifying text

documents by combining estimated probabilities of base

classifiers and using reliability indicators. These relia-
bility indicators are variables with additional informa-

tion, not mere probabilities, and are application spe-

cific.
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Brümmer’s Ph.D. thesis [10] focuses on speaker and

language recognisers. Instead of calibrating the proba-
bilities estimated by a classifier, he calibrates the log-

likelihood-ratio scores. However, the calibration and

combination methods studied are always affine (i.e., lin-
ear).

The combination of classifiers and their calibration

has also been indirectly addressed when trying to adapt

binary calibration methods to multiclass calibration

methods, since multiclass calibration can be tackled by
a combination of binary calibration methods. For in-

stance, in Gebel’s Ph.D. thesis [26], there is a study of

several univariate calibration methods and their exten-
sions to multiclass problems, but only individually, i.e.,

without combining them. Moreover, Gebel introduced

Dirichlet calibration as a multivariate calibrator that is
applicable to multiclass problems directly, but its poor

overall results make it only recommendable for datasets

that have a balanced or slightly imbalanced class dis-

tribution.

In the end, this paper analyses the overall issue,
bringing calibration to the stage of classifier combina-

tion as another key dimension of study, jointly with the

well-known properties of classification accuracy and di-
versity. A general analysis of classifier fusion (or com-

bination) and calibration cannot be found in the liter-

ature.

Therefore, the objective of this paper is to under-

take this analysis. Along the way, this study introduces
different contributions that can be summarised as fol-

lows:

– A conceptual analysis on how calibration affects the

combination of classifiers. This analysis is performed

in terms of how classifier probability distributions
relate to the combination results depending on the

separation of the class distribution, the calibration

and diversity of the base classifiers.

– An extensive experimental comparison of the effect
of calibration on the combination of classifiers, us-

ing many different layouts (calibration before, after,

and before and after combination), many different
weighting schemes, several calibration methods, and

several performance metrics.

– The analysis of a new calibration technique: Mul-
tivariate Similarity-Binning Averaging (SBA), re-

cently introduced in [4], which is designed to be

non-monotonic while still preserving independence

in such a way that its results for classifier combina-
tion excel over those of other calibration methods.

This will be shown in a complete battery of experi-

ments.

– A summary of findings and results from the previous

items, and some recommendations about how to use
calibration in classifier combination.

The overall contribution of this paper is to provide a

better understanding of the role and possibilities of cal-
ibration for classifier combination, as well as the way all

this should be arranged in order to obtain appropriate

results.

3 Classifier Calibration and Evaluation

Given a dataset T , n denotes the number of exam-

ples, and c the number of classes. The target function

f(i, j) → {0, 1} represents whether example i actually
belongs to class j. Also, nj =

∑n

i=1
f(i, j) denotes the

number of examples of class j and p(j) = nj/n denotes

the prior probability of class j. A crisp classifier outputs
the predicted class j for each example while a soft clas-

sifier produces a probability (or score) for each pair of

example and class. Given a soft classifier l, pl(i, j) repre-
sents the estimated probability that example i belongs

to class j taking values in [0,1], whereas a score sl(i, j)

is an indicator of the reliability about example i being

of class j. Unlike probabilities, scores are not bounded
by the [0, 1] interval. In what follows we will assume

that we deal with soft classifiers outputting probabili-

ties. A soft classifier can be turned into a crisp classifier
issuing decisions by the use of thresholds. For instance,

if we set the threshold θj for class j then we have that

class j is predicted for example i when p(i, j) ≥ θj . For
two classes, since probabilities are complementary, we

only need one threshold.

Calibration is defined as the degree of approxima-

tion of the predicted probabilities to the actual proba-
bilities. If we predict that we are 99% sure, we should

expect to be right 99% of the time. More precisely, a

classifier is perfectly calibrated if, for a sample or bin of
examples with predicted probability p for the positive

class, the expected proportion of positives is equal to

p. Formally, for any Br ⊆ T such that pl(i, j) = r for

all i ∈ Br then

∑

i∈Br
f(i,j)

|Br|
= r. Note that this defini-

tion only says when a classifier is perfectly calibrated
but does not give a range of values between perfect and

worst calibration. We will see in Section 3.1 that cal-

ibration measures usually relax the condition for bin
formation in order to give a gradual measure.

Given a calibration method which modifies the

probabilities (or converts scores into probabilities), we

denote the (supposedly better calibrated) probability
that example i belongs to class j by p∗l (i, j). Note that

accuracy and calibration, although dependent, are very

different things. For instance, a binary classifier that
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always assigns a 0.5 probability to its predictions is

perfectly calibrated for a balanced dataset, but its ex-
pected accuracy is a poor 0.5. However, a very good

binary classifier can be uncalibrated if correct positive

(respectively negative) predictions are accompanied by
relatively low (respectively high) probabilities, e.g., a

classifier which is almost always correct but its proba-

bilities range between 0.45 and 0.55.

A set of L classifiers will be denoted by l1, l2, . . . , lL.

In order to simplify the notation, sometimes we will use

the indice k ∈ 1..L to denote the classifier lk. Finally,
p̃(i, j) (respectively, s̃(i, j)) denotes the estimated prob-

ability (respectively, the score) that example i belongs

to class j given by a combination method over the L
classifiers.

When the number of classes is 2 we use the special

symbols ⊕ and ⊖ to represent the positive class (j =
1) and the negative one (j = 2), respectively. Also, in

the binary case, we will only refer to the positive class,

and we will denote the target function, the score, the
estimated probability, and the calibrated probability of

an example i as fl(i,⊕), sl(i,⊕), pl(i,⊕) and p∗l (i,⊕)

or simply fl(i), sl(i), pl(i) and p∗l (i). For the sake of

readability, we will omit the subindex l when we refer
to a single classifier.

3.1 Evaluation Measures

Classifiers can be evaluated according to several perfor-

mance metrics. These can be classified into three groups
[20]: measures that account for a qualitative notion

of error (such as accuracy or the mean F-measure/F-

score), metrics based on how well the model ranks the
examples (such as the Area Under the ROC Curve

(AUC)) and, finally, measures based on a probabilistic

understanding of error (such as mean absolute error,
mean squared error (Brier score), LogLoss and some

calibration measures).

Accuracy is the best-known evaluation metric for
classification and is defined as the percentage of cor-

rect predictions. However, accuracy is very sensitive to

class imbalance. In addition, when the classifier is soft,

accuracy depends on the choice of a threshold. Hence,
a good classifier with good probability estimations can

have low accuracy results if the threshold that separates

the classes is not chosen properly.

Of the family of measures that evaluate ranking

quality, the most representative one is the Area Under

the ROC Curve (AUC). For two classes, this is inter-
preted as the probability that given one positive exam-

ple and one negative example at random, the classifier

ranks the positive example above the negative one (the

Mann-Whitney-Wilcoxon statistic [22]). AUC is clearly

a measure of separability since the lower the number of
misranked pairs, the better separated the classes are.

Although ROC analysis is difficult to extend to more

than two classes ([21]), the AUC has been extended to
multiclass problems effectively by approximations. In

this paper, we will use Hand & Till’s extension [27],

which is based on an aggregation of each class against
each other, by using a uniform class distribution.

Of the last family of measures, Mean Squared Er-

ror (MSE) or, for two classes, Brier Score [9] penalises

strong deviations from the true probability:

MSE =

c
∑

j=1

n
∑

i=1

(f(i, j)− p(i, j))2

n · c
(1)

Although MSE was not a calibration measure origi-

nally, it was decomposed by Murphy [36] in terms of cal-

ibration loss and refinement loss. For that, the dataset

T is segmented into m bins (i.e., subsets of equal size),
with Bt being the elements of bin t. Bins must be con-

structed as a sequential partition of the examples or-

dered by estimated probability (or score):

MSE =

c
∑

j=1

m
∑

t=1

∑

i∈Bt

|Bt| · (p(i, j)− f̄t(i, j))
2

n · c
(2)

−

c
∑

j=1

m
∑

t=1
|Bt| · (f̄t(j)− f̄(j)) + f̄(j) · (1− f̄(j))

n · c

where f̄t(j) =
∑

i∈Bt

f(i,j)

|Bt|
and f̄(j) =

∑n

i=1

f(i,j)

n
. The

first term measures the calibration (denoted by MSE-

cal) of the classifier while the rest of the expression
measures other components that are grouped under the

term refinement (denoted by MSEref ). The refinement

component indicates the usefulness of each prediction
for distinguishing (i.e., separating) the classes [14]. Note

that refinement only depends on the order of the exam-

ples, like AUC. The problem of measuring calibration

in that way is that the test set must be split into several
segments or bins. If too few bins are defined, the actual

probabilities f̄t(j) are not properly detailed to give an

accurate evaluation. In fact, when we only consider one
bin we talk about global calibration, instead of the com-

mon (local) calibration. If too many bins are defined,

the actual probabilities are not properly estimated. A
partial solution is to make the bins overlap.

A calibration measure based on overlapping binning

is CalBin [13]. For each class, all cases imust be ordered

by their estimated probability p(i, j), as in the MSE
decomposition above. The 100 first elements (i from 1

to 100) are taken as the first bin. Next, the percentage

of cases of class j in a bin t is f̄t(j) defined above.
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The error for this bin is
∑

i∈1..100
|p(i, j) − f̄t(j)|. The

second bin with elements (2 to 101) is used to compute
the error in the same way. At the end, the errors are

averaged. Formally:

CalBin(j) =
1

n− s

n−s
∑

b=1

b+s−1
∑

i=b

∣

∣

∣

∣

∣

p(i, j)−

b+s−1
∑

i=b

f(i, j)

s

∣

∣

∣

∣

∣

(3)

Instead of 100 for the size of the bin (as [13] sug-
gests) we set a different bin length, s = n/10, to make

it more size-independent.

3.2 Calibration Methods

In this paper, we will empirically analyse the most

commonly used calibration methods: binning averaging,

Platt’s method and PAV calibration. There are other
methods based on assignment values [25], Bayesian

approaches using asymmetric distributions [6][5], and

other more elaborate approaches, such as Dirichlet cal-
ibration [26], but their performance, in general, is worse

than that of the three methods above. For more details,

we refer the reader to [3] where a survey of calibration
methods can be found.

Binning averaging was proposed by [47] as a method

for binary classifiers where a (validation) dataset is split

into bins in order to calculate a probability for each bin.
Specifically, this method is based on sorting the exam-

ples in decreasing order by their estimated probabilities

(or scores) and dividing the set into m bins. Thus, each
test example i is placed into a bin t, 1 ≤ t ≤ m, accord-

ing to its probability estimation. Then the corrected

probability estimate for i (p∗(i)) is obtained as the pro-
portion of instances in t of the positive class, i.e., f̄t(⊕).

Platt [37] presented a parametric approach for

fitting a sigmoid function that maps SVM pre-

dictions to calibrated probabilities. The idea is
to determine the parameters A and B of the

sigmoid function p∗(i)= 1
1+eA·p(i)+B that minimises

the negative log-likelihood of the data, that is:
argminA,B{−

∑

i

f(i)log(p∗(i)) + (1 − f(i))log(1 − p∗(i))}.

This two-parameter minimisation problem can be per-

formed by using an optimisation algorithm, such as gra-
dient descent. Platt proposed the use of either cross-

validation or a hold-out set for deriving an unbiased

sigmoid training set for estimating A and B.
In the Isotonic Regression [40] method, the cali-

brated predictions are obtained by applying a mapping

transformation that is isotonic (monotonically increas-

ing), known as the pair-adjacent violators (PAV) algo-
rithm [2]. The first step in this algorithm is to order the

n elements decreasingly according to estimated proba-

bility and to initialise p∗(i) = f(i). The idea is that

calibrated probability estimates must be a decreasing

sequence, i.e., p∗(1) ≥ p∗(2) ≥ . . . ≥ p∗(n). If this is not
the case, for each pair of consecutive probabilities, p∗(i)

and p∗(i+1), such that p∗(i) < p∗(i+1), the PAV algo-

rithm replaces both of them by their probability aver-
age, that is, a← p∗(i)+p∗(i+1)

2 , p∗(i)← a, p∗(i+1)← a.

This process is repeated (using the new values) until an

isotonic set is reached.

Not all calibration methods are equally suitable for

every type of problem. For instance, if we do not have
enough validation data (or we need to calibrate with the

training data), the PAV algorithm is prone to overfit-

ting. Also, some of these methods may be more appro-

priated for highly imbalanced data or may work better
for multiclass problems (using a one-vs-all or one-vs-

one approach). Nonetheless, to our knowledge, there is

no comprehensive study of which method can be better
depending on the kind of problem.

3.3 Monotonicity and Multiclass Extensions

The three calibration methods described above are

monotonic; they do not change the rank (order) of the

examples according to each class estimated probability.
In fact, Platt’s method is the only one that is strictly

monotonic, i.e., if p(i1) > p(i2), then p∗(i1) > p∗(i2),

implying that AUC and refinement are not affected.

In the other two methods, ties may be created (i.e.,
p∗(i1) = p∗(i2) for some examples i1 and i2 where

p(i1) > p(i2)). Refinement reaches a maximum (worst

possible value) when all examples tie, and no separabil-
ity takes place. In general, refinement increases (wors-

ens) for the binning averaging and the PAV methods if

ties are created.

Monotonicity will play a crucial role in understand-

ing what calibration does before classifier combination.
However, as we will see in Section 6, the multiclass ex-

tension of calibration methods does not preserve mono-

tonicity. In addition, apart from overfitting, there is no

reason to impose monotonicity to a calibration method,
which, in the most general case, is a transformation

over the scores or probabilities that leads to good prob-

ability estimation. This will motivate the analysis of a
recently introduced non-monotonic calibration method

called SBA.

Based on the concept of monotonicity, we propose a

taxonomy of calibration methods (Figure 1) including

classical calibration methods (PAV, Binning and Platt),

the SBA method and Brümmer’s affine fusion and cal-
ibration methods [10]. We are interested in calibration

methods that lead to better local calibration because

global calibration is useless to get better individual re-
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Fig. 1 Taxonomy of calibration methods in terms of mono-
tonicity (strictly monotonic, non-strictly monotonic, or non-
monotonic methods) and linearity (linear or nonlinear meth-
ods). We have also indicated the methods that can be used
for global and local calibration.

liability assessment for combination. Consequently, we
will not use Brümmer’s method in this paper.

Another important issue is whether the calibration
methods are binary or multiclass. The three methods

presented in Section 3.2 were specifically designed for

two-class problems. For the multiclass case, Zadrozny
and Elkan [47] proposed an approach that consists in

reducing the multiclass problem into a number of binary

problems. A classifier is learnt for each binary problem
and, then, its predictions are calibrated. Some studies

have compared the one-against-all and the all-against-

all schemes, concluding in [39] that the one-against-all

scheme performs as well as the all-against-all schemes.
Therefore, in this paper, we will use the one-against-

all approach for our experimental analysis because its

implementation is simpler.

4 The Relation between Calibration and

Combination

In this section, we analyse the relation between model

calibration and the performance of the classifier combi-
nation. For simplicity, we restrict our conceptual anal-

ysis to binary cases. Similar relations are expected to

be found if we consider the probability distribution of

each class against another (so having c × (c − 1) dis-
tributions). In any case, the experimental analysis in

Section 5 will be performed on multiclass datasets as

well.

4.1 Weighted Average Combination

One of the most common methods of classifier com-

bination is Bayesian Model Averaging [28]. It consists

in weighting each classifier, giving more credit to more

reliable sources. However, this rationale does not nec-
essarily entail the best combination [30][31]. An alter-

native (and generalised) option is the weighted average

combination [31], using probabilities:

Definition 1 Weighted Average Combination.

The estimated probability of an item i belonging to
class j given by a weighted average combination of L

classifiers is

p̃(i, j) =

L
∑

k=1

wkpk(i, j) (4)

We assume
∑L

k=1
wk = 1. Formula (4) defines a fusion

scheme that is a linear combination of the classifier out-

puts and can be instantiated to more specific schemas
depending on how wk and pk are chosen. In general,

the use of a performance (or overall reliability) weight

per classifier wk is justified because some classifiers are
more reliable than others. However, a proper calibration

would give each prediction its proper weight depending

on the reliability of pk(i, j) (high reliability for pk(i, j)
closer to 0 and 1, and lower reliability for pk(i, j) closer

to 0.5 or to the class proportion for imbalanced prob-

lems). This use of wk and pk at the same time is what

we refer to as double weighting.

Example 1 Two probabilistic classifiers l1 and l2 are

evaluated over a dataset with 8 examples as shown in

Table 1, and combined using weights w1 = 0.75 and

w2 = 0.25. The top three rows show their individ-
ual predictions and their combination. The mid three

rows show the results with two new classifiers l∗1 and

l∗2, which have been obtained from l1 and l2 by using
a strictly monotonic calibration method over another

dataset (their calibration is better but not perfect). The

bottom three rows show the results with two new clas-
sifiers lpav1 and lpav2 , which have been obtained from l1
and l2 by using PAV (a non-strictly monotonic calibra-

tion method) over the same dataset (so their calibra-

tion is perfect). All the accuracies are calculated with a
threshold of 0.5, and when the probability is exactly 0.5

the example is considered half a correct classification.

Example 1 shows different results depending on the

degree of calibration of these two classifiers. In this ex-
ample, we see that weights can counter-effect probabil-

ities (and vice versa), as we see in example e6 (which is

correctly classified by p̃) and examples e2 and e8 (which
are wrongly classified by p̃). So, using both weights and

good probabilities entails a “double-weighting”, which

in some cases might be beneficial but in other cases
might not. Looking at the extreme cases, with very bad

probabilities, the weight wk should be used alone (as in

weighted majority voting) and, with perfect probabili-

ties, the weights should not be used.

In order to better understand the relation between

weights and probabilities, we firstly need to understand

the meaning of the weights. There are many ways of
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Table 1 Results of two classifiers and their combination
corresponding to Example 1. Top three rows: without cal-
ibration. Three rows in the middle: by applying a strictly
monotonic calibration method. Bottom three rows: by apply-
ing a non-strictly monotonic calibration method. Threshold
is set on 0.5 to calculate the accuracy (last column).

Examples Acc.

e1 e2 e3 e4 e5 e6 e7 e8
True - + + + - - + -
class

p1 0.4 0.6 0.8 0.4 0.6 0.52 0.6 0.45 5/8
p2 0.9 0.1 0.2 0.2 0.2 0 0.2 1 2/8
p̃ 0.53 0.48 0.65 0.35 0.5 0.39 0.54 0.59 3/8

p∗1 0.2 0.8 0.9 0.2 0.8 0.6 0.8 0.3 5/8
p∗2 0.6 0.4 0.45 0.45 0.45 0.1 0.45 0.9 2/8
p̃∗ 0.3 0.7 0.79 0.26 0.71 0.48 0.71 0.45 6/8

p
pav
1 0.25 0.67 1 0.25 0.67 0.5 0.67 0.25 5.5/8

p
pav
2 0.57 0.5 0.57 0.57 0.57 0 0.57 0.57 4.5/8

p̃pav 0.33 0.63 0.89 0.33 0.64 0.38 0.64 0.33 5/8

calculating weights. A very common option is to esti-
mate the accuracy on a validation dataset D, followed

by a normalisation [31], i.e., if acck is the accuracy of

model lk on D, then wk = acck
∑L

m=1
accm

. If we use AUC

(or MSE) as a measure, the question of whether a dou-
ble weighting is going to be too drastic depends on how

the weights are derived from these measures. Note that

with a normalisation we ensure that the weights add
up to one, but the weights may still be too similar or

too different. For instance, a weight equal to the AUC

is an option, but since AUC=0.5 means random be-

haviour, almost all classifiers will generally have val-
ues between 0.5 and 1 that, after normalisation, will be

fairly similar. Hence, probably the GINI index (which

equals (AUC−0.5)×2) would be a better option. In the
same way, using the MSE, the formula (1−MSE) is a

natural option, but a more extreme 1/MSE could also

be considered. Table 2 shows the definition for the five
weights with which we are going to instantiate Equation

4.

Table 2 Different methods to calculate weights.

Method Definition

WCUnif wk = 1
L

WCAcc wk = acck
∑L

m=1
accm

WCAUC wk = AUCk
∑L

m=1
AUCm

WCMSE wk = (1−MSEk)
∑L

m=1
(1−MSEm)

WCGINI wk = max(0,(AUCk−0.5)×2)
∑L

m=1
max(0,(AUCm−0.5)×2)

WCIMSE wk = (1/MSEk)
∑L

m=1
(1/MSEm)

Another problem of weights is that they may overfit.

Consequently, in some experimental analyses [30][31],
there are cases where the use of a uniform weighting

(WCUnif) gives better results.

There are many open questions when mixing to-

gether probabilities and weighted combinations. Are

both things redundant or even incompatible? Is calibra-
tion a good idea to get better probability estimations?

If calibration is used, would weights become useless?

4.2 Probability Densities and Classifier Combination

Before examining the effect of calibration on classifier
combination (Section 4.3), we need to understand how

estimated probabilities can be distributed and how this

distribution affects the combination of classifiers.

Figure 2 shows the probability densities (for the pos-

itive class, p(i,⊕)) for three different classifiers (J48,

Random Forest and Näıve Bayes, built with Weka [45])
and the credit dataset from the UCI repository [7].

Typically, the positive cases cluster around a high
probability and the negative cases cluster around a low

probability. When the two clusters are more distant and

better delineated (with a thinner shape, as shown in

the top chart of Figure 2) there is better separability
(and, hence, higher AUC). Also, in these charts, cali-

bration can be easily calculated because each bin in the

histogram should have a proportion of positive exam-
ples equal to its x-axis value when the classifier is well

calibrated. For instance, perfectly calibrated classifiers

should have 5% of positive examples and 95% of nega-
tive examples in the bin 0.05, 10% of positive examples

and 90% of negative examples in the bin 0.10, and so

on.

In the rest of this section, instead of working with

empirical distributions as in Figure 2, we will use a

parametric modelling of the density functions. If we
were using scores instead of probabilities we could use

Gaussians to model the score distribution. Since we are

dealing with probabilities (which are always between
0 and 1), we will model them via a truncated normal

distribution1. We will use the notation n⊕, µ⊕ and σ⊕

for the number of positives, the mean of the estimated

probabilities for the positives and the deviation of the
estimated probabilities for the positives, respectively.

Similarly, we will use the notation n⊖, µ⊖ and σ⊖ for

the negatives. Note that, although there are cases where
probabilities do not strictly follow a (truncated) normal

distribution, the aggregation of several non-normal dis-

tributions typically converges to a normal distribution.

1 This distribution has been used to model probabilities for
binary cases in the probit model or in truncated regression [1].
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Fig. 2 Probability densities for positive (clear grey) and
negative (dark grey) classes, using J48 (top row), Random
Forest (centre row), and Näıve Bayes (bottom row) in Weka
for the credit dataset from the UCI repository.

Therefore, at least for the combined model, this repre-
sentation is not a strong working hypothesis helping us

to conceptually analyse the effect of combining several

classifiers. Figure 3 (top) shows a classifier modelled

with two truncated normal distributions with param-
eters: n⊕ = 4000, µ⊕ = 0.3, σ⊕ = 0.2, n⊖ = 2000,

µ⊖ = 0.15 and σ⊖ = 0.3. Figure 3 (bottom) shows

the result of combining five different classifiers with the
same parameters as the one in Figure 3 (top). The re-

sults for several metrics are shown for the columns Sing

and Com in Table 3.

It is easy to show that combining independent clas-
sifiers that follow normal distributions leads to a com-

bined classifier whose positive (respectively negative)

mean is the (weighted) average of the positive (respec-

tively negative) mean of the base classifiers, but the
deviation is usually lower. This means that, by using

a weighted average combination, the distributions are

narrowed, which implies that the combination usually

Fig. 3 Probability densities for positive (clear grey) and
negative (dark grey) examples. Top: a single classifier (Sing)
with parameters (of the normal distributions): n⊕ = 4000,
µ⊕ = 0.3, σ⊕ = 0.2, n⊖ = 2000, µ⊖ = 0.15 and σ⊖ = 0.3.
Bottom: the result of the combination Com, using uniform
weights, of 5 independent classifiers such as Sing.

improves in terms of separability (provided the original

classifiers were better than random, i.e., the positive

mean was greater than the negative mean). This is the
general picture. Can we say something more specific

when we look at calibration? This is what we see next.

4.3 Calibration and Classifier Combination

A näıve view of the effect of calibration in combination

would conclude that the better calibrated a classifier is,
the better the reliability of its probability estimations

is and, hence, the better the combination will be. How-

ever, the relationship between classifier calibration and
combination is a bit more complex. When we say bet-

ter, we need to be more precise about the evaluation

metric that we are using.

Figures 3, 4, and 5 present an example illustrating

the effect of calibration and combination over several

performance measures whose results are shown in Ta-
ble 3. We study the performance of combining several

classifiers modelled by a normal distribution (Figure 3,

top), and the role of calibration in this process. We

analyse six different scenarios, a single classifier Sing,
Platt’s calibration of this classifier SingCal, raw combi-

nation of five classifiers Com, Platt’s calibration after

the combination of these 5 classifiers Com+Cal, combi-
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Fig. 4 Probability densities for positive (clear grey) and
negative (dark grey) examples. Top: Platt’s calibration
(SingCal) applied to the single classifier Sing. Bottom: Platt’s
calibration (Com+Cal) applied after the combination Com of
the original classifier.

Table 3 Results for several measures of the classifiers of
Figures 3, 4, and 5.

Cal

Sing Com SingCal Com Cal +Com

+Cal +Com +Cal

MSE 0.37 0.34 0.22 0.22 0.22 0.21
MSE cal. 0.15 0.13 8e-4 1e-4 2.8e-3 3.7e-3
MSE ref. 0.22 0.21 0.22 0.22 0.21 0.21
AUC 0.56 0.60 0.56 0.61 0.60 0.61
Acc.(0.5) 0.39 0.34 0.67 0.67 0.67 0.68
CalBin 0.37 0.37 0.05 0.06 0.05 0.04

nation of five classifiers previously calibrated Cal+Com,

and finally, Platt’s calibration after combination of five

classifiers previuosly calibrated Cal+Com+Cal.

Figure 4 shows a postprocessing using Platt’s cali-

bration over Sing (top plot) and Com (bottom plot).

Finally, the plots on Figure 5 present a similar process
but now we calibrate the base classifiers before their

combination, without a post-calibration (top plot) and

with a post-calibration (bottom plot). Since AUC is not
very high in this case (separation between the classes is

low), the probabilities are highly condensed in a small

area of the graph. Even though Platt’s calibration is not

a linear scaling and we also have some truncation here,
we see that there are important differences in accuracy

and calibration between the two charts, but the AUC

of the combination is almost the same for both cases.

Fig. 5 Probability densities for positive (clear grey)
and negative (dark grey) examples. Top: Combination
(Cal+Com) of the 5 calibrated classifiers SingCal. Bottom:
Platt’s calibration (Cal+Com+Cal) applied to the combina-
tion Cal+Com.

A possible explanation is that monotonic transfor-

mations preserve the ranking and hence have a limited

effect on the results (in terms of AUC). In addition,
again we see that the result of the combination after

calibrating the base classifiers does not necessarily pro-

duce a calibrated result. Evaluating the result of the
combination with measures that take calibration into

account, such as MSE or, indirectly, accuracy, would

lead to wrong conclusions about the quality of classi-

fiers. This reinforces the idea of AUC as the appropriate
measure of combination quality, since other measures

are affected by the level of calibration (and can also be

improved by a post-calibration).

Example 2 below gives more clues the effect of cal-

ibration before and/or after combination, as a specific
example of a much more complete and comprehensive

battery of experiments that we will do in the following

section. Now we focus on several classifiers with differ-

ent calibration degrees.

Example 2 Consider a problem with 500 positive

examples and 1000 negative examples and a di-
verse set of five classifiers whose parameters for the

normal distributions (for the positives, µ⊕ and σ⊕,

and for the negatives, µ⊖ and σ⊖) are shown in Table 4.

Note that we have diversity of base classifiers: not

only are they independent, but they also have quite dif-
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Table 4 Parameters of the normal distributions (for the
positive and negative examples) of five classifiers.

# µ⊕ (σ⊕)2 µ⊖ (σ⊖)2

1 0.4 0.04 0.3 0.07
2 0.5 0.3 0.3 0.2
3 0.2 0.1 0.3 0.2
4 0.8 0.04 0.2 0.3
5 0.8 0.3 0.7 0.3

ferent distributions. There are good classifiers (such as
the fourth classifier) and bad classifiers (the third clas-

sifier is even worse than random). The best single classi-

fier has an AUC of 0.87. We now consider the following

calibration and combination layouts: the combination
of the base classifiers (Com), the combination of the

calibrated base classifiers (Cal+Com), the calibration

of the combination result (Com+Cal) and the calibra-
tion of the combination of the calibrated base classifiers

(Cal+Com+Cal). The results are presented in Table 5.

Table 5 Results for several calibration and combination
methods in Example 2.

Method MSE MSEcalMSEref AUC Acc CalBin

Com 0.19 0.03 0.17 0.80 0.76 0.16
Cal+Com 0.15 0.07 0.08 0.96 0.80 0.25
Com+Cal 0.17 3e-3 0.16 0.80 0.76 0.05

Cal+Com+Cal 0.07 3e-3 0.07 0.96 0.90 0.03

This example shows the relevance of calibrating be-

fore, since only with a proper pre-calibration can we

align good and bad classifiers in an optimal way. How-
ever, although calibration and combination entails an

average of the means and a reduced variance (which

generally implies better AUC), this does not mean
that combining perfectly calibrated classifiers generates

a perfectly calibrated combination (see the CalBin re-

sult obtained by the Cal + Com method).

Finally, with respect to the accuracy measure, when
classifiers are well-calibrated before the combination

(and classes are relatively well separated by the clas-

sifiers), the resulting means after combination will be
placed on either side of the centre (the prior class pro-

portion). If this centre value (e.g., 0.5 for a balanced

datasets) is used as a threshold, then accuracy will be
high. This suggests that calibration has to be consid-

ered as a necessary option before combination to in-

crease accuracy, and not only after combination (as Ta-

ble 5 shows). Nevertheless, all this is subject to choos-
ing a good threshold, which does not need to be the

prior class proportion if the combination is not well

calibrated.

In summary, the AUC measure is chosen as a refer-

ence for the quality of the combination, since calibration
measures for the combination will generally not be good

(including MSE) and accuracy will greatly depend on

a good threshold choice.

We now have a better understanding of how cali-
bration affects the combination and we have identified

the key factors involved: performance measures, use of

weights, measure used to derive the weights, calibra-
tion monotonicity and moment of calibration (before

and/or after combination). These and other issues are

addressed through an experimental analysis below.

5 Experimental Analysis

This section provides a comprehensive experimental
analysis about the effect of calibration and combina-

tion, focusing on the factors identified in the previous

section.

5.1 Experimental Settings

For the experimental evaluation, we implemented the

evaluation measures and calibration methods (the PAV
algorithm, Platt’s method, and binning averaging with

10 bins) presented in Sections 3.1 and 3.2. We also de-

fined all the weighted combination schemes that use the
weights shown in Table 2.

To simulate a diverse set of base classifiers that come

from different sources, we used four different methods

for classification implemented in the data mining suite
WEKA [45] (with their default parameters) to con-

struct several models for each problem: J48 (a C4.5

implementation), Logistic (a logistic regression imple-
mentation), IBk (k = 10) (a k-NN implementation) and

NäıveBayes. An additional random and uncalibrated

classifier (Random) was added (when necessary) to the

experiments in order to compare what happens when
one of the base classifiers is bad. A uniform random

distribution was used to decide which probability was

set to 1 or 0. This random classifier has very bad cal-
ibration, since probabilities are either 0 or 1. We se-

lected 30 (small and medium-sized) datasets (Table 6)

from the UCI repository [7]. A total of 100 repetitions
were performed for each dataset and classifier. In each

repetition, each dataset was split randomly into four

different subsets (as can be seen in Figure 6): one for

training, two for validation and one for test (25% of the
instances for each set).

The training set (Train) was used to learn each clas-

sifier. One validation set (Val1) was used, in case, to cal-

ibrate the probabilities of the base classification mod-
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Fig. 6 Schema showing how each dataset is split into four
different subsets and how they are used in each layout.

els. The other validation set (Val2) was used, in case, to

calibrate the probabilities of the combined model. The
training and the first validation sets were also used to

tune the weights of the combination methods. The test

set (Test) was used to evaluate the models. For each

repetition, the same training, validation and test sets
were used for all the methods.

Table 6 Datasets used in the experiments. Size, number of
classes, and number of nominal and numeric attributes.

# Datasets Size c Nom. Num.

1 Breast Cancer 286 2 9 0
2 Wisconsin Breast Cancer 699 2 0 9
3 Chess 3196 2 36 0
4 Credit Rating 690 2 9 6
5 German Credit 1000 2 13 7
6 Pima Diabetes 768 2 0 8
7 Haberman Breast 306 2 0 3
8 Heart Disease 303 2 7 6
9 Heart Statlog 270 2 0 13
10 House Voting 435 2 16 0
11 Ionosphere 351 2 0 34
12 Monks1 556 2 6 0
13 Monks2 601 2 6 0
14 Monks3 554 2 6 0
15 Mushroom 8124 2 22 0
16 Mammographic Masses 961 2 4 1
17 Sonar 208 2 0 60
18 Spam 4601 2 0 57
19 Spect 80 2 0 44
20 Tic-tac 958 2 8 0

21 Autos5c 202 5 10 15
22 Cmc 1473 3 7 2
23 Iris 158 3 0 4
24 Segmentation 2310 7 0 19
25 Tae 151 3 2 3
26 Waveform 5000 3 0 21
27 Wine 178 3 0 13
28 Vowel 990 11 3 11
29 Splice 3190 3 60 0
30 Vehicle 846 4 0 18

We evaluated the results of the different layouts

for the MSE, AUC, CalBin and accuracy mea-

sures: without calibration and combination; with
calibration only; with combination only; with pre-

calibration and combination; with combination and

post-calibration; and with precalibration, combi-

nation and post-calibration, as shown in Table 7.

In order to ease the reproducibility of results, all
the source code, scripts and datasets are available at:

https://www.dropbox.com/s/f4fw1r5zi029i8b/SBA.zip.

Table 7 Experimental layouts that arrange combination
and calibration.

Layout Description and Variants

BaseModelBaseModel ∈ {J48, Logistic, IBk, NB, Random}
Base The average of all the base models
Com Com ∈ {WCUnif, WCAcc,

WCAUC, WCGINI, WCMSE, WCIMSE}
Cal Cal ∈ { PAV, Platt, Binn. }
Cal For different calibration

+Com and combination methods.
Com For different calibration
+Cal and combination methods.
Cal For different calibration

+Com and combination methods.
+Cal

5.2 Experimental Results

5.2.1 Weighted Combination and Base Classifier

Quality

We will first study the effect of several combination

methods when there is a random classifier (i.e., a bad
classifier) along with other more accurate classifiers.

We are interested in a first assessment of the weighting

methods in Table 2. Tables 8 and 9 show the results2

of applying the combination methods to the four orig-
inal classification models (J48, Log, IB10, and NB).

The difference between Tables 8 and 9 is that Table

9 shows the results when a random classifier is added
(Random). As a reference, we also include the average

of the results of all the base classifiers (Base).

Clearly, when a random classifier is included, the re-

sults are worse than with only the four original classi-

fiers. In this situation, some combination methods are

more robust than others. Specifically, the WCGINI
and WCIMSE methods obtained the best results. In

order to see whether the difference for more than two

methods is statistically significant, we calculated the
Friedman test. When these differences are significant,

we calculate the Nemenyi post-hoc test to compare all

2 These results are averages over datasets. Although the
measures for different datasets are not commensurable, we
use the means to ease the presentation of results. Nonetheless,
the individual results for the 30 datasets are still used for the
statistical tests.
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Table 8 Results for the base classifiers and different com-
bination methods (see Table 7).

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679
Base 0.1446 0.8360 0.1164 0.7676

WCUnif 0.1150 0.8718 0.1045 0.8052
WCAcc 0.1143 0.8724 0.1037 0.8069
WCAUC 0.1145 0.8726 0.1044 0.8065
WCGINI 0.1141 0.8736 0.1043 0.8077∗

WCMSE 0.1145 0.8722 0.1039 0.8063
WCIMSE 0.1109 0.8735 0.0960 0.8104

Table 9 Results for the base classifiers and different com-
bination methods (see Table 7), with one random classifier.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679

Random 0.4676 0.5009 0.4398 0.4317
Base 0.2092 0.7690 0.1811 0.7004

WCUnif 0.1298 0.8520 0.1337 0.7932
WCAcc 0.1196 0.8630 0.1175 0.8035
WCAUC 0.1203 0.8627 0.1195 0.8026
WCGINI 0.1141 0.8729 0.1048 0.8077
WCMSE 0.1208 0.8623 0.1202 0.8019
WCIMSE 0.1117 0.8697 0.0986 0.8096

of the methods with each other (at a confidence level
of 99.5%) as suggested in [15]. The results depicted in

bold in Tables 8 and 9 indicate that the method is

the best and that the difference with the rest of the
methods is statistically significant. The numbers that

are underlined are used when more than one method is

the best. More precisely, underlined numbers indicate

that these results are the best and that the difference
with the other methods is statistically significant, even

though the difference between the underlined methods

is not statistically significant. We see that WCGINI
and, most specially, WCIMSE, are the the best in

many cases. WCIMSE takes advantage of MSE be-

ing a metric of both separability and calibration. The
good performance of these two weighting methods sug-

gests that it is important to use an appropriate metric

(AUC and MSE) instead of accuracy, but also con-

firms that the precise formulation of the weight is also
crucial.

We also studied whether the difference between the

results with and without a random classifier are statis-
tically significant. In order to do so, we calculated the

Wilcoxon Signed-Ranks test with a confidence level of

99.5% as suggested in [15]. The result shows that the

difference between the pairs of methods without and
with a random classifier is statistically significant, ex-

cept in the case marked with the symbol ∗. The great-

est differences are shown when no weighting is used

(WCUnif). Therefore, the conclusion that comes from

Tables 8 and 9 is that weights are needed when classi-
fiers of different quality are combined, which is consis-

tent with previous knowledge in the field [31]. However,

these results show that some weighting schemes such as
WCGINI and WCIMSE are very robust to very bad

classifiers.

5.2.2 Calibration and Combination vs Combination

and Calibration

The next step was to evaluate the effect of calibra-
tion and combination together. Firstly, we evaluated

whether weighting was necessary when models were well

calibrated. Secondly, we evaluated whether calibration

was good for combination. We also wanted to know
whether it was better to calibrate the base models first

and combine them afterwards, or to combine the mod-

els first and to calibrate the combination afterwards.

Table 10 shows the results for each pair of cali-
bration and combination methods3 for the J48, Log,

IB10 and NB classification models, and the random

classifier4. We also include the average of each cali-
bration method over the base classifiers (PAV , Platt,

and Binn) and the combination by WCGINI and

WCIMSE without calibration. We applied, again, the
Friedman test to the results in Table 10 using the same

notation (bold and underlined).

We can see that the results when we calibrate the

model before combination (Table 10, rows 7-12) are not
much better (or even worse) than an uncalibrated com-

bination, as far as the MSE metric is concerned. The

results for AUC are slightly better. In CalBin and ac-

curacy, the difference is a little bit higher, except when
Platt’s calibration is used, showing that combination

produces an uncalibrated classifier. When calibration is

applied after combination (Table 10, rows 13-18), the
results, except for the CalBin metric, are worse in gen-

eral. Therefore, if we are only interested in improving

the calibration of the combined models, the best option
is to calibrate their probabilities after the combination.

But if we want to improve the MSE, AUC and accu-

racy measures, it is better to first calibrate the base

classifiers and then combine them.

3 We tried the six weighting methods shown in Table
2, but the best results were obtained with WCGINI and
WCIMSE, so, in what follows, we only show these results.
4 Apart from the magnitude in the results (values are gen-

erally better without a random classifier, as expected), the
relative differences are similar, so the conclusions that can be
drawn from one case (without random classifier) are similar
to those that can be drawn from the other case (with a ran-
dom classifier). From hereon, we will only show the results
including the random classifier.



On the Effect of Calibration in Classifier Combination 13

Table 10 Results for Cal, Cal+Com and Com+Cal, with
one random classifier.

MSE AUC CalBin Acc.

WCGINI 0.1141 0.8729 0.1048 0.8077
WCIMSE 0.1117 0.8697 0.0986 0.8096

PAV 0.1568 0.7642 0.0966 0.7086
Platt 0.1499 0.7665 0.0982 0.7223
Binn. 0.1568 0.7610 0.0980 0.7066

PAV+WCGINI 0.1075 0.8770 0.0916 0.8171
Platt+WCGINI 0.1173 0.8779 0.1293 0.8129
Binn.+WCGINI 0.1082 0.8777 0.0945 0.8171
PAV+WCIMSE 0.1061 0.8753 0.0923 0.8193
Platt+WCIMSE 0.1178 0.8768 0.1342 0.8134
Binn.+WCIMSE 0.1075 0.8761 0.0980 0.8194

WCGINI+PAV 0.1141 0.8627 0.0708 0.8088
WCGINI+Platt 0.1117 0.8720 0.1029 0.8117
WCGINI+Binn. 0.1177 0.8528 0.0753 0.8033
WCIMSE+PAV 0.1137 0.8600 0.0700 0.8098
WCIMSE+Platt 0.1109 0.8683 0.1006 0.8129
WCIMSE+Binn. 0.1177 0.8490 0.0755 0.8030

5.2.3 Calibration before and after Combination

Finally, we are going to study the effect of Calibration
+ Combination + Calibration (Table 11). The idea is to

check whether we can improve both the calibration and

the performance of the combined model. The results
show that calibrating the combined model improves the

CalBin metric, but does not clearly improve MSE, ac-

curacy and, especially, AUC. The best layout for Cal-
Bin seems to be any calibration method + WCIMSE +

PAV, but only the difference between the layout PAV

+ WCIMSE + PAV is statistically significant compared

to the rest of the results (for CalBin measure) shown in
Table 11).

Table 11 MSE, AUC, CalBin and accuracy measures for
Cal+Com+Cal, with one random classifier.

MSE AUC CalBin Acc.

PAV+WCGINI+PAV 0.1105 0.8680 0.0688 0.8145
PAV+WCGINI+Platt 0.1080 0.8764 0.0986 0.8176
PAV+WCGINI+Binn. 0.1147 0.8571 0.0748 0.8074
Platt+WCGINI+PAV 0.1117 0.8676 0.0699 0.8129
Platt+WCGINI+Platt 0.1091 0.8772 0.1005 0.8158
Platt+WCGINI+Binn. 0.1161 0.8553 0.0745 0.8057
Binn.+WCGINI+PAV 0.1108 0.8682 0.0685 0.8136
Binn.+WCGINI+Platt 0.1082 0.8773 0.0985 0.8171
Binn.+WCGINI+Binn. 0.1155 0.8559 0.0752 0.8058

PAV+WCIMSE+PAV 0.1093 0.8666 0.0671 0.8155
PAV+WCIMSE+Platt 0.1066 0.8747 0.0974 0.8194
PAV+WCIMSE+Binn. 0.1138 0.8538 0.0742 0.8091
Platt+WCIMSE+PAV 0.1098 0.8672 0.0682 0.8159
Platt+WCIMSE+Platt 0.1073 0.8757 0.0993 0.8188
Platt+WCIMSE+Binn. 0.1147 0.8536 0.0747 0.8076
Binn.+WCIMSE+PAV 0.1095 0.8671 0.0678 0.8156
Binn.+WCIMSE+Platt 0.1069 0.8751 0.0983 0.8188
Binn.+WCIMSE+Binn. 0.1144 0.8522 0.0749 0.8083

5.2.4 Summary

From the previous battery of experiments we can high-

light some major findings:

– The combined model is not calibrated, as it is also
shown in Section 4.

– Calibration before combination makes a limited im-

provement for AUC and accuracy, and no improve-

ment (or even gets worse results) for MSE and Cal-
Bin.

– Calibration after combination gives a better picture

for calibration measures, but, as expected, AUC is
not increased. This is because the calibration meth-

ods are monotonic. Also, there is almost no increase

in accuracy or MSE.
– Calibration + Combination + Calibration gives the

best results in terms of calibration, but it is clearly

an elaborate layout, which requires two validation

datasets (one for each of the calibration processes).

From these results, it seems that calibration is only

slightly effective for classifier combination, and weight-

ing can do almost as well. Nonetheless, this statement
should be more precise by saying that monotonic cali-

bration (as given by PAV, Platt and Binning Averag-

ing) does not bring an important push in performance

for classifier combination. As a result, in the follow-
ing section, we will focus on the development of a non-

monotonic calibration method which tries to integrate

more information from the dataset.

6 Non-monotonic Calibration

Most calibration methods are based on a univariate

transformation function over the original estimated

class probability, as we saw in Section 3.2. This func-
tion is always monotonic (strictly monotonic for Platt’s

method). One possible reason why all these methods

are monotonic is because if we were allowed to mod-

ify the probabilities in a non-monotonic way, we would
be prone to overfitting. In the end, calibration must be

an adjustment of the estimated probability values, but

not a complete change in the model properties. For cal-
ibration methods, one way of doing this is to preserve

the ordering of the examples (given by their estimated

probability), which can be achieved by using a mono-
tone transformation.

However, is the previous rationale true for multi-

class calibration? As we discussed in Section 3.3, PAV,

binning averaging and Platt’s methods are binary since
they are only applied to one probability, i.e., they are

univariate. Consequently, we have to use a one-vs-all

or all-vs-all schema to turn binary calibration methods
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into multiclass calibration methods. Nevertheless, the

extensions of binary monotonic calibration methods to
multiclass calibration do not ensure monotonicity, as

the following example shows.

Example 3 Consider a classifier for a three-class prob-

lem with classes {a,b, c} which outputs the following

estimations for two examples 1 and 2:

p(1,a) = 0.2, p(1,b) = 0.6, p(1, c) = 0.2;

p(2,a) = 0.1, p(2,b) = 0.3, p(2, c) = 0.6

After a monotonic calibration for each class, we may

have the following probabilities:

p∗(1,a) = 0.7, p∗(1,b) = 0.9, p∗(1, c) = 0.4;

p∗(2,a) = 0.6, p∗(2,b) = 0.4, p∗(2, c) = 0.5

The rankings are maintained for the three classes, that

is, ∀ class ∈ {a,b, c} : p∗(i, class) > p∗(j, class) iff

p(i, class) > p(j, class). But when we normalise, we
have:

p∗(1,a) = 0.35, p∗(1,b) = 0.45, p∗(1, c) = 0.2;

p∗(2,a) = 0.4, p∗(2,b) = 0.27, p∗(2, c) = 0.33

which breaks the monotonicity for class a since now

p∗(2,a) > p∗(1,a) and, thus, example 2 is ranked above
example 1 for class a.

The previous example shows that a one-vs-all ap-

proach using a monotonic calibration method does not
ensure a monotonic transformation. Similar results can

be obtained for the all-vs-all schema and other mul-

ticlass extensions from binary transformations simply
because of the normalisation.

Therefore, does it make sense to stick to monotonic

methods when, in the general multiclass case, they be-
come non-monotonic in the end?

Following this argument, we propose the applica-
tion of a calibration method which was meant to be

non-monotonic from scratch [4]. The core of this ap-

proach is to change the idea of sorting the examples by
its probability into the idea of using similarity between

examples to create bins that are specific for each in-

stance. This idea arises from the fact that if bins are cre-

ated by only using the estimated probability, calibrated
probabilities will be computed from possibly different

examples with similar probabilities. Hence, the effect of

calibration will be small since we average similar proba-
bilities. However, if we construct the bins using similar

examples according to their features, probabilities can

be more diverse and calibration will have more effect.

Based on this reasoning, we have adapted a new

calibration method known as Similarity-Binning Aver-

aging (SBA) [4] for the combination setting (for which
it was never analysed before). In this method the orig-

inal attributes and the estimated probability are used

to calculate the calibrated one.

The method is composed of two stages. The left side

of Figure 7 shows Stage 1 of the SBA method. In this
stage, a given model M outputs the estimated probabil-

ities associated with a dataset. This dataset can be the

same one already used for training, or an additional val-
idation dataset V D. The estimated probabilities p(i, j)

1 ≤ j ≤ c are added (as new attributes) to each instance

i of V D, creating a new dataset V DP .

Fig. 7 Left: Stage 1 of the SBA method. Right: Stage 2 of
the SBA method.

The right side of Figure 7 shows Stage 2 of the SBA

method. To calibrate a new instance I, first, the esti-

mated probability for each class is obtained from the

classification model M , and these probabilities (one for
each class) are added to the instance, thus creating a

new instance (IP ). Next, the k-most similar instances

to this new instance are selected from the dataset V DP
(for example, using the k-NN algorithm). This creates

a bin. Finally, the calibrated probability of I for each

class j is the average predicted class probability of this
bin (i.e., the probability estimated by the k-NN algo-

rithm for each class j of the instance I).

7 Experimental Results of the SBA Calibration

Method

In this section, we experimentally evaluate the results

of the SBA calibration method. We have seen that the
calibration methods evaluated in Section 5 only pro-

duce very slight improvements (and do not improve the

four studied measures equally or at the same time). So,
in this section we want to evaluate whether the SBA

method can change the picture in the context of classi-

fier combination.

We will first investigate SBA as a calibration

method without any combination layout, and we will
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compare it with the other three calibration methods

(PAV , Platt andBinn.). Tables 12 and 13 use the same
datasets and methodology as in Section 5, but here we

focus on calibration for the four calibration methods.

Table 12 MSE, AUC, CalBin and accuracy measures for
base classifiers without and with calibration.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679
Base 0.1446 0.8360 0.1164 0.7676

PAV 0.1310 0.8301 0.0778 0.7779
Platt 0.1309 0.8333 0.1055 0.7749
Binn. 0.1316 0.8260 0.0807 0.7753
SBA 0.1205 0.8726 0.1022 0.7965

Table 13 MSE, AUC, CalBin and accuracy measures for
base classifiers without and with calibration, with one random
classifier.

MSE AUC CalBin Acc.

J48 0.1397 0.8202 0.1062 0.7683
Log 0.1526 0.8316 0.1224 0.7752
IB10 0.1375 0.8453 0.1093 0.7590
NB 0.1487 0.8469 0.1278 0.7679

Random 0.4676 0.5009 0.4398 0.4317
Base 0.2092 0.7690 0.1811 0.7004

PAV 0.1568 0.7642 0.0966 0.7086
Platt 0.1499 0.7665 0.0982 0.7223
Binn. 0.1568 0.7610 0.0979 0.7066
SBA 0.1264 0.8648 0.1080 0.7841

In terms of MSE, AUC and accuracy, the SBA
method obtains the best results for the 20 binary

datasets and the 10 non-binary datasets. In terms of

CalBin, the calibration method that obtains the best
results is the PAV method. The results in bold indicate

that the differences are statistically significant.

Let us now investigate the effect of SBA for the com-

bination layouts. Before analysing the experimental re-

sults, we need to point out that one possible problem
of non-monotonicity is that the more transformations

we do, the more overfitting may occur, and, more im-

portantly, the correlation between the classifiers may
increase (loss of diversity). In order to analyse this, we

calculated Pearson’s correlation coefficient for the base

classifiers before and after calibrating them with the
three traditional calibration techniques and SBA.While

the traditional calibration techniques showed no signif-

icant increase in correlation, this was effectively higher

for SBA. A higher correlation is, in theory, worse (less
diversity), unless there is a general increase in classifier

quality (when classifiers get better then they necessarily

must correlate more). This latter situation seems to be

more consistent here, as the results for AUC are much

better. Nonetheless, a more thorough analysis on the
relation between non-monotonic calibration and classi-

fier diversity should be done. In what follows, we will

focus on whether the overall results for combination are
better, since many factors counter-balance here.

Next, we study the effect of Combination, Calibra-

tion + Combination, Combination + Calibration and

Calibration + Combination + Calibration in Table 14
with the SBA calibration method. We compare these

results with the results in Tables 8, 9, 10 and 11, using

the Friedman test.

Table 14 Com, Cal+Com, Com+Cal and Cal+Com+Cal
results, with one random classifier. ∗: difference non-
significant with respect to PAV+WCIMSE+PAV. ⋆: differ-
ence non-significant with respect to PAV+WCIMSE. •: dif-
ference non-significant with respect to PAV+WCIMSE and
Binn.+WCIMSE.

MSE AUC CalBin Acc.

SBA+WCGINI 0.1145 0.8841 0.1124 0.8079
SBA+WCIMSE 0.1120 0.8846 0.1056 0.8104
WCGINI+SBA 0.1147 0.8781 0.0996 0.8081
WCIMSE+SBA 0.1141 0.8762 0.0975 0.8078

PAV+WCGINI+SBA 0.1123 0.8789 0.0969 0.8103
Platt+WCGINI+SBA 0.1131 0.8786 0.0978 0.8101
Binn.+WCGINI+SBA 0.1128 0.8777 0.0971 0.8086
PAV+WCIMSE+SBA 0.1100 0.8782 0.0933 0.8128
Platt+WCIMSE+SBA 0.1111 0.8781 0.0949 0.8119
Binn.+WCIMSE+SBA 0.1112 0.8765 0.0947 0.8108

SBA+WCGINI+PAV 0.1093 0.8732 0.0680 0.8161
SBA+WCGINI+Platt 0.1076 0.8842 0.1031 0.8185
SBA+WCGINI+Binn. 0.1135 0.8618 0.0734 0.8089
SBA+WCGINI+SBA 0.1149 0.8794 0.1021 0.8068
SBA+WCIMSE+PAV 0.1085 0.8732 0.0675∗ 0.8172
SBA+WCIMSE+Platt 0.1066⋆ 0.8846 0.1023 0.8198•
SBA+WCIMSE+Binn. 0.1128 0.8620 0.0728 0.8106
SBA+WCIMSE+SBA 0.1140 0.8792 0.1002 0.8082

This table shows that SBA gives the best results in

terms of AUC. The improvement is now much higher
than it was for the other methods. The difference of us-

ing WCGINI or WCIMSE is not significant, but their

results are still better than other weighting options (not

shown in the table). The layouts with the best results
in terms of AUC are SBA + WCIMSE and SBA +

WCIMSE + Platt. The difference between these results

and the rest of the results in Table 14 and Table 10 are
statistically significant according to the Friedman test.

However, in terms of the MSE metric, the difference be-

tween the result of the layout SBA + WCIMSE + Platt
and PAV+WCIMSE (the best result in Table 10) is not

statistically significant. In terms of CalBin, the differ-

ence between the result of the layout SBA + WCIMSE

+ PAV and PAV + WCIMSE + PAV (the best result in
Table 11) is not statistically significant. And finally, in

terms of accuracy, the difference between the result of

the layout SBA + WCIMSE + Platt, PAV + WCIMSE
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and Binn + WCIMSE (the best results in Table 10) is

not statistically significant.

8 Discussion and Conclusions

In general terms, we now have a better understanding

of classifier combination using probabilities. The sep-

arability and location of the probability distributions
are the key issues in understanding classifier combina-

tion results. Measures such as AUC, MSE and CalBin

are very useful in distinguishing these separability and
location parameters.

Apart from all these findings, it is also worth con-

sidering whether the new weighting methods, layouts,
and calibration methods are able to improve the state-

of-the-art in classifier combination using probabilities.

There is definitely a relevant increase in the quality of
the combined models over the techniques with tradi-

tional weighting.

In order to give a clearer picture of the overall im-
provement, Table 15 summarises this evolution of re-

sults. We only use WCGINI because it is a weighting

method that does not consider calibration, and the in-
terpretation of results is easier. Nonetheless, very simi-

lar results are obtained for WCIMSE. For each measure

we have done a significant statistical test between some
of the methods. The methods which have been com-

pared in each case are labelled by the same letter (from

a to g).

Firstly, the WCUnif layout shows an unweighted

combination of the base classifiers (including one ran-

dom classifier). There is a clear improvement in all

the parameters over the average of the base classifiers
(Base) (letter a in Table 15 denotes the comparison be-

tween Base and WCUnif results). This is significantly

better if we use a weighted combination using a classical
combination accuracy (WCAcc) (letter b for comparing

WCUnif and WCAcc results). Up to this point, this

is a state-of-the-art solution. If we modify the weight-
ing function to GINI (WCGINI), we get a significant

improvement over WCAcc (letter c denotes the com-

parison between WCAcc and WCGINI results).

Secondly, the use of a traditional (monotonic) cal-

ibration method (Platt’s) is able to improve the re-

sults in terms of AUC and accuracy both for the un-
weighted case (WCUnif) and for the weighted case us-

ing WCGINI (letter d in Table 15 for comparing WCU-

nif, WCAcc, WCGINI and Platt+WCUnif results; and

letter e for comparing WCUnif, WCAcc, WCGINI and
Platt+WCGINI results). Nonetheless, as discussed in

previous sections: using calibration before combination

typically yields better (but uncalibrated) combinations,

Table 15 Summary of Results (using 4 models + random
classifier). For each column (MSE, AUC, CalBin, and accu-
racy measures) we have done a significant statistical test be-
tween the rows with the same letter. If the difference between
them is significant, we have put the letter of the best result
in bold; and if two or more methods are better than the rest,
but the difference between them is not significant, we have
underlined the letters of these methods.

MSE AUC CalBin Acc.

Base 0.2092 0.7690 0.1811 0.7004
WCUnif 0.1298 0.8520 0.1337 0.7932
WCAcc 0.1196 0.8630 0.1175 0.8035
WCGINI 0.1141 0.8729 0.1048 0.8077

Platt+WCUnif 0.1294 0.8745 0.1589 0.8063
Platt+WCGINI 0.1173 0.8779 0.1293 0.8129

Platt+WCGINI+Platt 0.1091 0.8772 0.1005 0.8158
SBA+WCGINI 0.1145 0.8841 0.1124 0.8079

SBA+WCGINI+SBA 0.1149 0.8794 0.1021 0.8068
SBA+WCGINI+PAV 0.1093 0.8732 0.0680 0.8161
SBA+WCGINI+Platt 0.1076 0.8842 0.1031 0.8185

MSE AUC CalBin Acc.

Base a a a a

WCUnif ab de ab de ab de ab de

WCAcc bcde bcde bcde bcde

WCGINI cdefg cdefg cdef g cdefg

Platt+WCUnif d f d f d f d f

Platt+WCGINI ef ef ef ef

Platt+WCGINI+Platt f g fg f g f g

SBA+WCGINI g g g g

SBA+WCGINI+SBA g g g g

SBA+WCGINI+PAV g g g g

SBA+WCGINI+Platt g g g g

and the improvement is not applicable to MSE or Cal-

Bin. However, this can be easily sorted out by also us-
ing a post-calibration (layout: Platt+WCGINI+Platt)

(letter f for comparing WCGINI, Platt+WCUnif,

Platt+WCGINI and Platt+WCGINI+Platt results).

Thirdly, the SBA calibration method is able to get

further improvement, especially in terms of AUC. The
layout SBA+WCGINI excels in AUC. Again, if we

are interested in a calibrated combination or in good

accuracy, we can use the layout SBA+WCGINI+PAV,

which gives the best results in terms of MSE and
CalBin (AUC is worse for this layout because PAV is

not strictly monotonic and makes ties that may reduce

the AUC). For accuracy, SBA+WCGINI+Platt
seems a better option, while keeping AUC at

its best (letter g in Table 15 for comparing

WCGINI, Platt+WCGINI+Platt, SBA+WCGINI,
SBA+WCGINI+SBA, SBA+WCGINI+PAV and

SBA+WCGINI+Platt results).

As final recommendations, we think that classifiers

that are seen as probabilistic estimators (and virtually

any classifier can be converted into a probability esti-

mator) give a more complete view of their behaviour,
allowing for a more detailed combination, using their

own reliabilities. The notions of diversity and quality

become more complex than for crisp (non-probabilistic)
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classifiers, but this extra complexity can pay off with

an increase in the performance of the combined model.
Performance should be evaluated with several data met-

rics, but separability (measured in terms of AUC) is

a good reference, since it is insensitive to miscalibra-
tion. Pursuing a combined model with good AUCmakes

sense since we know that we can calibrate a classi-

fier with good AUC and get good accuracy results
from these calibrated probabilities, using the by default

thresholds (e.g. 0.5 for binary datasets).

Additionally, we have also analysed the time over-

load and the scalability of the several combination lay-
outs with respect to the Base procedure. In Table 16 we

show the time (in seconds) used in one repetition for the

Base layout for ten different datasets (first row). Con-
cretely, we use three datasets with two classes (14, 3 and

15 in Table 6) (one of the smallest dataset, one medium

dataset and the biggest dataset), three datasets with
three classes (23, 22 and 26 in Table 6) (one of the

smallest dataset, one medium dataset and the biggest

dataset) and four datasets with four, five, seven and

eleven classes respectively (30, 21, 24 and 28 in Table
6). The rest of the table shows the relative increment in

time (percentage) of the other layouts with respect to

the Base layout. The table shows that there is of course
a time overload for the layouts with calibration, but it

is still in reasonable figures for medium-sized problems.

We see that as far as the datasets become larger and
more complex, the relative overhead (over a single clas-

sifier) increases slightly with respect to simple datasets.

Regarding the calibration methods used, binning is the

most efficient, while Platts shows some scalability prob-
lems for some datasets. The SBA method somewhat lies

in between.

Summing up, from all these results and analyses, we
would like to highlight some clear messages, as follows:

– Calibration is beneficial before combination as the

experimental results show, in general. Monotonic

calibration methods have a more limited influence

than non-monotonic ones.
– The combination of classifiers does not typically give

a calibrated result, as we have shown by analysing

the probability distributions using truncated normal
models for them. This has been confirmed by the

experimental results.

– We advocate for AUC as the right measure to evalu-
ate combination performance, precisely because the

combination is generally uncalibrated.

– We recommend calibration after combination, if we

are interested in good results in terms of MSE or in
terms of accuracy.

– Weighted combination is compatible with probabil-

ities even when we use calibration with the same

dataset from which we derive the weights. This

has been shown by the experiments. Therefore, the
double-weighting phenomenon is not really a prob-

lem, or at least it is counteracted by other benefits.

– The weighting methods which are best when using
probabilities are GINI and IMSE, even in conjunc-

tion with calibration.

– SBA, the non-monotonic calibration method, is bet-
ter for combination according to the experimental

results.

This better understanding of classifier combination us-

ing probabilities is not only useful for the general case,

but for specific applications and problems. We now have
tools to analyse how classifiers change with calibration

and combination. The distribution plots we used in Sec-

tion 4 can be used to analyse the results of calibration
and combination of a specific set of classifiers. The use

of several metrics (such as AUC, MSE, accuracy, and

CalBin) are a requirement to understand what is re-
ally going on when classifiers are transformed and com-

bined.

Finally, we have also raised many new questions.

More elaborate tools could be used to analyse probabil-
ity distributions theoretically, especially to address the

general multiclass case. The use of other diversity mea-

sures, such as Spearman’s rank correlation would also
be insightful. Empirical results can also be extended

with more layouts, different settings, datasets sizes and

features, model types, etc. In the end, calibration is
a complex phenomenon by itself, which becomes even

more convoluted when coupled with the already multi-

farious area of model combination.
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Table 16 The row Base shows the time (in seconds) for the Base layout for ten different datasets. The other rows show the
relative increment in time (percentage) of the other layouts with respect to the Base layout.

14 3 15 23 22 26 30 21 24 28

Base 0.3 3.5 7.9 0.2 0.6 9.1 0.4 0.7 1.1 0.6
PAV 300% 454% 1051% 200% 717% 774% 525% 229% 791% 833%
Platt 1033% 403% 497% 850% 2583% 656% 2825% 714% 4927% 6033%
Binn. 233% 214% 214% 200% 217% 211% 250% 214% 227% 233%
SBA 467% 663% 678% 400% 533% 829% 600% 400% 691% 500%

WCGINI 233% 291% 335% 200% 283% 330% 300% 214% 336% 300%
PAV+WCGINI 433% 857% 2065% 300% 1383% 1538% 1000% 357% 1582% 1667%
Platt+WCGINI 2000% 780% 1015% 1600% 5100% 1332% 5600% 1314% 9909% 12133%
Binn.+WCGINI 400% 391% 418% 300% 383% 421% 450% 329% 464% 467%
SBA+WCGINI 1033% 1720% 1862% 800% 1300% 2219% 1500% 829% 1964% 1350%
WCGINI+PAV 433% 451% 771% 300% 633% 710% 575% 329% 545% 767%
WCGINI+Platt 567% 534% 524% 500% 967% 563% 1100% 443% 1618% 1867%
WCGINI+Binn. 367% 389% 437% 300% 367% 431% 425% 343% 445% 417%
WCGINI+SBA 433% 500% 546% 350% 450% 580% 500% 357% 555% 467%

PAV+WCGINI+PAV 600% 1197% 3015% 400% 2267% 2251% 1525% 486% 2364% 2667%
PAV+WCGINI+Platt 800% 1334% 3094% 600% 2400% 2232% 2075% 586% 3473% 3900%
PAV+WCGINI+Binn. 600% 1186% 3004% 450% 2000% 2143% 1400% 471% 2300% 2450%
PAV+WCGINI+SBA 700% 1297% 3120% 500% 2067% 2295% 1500% 529% 2409% 2500%
Platt+WCGINI+PAV 2933% 1163% 1663% 2400% 7867% 2158% 8450% 1886% 14918% 18433%
Platt+WCGINI+Platt 3033% 1154% 1508% 2550% 8167% 1970% 8975% 2014% 15927% 19500%
Platt+WCGINI+Binn. 2867% 1080% 1418% 2350% 7600% 1882% 8300% 1914% 14764% 18083%
Platt+WCGINI+SBA 2933% 1189% 1528% 2400% 7667% 2031% 8375% 1929% 14873% 18200%
Binn.+WCGINI+PAV 533% 506% 542% 400% 783% 641% 725% 457% 718% 900%
Binn.+WCGINI+Platt 700% 643% 551% 650% 917% 620% 1300% 586% 1791% 2083%
Binn.+WCGINI+Binn. 500% 497% 533% 400% 517% 531% 600% 443% 618% 650%
Binn.+WCGINI+SBA 600% 609% 644% 450% 600% 681% 675% 500% 727% 700%
SBA+WCGINI+PAV 1567% 2446% 2982% 1200% 2083% 3312% 2250% 1229% 2855% 2167%
SBA+WCGINI+Platt 1667% 2451% 2629% 1450% 2433% 3134% 2800% 1343% 3855% 3333%
SBA+WCGINI+Binn. 1533% 2383% 2543% 1200% 1833% 3042% 2125% 1214% 2673% 1883%
SBA+WCGINI+SBA 1567% 2491% 2651% 1250% 1900% 3196% 2200% 1286% 2773% 1950%


