Brier Curves: a New Cost-Based Visualisation of Classifier Performance

J. Hernández-Orallo¹ and P. Flach² and C. Ferri¹

¹DSIC, UPV, València, Spain. {jorallo,cferri}@dsic.upv.es ²Intelligent Systems Laboratory, University of Bristol, UK Peter.flach@bristol.ac.uk

The 28th International Conference on Machine Learning. ICML 2011

June 28 - July 2 , 2010 Seattle, USA

Outline

- Introduction
- 2 Brier Score, ROC Curves and Cost Curves
- Brier Curves
- 4 Area under the Brier Score
- 5 Brier Curves for Comparing and Combining Classifiers
- 6 Conclusions
- Future Work

Introduction

Methods for evaluating classier performance

- Numerical
 - Usually represent the average or expected performance across a set of operating conditions
- Graphical
 - Especially useful when there is uncertainty about the misclassification costs or the class distribution
 - Can present a classifier's actual performance for a wide variety of different operating conditions

Graphical representations and tools for classifier evaluation

- ROC Curves and isometrics
- DET Curves
- Lift Charts
- Cost Curves

Some of these visualise two performance metrics as a function of an implicit operating condition while others have the operating condition explicitly on the x-axis, and a single performance metric on the y-axis.

ROC Space

- Draw the misclassification rate of one class (negative) on the x-axis and the accuracy of the other class (positive) on the y-axis
- Concentrate on ranking performance
- Ignores the magnitude of the scales

Cost Curves

- Represent the performance of the ROC convex hull of a classifier
 - This is a typically optimistic (and frequently unrealistic) assessment of a classifier
- Ignore the magnitude of the scores
- Draw loss on the y-axis against operating condition on the x-axis
- Visualise classification performance

ROC Space vs Cost Space

- Line segments in ROC space correspond to points in cost space and points in ROC space correspond to line segments in cost space
- The convex hull of a ROC curve corresponds to the lower envelope of the cost lines in cost space.

This paper introduces a new curve to graphically understand and assess classifiers.

- We assume that the classifier scores are posterior class probabilities
 - This provides a natural way of choosing the thresholds.
- This new curve depends on the quality of the probability estimates, and it shows the performance for the full range of operating conditions.
 - We can choose and discard classifiers depending on the operating conditions but we can also combine classifiers in order to obtain a lower overall loss.

Brier Score, ROC Curves and Cost Curves

Brier Score

• The Brier score is a well-known evaluation measure for probabilistic classifiers (Mean Squared Error or MSE loss) :

$$BS \triangleq \frac{1}{n} \sum_{i=1}^{n} (s_i - y_i)^2$$

• Where s_i is the score predicted for example i and y_i is the true class for example i.

$$BS = \pi_0 BS_0 + \pi_1 BS_1.$$

ROC Curves

- For a given, unspecified classifier and population from which data are drawn, we denote the score density for class k by f_k and the cumulative distribution function by F_k .
- The ROC curve is defined as a plot of $F_1(t)$ (i.e., false positive rate at decision threshold t) on the x-axis against $F_0(t)$ (true positive rate at t) on the y-axis.

$$AUC = \int_0^1 F_0(s) dF_1(s) = \int_{-\infty}^{+\infty} F_0(s) f_1(s) ds$$

• The convex hull of a ROC curve (ROCCH) includes only those points on the ROCCH with minimum loss for some c, using the optimal threshold choice method

$$\mathcal{T}_c^o(c) \triangleq \arg\min_t \{Q_c(t;c)\}$$

Cost Curves

A cost plot (Drummond & Holte) has loss

$$Q_z(t;z) = z(1 - F_0(t)) + (1 - z)F_1(t)$$

on the *y*-axis against skew $z = \frac{c_0 \pi_0}{c_0 \pi_0 + c_1 \pi_1}$ on the *x*-axis.

- Cost lines for a given decision threshold t are straight lines with intercept $F_1(t)$ and slope $1 F_0(t) F_1(t)$.
- The optimal cost curve is the lower envelope of all the cost lines, and only considers the optimal threshold for each skew:

$$CC(z) \triangleq Q_z(T_z^o(z); z)$$

Example

Scores	0.05	0.15	0.16	0.18	0.20	0.20	0.45	0.55
Classes	0	1	0	0	0	0	0	0
Scores	0.70	0.70	0.70	0.85	0.90	0.90	0.95	
Classes	0	1	0	0	1	0	1	

Brier Curves

Optimal Cost Curves

- Optimal cost curves assume that we set thresholds optimally
 - Thresholds that are optimal on a validation set may not carry over to a new test set.

Probabilistic threshold choice

- A natural way of setting the threshold for a probabilistic classifier.
 - Thresholds are set equal to the operating condition (cost proportion or skew).
- The probabilistic threshold choice method sets the threshold:

$$T_c^p(c) \triangleq c$$

Brier Curves

- The *Brier curve* is defined as a plot of loss against operating condition using the probabilistic threshold choice method.
- If the operating condition is determined by cost proportion the Brier curve is defined by

$$BC_c(c) \triangleq Q_c(T_c^p(c); c) = Q_c(c; c)$$

= $2c\pi_0(1 - F_0(c)) + 2(1 - c)\pi_1F_1(c)$

A Brier curve for skew is defined by

$$BC_z(z) \triangleq Q_z(T_z^p(z); z) = Q_z(z; z)$$

= $z(1 - F_0(z)) + (1 - z)F_1(z)$

Scores	0.05	0.15	0.16	0.18	0.20	0.20	0.45	0.55
Classes	0	1	0	0	0	0	0	0
Scores	0.70	0.70	0.70	0.85	0.90	0.90	0.95	
Classes	0	1	0	0	1	0	1	

Brier Curves

- Top curve is the Brier Curve
- BC_0 blue line and BC_1 red line.
- Cost lines in thin dashed lines.

Brier curves of a real example

- Brier and optimal cost curves for two J48 classifiers evaluated on training and test sets both sampled from the credit rating UCI dataset.
 - TL: Pruned tree on training set (*AUC*: 0.937, *AUCH*: 0.937, *BS*: 0.068).
 - TR: Pruned tree on test set (AUC: 0.887, AUCH: 0.894, BS: 0.126).
 - BL: Unpruned tree on training set (AUC: 0.985, AUCH: 0.988, BS: 0.042).
 - BR: Unpruned tree on test set (AUC: 0.893, AUCH: 0.904, BS: 0.126).

Area under the Brier Score

The Area under the Brier Curve is the Brier Score

• The area under the Brier curve represents the expected loss averaged over the whole operating range.

$$L_c \triangleq \int_0^1 BC_c(c)dc = \int_0^1 Q_c(c;c)dc = \int_0^1 2\{c\pi_0(1-F_0(c)) + (1-c)\pi_1F_1(c)\}dc$$

Theorem

• The area under the Brier curve for cost proportions is equal to the Brier score.

$$L_c \triangleq \int_0^1 BC_c(c)dc = BS$$

→□▶ →□▶ → □▶ → □▶ → □

The Area under the Brier Curve is the Brier Score

• We state the corresponding result for skews.

$$L_z \triangleq \int_0^1 BC_z(z)dz = \int_0^1 Q_z(z;z)dz$$
$$= \int_0^1 \{z(1 - F_0(z)) + (1 - z)F_1(z)\}dz$$

Corollary

$$L_z = (BS_0 + BS_1)/2.$$

Properties of Brier Curves

- The BS equivalence of the area lends further credibility to Brier curves
 - The interpretation of AUC as the Wilcoxon-Mann-Whitney sum of ranks statistic lends credibility to ROC curves
- Offer a generalisation of the Brier score in the sense that we can investigate 'partial Brier scores' as expected loss over a more restricted range of operating conditions

Brier Curves for Comparing Classifiers

- With ROC analysis we can compare classifiers and identify regions where one classifier dominates other classifiers
- With optimal curves, we can do similarly, assuming optimal choices.
- In the same way, with Brier Curves, given an operating condition on the *x*-axis we can simply read off on the *y*-axis which classifier will have lowest loss.
- Given two classifiers A and B we say that A dominates B at a cost proportion c iff $Q_c^A(c;c) < Q_c^B(c;c)$.

	Class	Α	В	С	D
e_1	1	0.70 (45)	0.60 (5)	0.00(1)	0.65 (5)
e_2	1	0.80 (710)	1.00 (10)	1.00 (910)	0.90 (10)
e_3	1	0.80 (710)	0.95 (9)	0.93 (7)	0.88 (9)
e ₄	1	0.70 (45)	0.25 (12)	0.91(6)	0.48 (4)
e_5	0	0.80 (710)	0.68 (7)	0.78 (23)	0.74 (7)
e ₆	0	0.75 (6)	0.64 (6)	0.83 (4)	0.70 (6)
e ₇	0	0.10(1)	0.37 (4)	0.78 (23)	0.24(2)
e ₈	0	0.55 (3)	0.30(3)	0.95 (8)	0.43 (3)
eg	0	0.80 (710)	0.72 (8)	1.00 (910)	0.76 (8)
e_{10}	0	0.15 (2)	0.25 (12)	0.87 (5)	0.20(1)

- green lines with '+' points: classifier A (AUC: 0.667, AUCH: 0.750, BS: 0.244);
- orange lines with 'x' points: classifier *B* (*AUC*: 0.646, *AUCH*: 0.750, *BS*: 0.240);
- magenta lines with 'o' points: classifier C (AUC: 0.563, AUCH: 0.708, BS: 0.558).

Brier Curves for Combining Classifiers

Dominance in performance graphics

- With ROC analysis we can combine classifiers, or modify a classifier in a given operating range, in order to improve performance.
 - Concavities in the ROC curve of a scoring classifier can be repaired by randomising or inverting the ranking in the corresponding operating range
- Brier curves open up new ways of combining classifiers
 - Make a random choice between two probabilistic classifiers for each prediction
 - Average the predicted probabilities of the classifiers
 - Hybrid classifier: we can construct a hybrid classifier *AB*, which uses *A*'s predictions if the cost proportion is in either interval [0.1, 0.5] or [0.55, 0.65] and *B*'s predictions otherwise.

	Class	Α	В	D
e_1	1	0.70 (45)	0.60 (5)	0.65 (5)
e_2	1	0.80 (710)	1.00 (10)	0.90 (10)
e_3	1	0.80 (710)	0.95 (9)	0.88 (9)
e_4	1	0.70 (45)	0.25 (12)	0.48 (4)
e_5	0	0.80 (710)	0.68 (7)	0.74 (7)
e_6	0	0.75 (6)	0.64 (6)	0.70 (6)
e ₇	0	0.10(1)	0.37 (4)	0.24(2)
<i>e</i> 8	0	0.55(3)	0.30(3)	0.43(3)
e ₉	0	0.80 (710)	0.72 (8)	0.76 (8)
e ₁₀	0	0.15 (2)	0.25 (12)	0.20 (1)

ROC curve and Brier curve of classifier D which predicts the average of the probabilities predicted by classifiers A and B (AUC: 0.750, AUCH: 0.875, BS: 0.231).

Brier Curves and Calibration

ROC curves and Brier curves for a Naive Bayes classifier on the vote UCI dataset before and after PAV calibration (50% train, 50% test).

- Top left: Non-calibrated ROC curve.
- Top right: PAV-calibrated ROC curve.
- Bottom left: Non-calibrated Brier curve.
- Bottom right: PAV-calibrated Brier curve.

Brier Curves and Calibration

- The Brier curve clearly locates the loss due to bad calibration between scores 0 and 0.5, although this has little effect on the ranking quality.
- Calibration improves both curves.
 - With ROC curves, calibration has the potential to fix the concavities of the curve.
 - With Brier curves it moves the curve closer to the optimal cost curve.
 - We can see where calibration fails.
 - Calibration has failed between 0.2 and 0.4, which corresponds to the strong discontinuity of the slope of the ROC curve.

Conclusions

- Brier Curves:
 - A new graphical tool to understand the performance of classifiers.
 - Are built setting the threshold equal to the operating condition, either cost proportion or skew.
 - Represent the performance of a probabilistic classifier for a range of operating conditions defined by cost proportion or skew.
- ROC curves are useful to represent and analyse rankers, Brier curves are useful to represent probabilistic classifiers.
- Optimal cost curves and Brier curves :
 - Summarise most of the information about the performance of a classifier
 - Allow us to consider different ways of choosing the thresholds, and their resulting performance.

Future Work

- The relationship between confidence intervals for the Brier curve and for the Brier score.
- Brier curves for the improvement of classifiers, (calibration).
- Brier score decomposition and the notion of calibration in the plots.
- Build hybrid classifiers using Brier curves.