
Policy Reuse in a General Learning Framework

No Author Given

No Institute Given

Abstract. Policy reuse is a kind of transfer learning to improve a rein-
forcement learning system by reusing part of the information of the state-
value function from previous problems to new problems. In this paper
we overhaul this aproach in the context of a general learning framework
for structured prediction using user-defined operators and a functional
programming language for the representation of rules and operators. The
redefinition of what policy reuse is in this context is motivated by the
representation of states and actions as feature vectors, and the use of a
Q matrix which is actually a table, from which a supervised model is
learnt. This makes it possible to have a more flexible mapping between
old and new problems, since we work with an abstraction of rules and ac-
tions. We do some experiments with the system gErl on some structured
prediction problems (list patterns).
Keywords: policy reuse, reinforcement learning, inductive program-
ming, transfer learning, complex data, heuristics, Erlang.

1 Introduction

The reuse of knowledge which has been acquired in previous learning processes
in order to improve or accelerate the learning of future tasks is an appealing idea.
Several solutions have been proposed to reuse knowledge, in areas such as meta-
learning, incremental learning, employment of background knowledge or transfer
learning. As the task and the learning system become more elaborated, this
knowledge reuse becomes more important. In this paper we deal with a general
rule-based learning setting using a functional programming representation, where
operators can be defined and customised for each kind of problem. While one
particular problem may require generalisation operators, another problem may
require operators which add recursive transformations to explore the structure of
the data. An appropriate choice of operators can embed transformations on the
data but can also determine the way in which rules are generated and modified,
so leading to (apparently) different learning systems. Making the user or the
problem adapt its own operators is significantly different to the use of feature
transformations or specific background knowledge. In fact, it is also significantly
more difficult, since operators can be very complex things and usually embed
the essence of a machine learning system. As a result, having a system which can
work with different kinds of operators at the same time is a challenging proposal
beyond the frontiers of the state of the art in machine learning.

Given the versatility of this system, the heuristics for exploring the search
space must be more flexible. A reinforcement learning (RL) system determines
which rules and operators are used and how they are combined. In this work, we
will focus on how RL policies are reused between totally different tasks. In order



to do that, we use an appropriate feature space for describing the kinds of rules
and operators that are giving good solutions (and high rewards), so this history
is reused for other problems, even when the task and operators are different.

The paper is organised as follows. Section 2 makes a short account of the
related and previous work. Section 3 introduces briefly the gErl system. Section
4 describes the RL-based heuristics used to guide the learning process and sec-
tion 5 discusses how to transfer knowledge between tasks. Section 6 includes an
empirical study which illustrates the way in which operators are defined and
solutions are reached. Section 7 closes the paper.

2 Previous work

The goal of this paper is to describe the policy reuse that we will use in our system
to take advantage of previous learning episodes (problems). Consequently, we will
focus on previous work on policy reuse in the areas of reinforcement learning (RL)
and transfer learning (TL), see [14] for a survey.

There are three main families of TL methods (in the RL area). Firstly, the
source and target tasks use the same state variables and set of actions. Here,
transfer learning is performed by initializing the Q-values of a new episode with
previously learned Q-values [7]. This family includes those TL methods which use
multiple source tasks by leveraging all experienced source tasks when learning a
novel target task [9, 10] or by choosing a subset of previously experienced tasks
(Probabilistic policy reuse [5] and Hierarchical RL [2]).

The second family of methods are those which are able to transfer between
tasks with different state variables and actions, so that no explicit mapping be-
tween the tasks is needed. Instead the agent reasons over abstractions of the
Markov Decision Process that are invariant when the actions or state variables
change. Some methods use macro-actions or options [12] to learn new action poli-
cies in Semi-Markov Decision Processes. Relational Reinforcement Learning [4]
is another particularly attractive formulation in this context of transfer learning.

The TL methods of the last family are more flexible than those previously
discussed as they allow the state variables and available actions to differ between
source and target tasks using inter-task mappings. Namely, explicit mappings
are needed in order to transfer between tasks with different actions and state
representations. This mapping may be provided to the learner (advise rules [11])
or may be autonomously learned (qualitative dynamic Bayes networks [8]).

Although TL in RL has made significant progress in recent years, there is
a poor understanding about the reuse of knowledge for solving future totally
different problems. This makes sense in our system since we can have a pool
of user-defined operators to solve a problem, while only a subset is needed to
solve it. The ultimate goal is to use old policy information to speed up the
learning process of another different problem (which may need a different subset
of operators).

3 The gErl system

As we have mentioned in Section 1, in this paper we use the gErl system [1], a
general learning system which can be configured with different (possibly user-
defined) operators. The system can be described as a flexible architecture (shown



in Figure 1) which works with populations of rules (expressed as unconditional
/ conditional equations) and programs in the functional language Erlang, which
evolve as in an evolutionary programming setting or a learning classifier system
[6]. Operators are applied to rules and generate new rules, which are combined
with existing or new programs. With appropriate operators, using some opti-
mality criteria (based on coverage and simplicity) and using a reinforcement
learning-based heuristic (where the application of an operator over a rule is seen
as a decision problem fed by the optimality criteria) many complex problems
can be solved. In the rest of this section we will introduce some notation and
concepts of the system that will be required to understand how our policy reuse
techniques are devised and implemented. We refer the reader to [1] for details.

State

Reward

Actionp{o,ρ}Actionp{o,ρ}

Reinforcement
Modulep
BAgentk

HeuristicpModel

RulespR

SystempBEnvironmentk

Population

ProgramspP

OperatorspO CombinerspC

Rule
Generator

Program
Generator

O C

R Pp-ρ-

ρ-

EvidencepEp
Be+,e-k

Problem

Background
Knowledge

co

Fig. 1: gErl’s system architecture

3.1 Data and model representation and learning problem statement

gErl can be considered and inductive (functional) programming system, as data
and rules (and hence solutions) are represented in a functional programming
language, Erlang. Let us see how these elements are represented and how the
learning problem is stated.

LetΣ be a set of function symbols together with their arity and X a countably
set of variables, then T (Σ,X ) denotes the set of terms built from Σ and X . The
set of variables occurring in a term t is denoted Var(t). A term t is a ground term
if V ar(t) = ∅. An equation is an expression of the form l = r where l (the left
hand side, lhs) and r (the right hand side, rhs) are terms. R denotes the space
of all (conditional) functional rules ρ of the way l [when G]→ T, r where l and r
are the lhs and the rhs of ρ (respectively), G = {g1, g2, . . . gm | m ≥ 0}) is a set
of conditions or Boolean expressions called guards, and T = b1, . . . , bn, the tail
of ρ, is a sequence of equations. If G = ∅, then ρ is said to be an unconditional
rule. Let P = 2R be the space of all possible functional programs formed by sets
of rules ρ ∈ R. Given a program p ∈ P, we say that term t reduces to term s
with respect to p, t→p s, if there exists a rule l [when G]→ T, r ∈ p such that
a subterm of t at occurrence u matches l with substitution θ, all conditions giθ
hold, for each equation bil = bir ∈ T , bilθ and birθ have the same normal form



(that is, bilθ →∗p b, and birθ →∗p b and b can not be further reduced) and s is
obtained by replacing in t the subterm at occurrence u by rθ.

An example e is a ground rule l → r (that is, without condition nor tail),
being r in normal form. We say that e is covered by a program p (denoted
by p |= {l → r}) if l and r have the same normal form with respect to p. A
program p ∈ P is a solution of a learning problem defined by a set of positive
examples E+, a (possibly empty) set of negative examples E− and a background
theory B if it covers all positive examples, B ∪ p |= E+ (posterior sufficiency or
completeness), and does not cover any negative example, B∪p 6|= E− (posterior
satisfiability or consistency). Our system has the aim of obtaining complete
solutions, but their consistency is not a mandatory property, so approximate
solutions are allowed. The positive coverage of a program p ∈ 2R is defined as
Cov+(p) = Card({e ∈ E+ : B∪p |= e}), where Card(S) denotes the cardinality
of the set S. The negative coverage Cov− is defined analogously.

As we can see in Figure 1, our system works with two sets: a set of rules
R ⊆ R and a set of programs P ⊆ P, where each program p ∈ P is composed by
rules belonging to R. Initially, R is populated with E+ and the set of programs
P is populated with as many unitary programs as there are rules in R.

3.2 Operators and learning process

The definition of customised operators is one of the key concepts of our proposal.
The idea is to transform the set of rules R using a set of operators O ⊂ O
(provided by the user or existing in the system).

An operator can be seen as a piece of code (as complex as the user may wants)
which performs modifications over the lhs or rhs of a rule and which is written
in the same functional language as the system (Erlang) to take advantage of
its high-order and reflection capabilities. The main idea is that, when the user
wants to deal with a new problem, he/she can define his/her own set of operators,
especially suited for the data structures of the problem. This feature allows our
system to adapt to the problem at hand. Our system also has a special kind of
operators c ∈ C, called combiners, that only apply to programs. The Program
Generator module (Figure 1) applies a combiner to the last rule ρ′ generated by
the Rule Generator module and the population of programs P .

As the process progresses, new rules and programs will be generated. First,
the Rule Generator process (Figure 1) gets the operator o and the rule ρ returned
as an action a = 〈o, ρ〉 by the Reinforcement Learning Module (policy). This
process applies the operator over the rule obtaining a new rule ρ′ (if the operator
is not suitable for the rule selected, the process returns the same rule) which is
added to R. Then, the Program Generator process takes the new rule generated
ρ′ (if appropriate) as input, the set of programs P and the set of combiners C
and generates a new program p′ (which is added to P ) applying the combiners
over the previous inputs.

4 RL-based heuristics

In this section we describe the reinforcement learning approach followed by gErl
in order to guide the learning process. Given that the users can define their own



operators, the search heuristics have been conceived as decisions about the op-
erator to be used at each particular state of the process. For this, a model-based
reinforcement learning approach has been developed, where the application of
an operator over a rule is seen as a decision problem, for which learning also
takes place, guided by the optimality criteria which feed a rewarding module.

4.1 RL problem statement

To guide the learning process we need a picture of the system in each step of the
process (before and after applying an action) in terms of the quality of the set
of rules and programs generated until now. Based on it, we model the decision
process as a typical reinforcement learning task.

Formally, we define a state at each iteration t of the system as a tuple σt =
〈R,P 〉 which represent the population of rules R and programs P in t. An action
is a tuple 〈o, ρ〉 with o ∈ O and ρ ∈ R that represents the operator o to be applied
to the rule ρ1. Our decision problem is a four-tuple 〈S,A, τ, ω〉 where: S is the
state space; A is a finite actions space (A = O × R); τ : S × A → S is a
transition function between states and ω : S × A → R is the reward function.
These components are defined below:

– States. As we want to find a good solution to the learning problem, we
describe each state σt by a tuple of features st = 〈φ1, φ2, φ3〉 from which to
extract relevant information in t:

1. Global optimality (φ1): This feature shows the average optimality of all
programs in Pt. In turn, the optimality of a program p is computed by
weighting three simpler heuristics according to its importance:

Opt(p) = β1 · CRD(p)− β2 ·OU(p) + β3 ·RP (p) (1)

where CRD (coverage rate difference) is a normalised measure of cover-
age difference between positive and negative examples covered, OU (op-
erator usage) is a normalised measure of how many operators have been
used to derive the rule and RP is a measure of the expressiveness of the
programs in terms of number of variables, functions and constants. As
for the current implementation of gErl, the weights are β1 = 1, β2 = 0.2
and β3 = 0.1. Finally, the Global optimality factor is then calculated as
the average of the optimalities of all programs in the system:

OptGlobal(Pt) =
1

Card(Pt)

∑
p∈Pt

Opt(p) (2)

2. Average Size of Rules (φ2): measures the average complexity of all rules
in R, using the RP measure mentioned above.

3. Average Size of programs (φ3): measures the average cardinality of all
the programs in Pt in terms of the number of rules.

– Actions. Each rule is described by a tuple of features ρ = 〈ϕ1, ϕ2, ϕ3, ϕ4, ϕ5,
ϕ6, ϕ7, ϕ8〉 from which we extract relevant information:

1 The probable infinite number of states and rules makes the abstraction of states and
rules necessary.



1. Size (ϕ1): expressiveness of the rule using RP .
2. Positive Coverage Rate (ϕ2).
3. Negative Coverage Rate (ϕ3).
4. NumVars (ϕ4): number of variables of ρ.
5. NumCons (ϕ5): number of constants (functors with arity 0) of ρ.
6. NumFuncs (ϕ6): number of functors with arity greater than 0 of ρ.
7. NumStructs (ϕ7): number of structures (lists, graphs, . . . ) of ρ.
8. isRec (ϕ8): indicates if the rule ρ is recursive or not.

We use a natural index as the only feature for operators. As an action consists
of a choice of operator and rule, an action is finally a tuple of nine features.

– Transitions. Transitions are deterministic. A transition τ evolves the cur-
rent sets of rules and programs by applying the operators selected (together
with the rule) and the combiners.

– Rewards. The optimality criteria seen above is used to feed the rewards. In
particular, we use the result returned by equation (1) as reward.

At each point in time, the reinforcement learning policy π can be in one of the
states st ∈ S and may select an action at = π(st) ∈ A to execute. Executing
such action at in st will change the state into st+1 = τ(st, at), and the policy
receives a reward wt = ω(st, at). The policy does not know the effects of the
actions, i.e. τ and ω are not known by the policy and need to be learned. This
is the typical formulation of reinforcement learning [13] but using features to
represent the states and the actions. With all these elements, the aim of our
decision process is to find a policy π : S → A that maximises:

V π(st) =

∞∑
i=0

γiwt+i (3)

for all st, where γ ∈ [0, 1] is the discount parameter which determines the impor-
tance of the future rewards (γ = 0 only considers current rewards, while γ = 1
strives for a high long-term reward).

4.2 Modelling the state-value function: using a regression model

In our setting, for the RL module, we use a hybrid between model-free value-
function methods (which update a state-value matrix) and model-based methods
(which learn models for τ and ω) [13]. In particular, our approach uses the state-
value function (Q(s, a), which returns quality (q) values, q ∈ R, as in Q-learning
[15]) generalising it with a regression model. A model M : S ×A → R calculates
the optimality or q value for each state and action and tries to generalise Q. By
using at = arg maxa∈A {M(st, ai)} we get the best action for state st.

In order to train the model we use a ‘matrix’ Q (which is actually a table),
whose rows are in S×A×R where S is a tuple of state features, A is the tuple of
rule features and operator, and R is a real value for q. Table 1 shows an example
of Q. Abusing notation, to work with Q as a function (like the original Q-matrix
in many RL methods), we will denote by Q[s, a] the value of q in the row of Q
for that state s and action a. Each row in Q records the state and action for
each time step in the system. So, Q grows in terms of the number of rows.

A supervised model M (using q as the output) is retrained periodically from
table Q (gErl uses linear regression by default). Once the system has started, at
each step, Q is updated using the following formula, as in Q-learning:



state (s) action (a)
q

φ1 φ2 φ3 o ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

1.223 1.473 6.431 2 17 3 0 4 1 2 0 0 0.78
1.301 1.511 6.253 2 16 3 1 3 2 1 0 0 0.65

. . .

Table 1: Example of a Q matrix (represented as a table).

Q[st, at]← α

[
wt+1 + γmax

at+1

M(st+1, at+1)

]
+ (1− α)Q[st, at] (4)

where the maximum future value is obtained by the model instead of a Q-matrix.
The previous formula has two parameters: the discount parameter γ ∈ [0, 1],
and the learning rate α (α ∈ [0, 1]), which determines to what extent the newly
acquired information will override the old information (α = 0 makes the agent
not to propagate anything, while α = 1 makes the agent consider only the most
recent information). By default, α = 0.5 and γ = 0.5.

5 Reusing past policies

In this section, we describe how to reuse and apply policies.The abstract rep-
resentation of states and rules in actions (the φ and ϕ features) facilitates the
transfer of learning information between related but also different tasks (rules
and actions may be completely different but their features can still be similar).

As we have seen in Section 2, in other TL methods the knowledge is trans-
ferred in several ways (via modifying the learning algorithm, biasing the initial
action-value function, etc.) and, if the source and target task are very different,
a mapping between actions and/or states is needed. Instead of that, in gErl the
reuse of previous acquired knowledge is done in a totally transparent way.

The main reason why we can use the past policies (the learned “matrix” Q)
in order to accelerate the learning of different new tasks is due to the abstract
representation of states and actions which allows the system does not start from
the scratch and reuse the optimal information, namely, actions successfully ap-
plied from certain states (from the previous task) when it reaches a similar (with
similar features) new state. Due this abstract representation of states and ac-
tions, how different are the source and target task does not matter, so the reuse
of knowledge in gErl as a transfer learning approach would overlap with any
of the TL families showed in Section 2 and goes beyond, allowing to deal with
totally different tasks.

The scope of this knowledge transfer as a model transferring is summarised
as follows: when gErl reaches the solution of a given problem (or it executes a
maximum number of steps), Qsource and the model Msource can be viewed as
knowledge acquired that can be transferred to the new situation. Concretely,
when gErl learns the new task, Qsource is used to train a new model which is
used from the beginning (Mtarget) and it is updated with the new information
acquired in each time step of the system (in order to retrain the model Mtarget).
Figure 2 briefly shows the process.

6 Empirical study

In this section, we describe an experiment which illustrates the policy reuse
strategy used in gErl.



!"#$%!&!"'(')*#+%&!"'(

',-,.&/!0 "1,234&/"0

563781. -63781.9&:63781.

56,.;92 -6,.;9&&:6,.;9<

=63781.

=6,.;

=',-,.&/!0 "1,234&/"0

56,.;92 -6,.;9&:6,.;9< =6,.;

=
6,.;&>
6,.;&?

@@@

6,.;&4

A
A

B8.C2376&

(43DE.FG.

H.D&

(43DE.FG.

I3F.E&I,-8G.,

I3F.E&I63781.

!8-24

6,.;&>
6,.;&?

@@@

6,.;&4

J63781.K69-L J,-8G.,K69-L

Fig. 2: The knowledge transfer process in the gErl system.

We use list processing problems as a structured prediction [3] domain where
not only the input is structured but also the output. For the first part of our
study we have selected five different problems that use the Latin alphabet Σ =
{a, b, . . . , z} as a finite set of symbols and perform the following transformations:

1. d→ c: replaces “d” with “c”. Instances would look like this:
trans([t, r, a, d, e])→ [t, r, a, c, e]

2. e → ing: replaces “e” with “ing” located at the last position of a list.
Instances would look like this: trans([t, r, a, d, e])→ [t, r, a, d, i, n, g]

3. d→ pez: replaces “d” with “pez” located at any position of a list. Instances
would look like this: trans([t, r, a, d, e])→ [t, r, a, p, e, z, e]

4. Prefixover: adds the prefix “over”. Instances would look like this:
trans([t, r, a, d, e])→ [o, v, e, r, t, r, a, d, e]

5. Suffixmark: adds the suffix “mark”. Instances would look like this:
trans([t, r, a, d, e])→ [t, r, a, d, e,m, a, r, k]

According to the data structure, we need a way to navigate the structure and
apply local or global changes. In order to do this we need to define appropriate
operators. The first operator, oneSust, is a two-step mechanism that takes the
input and output lists in order to go through them comparing the lists until
it finds any difference. As a result, it returns the input rule where its rhs has
been substituted by a high-order function map (which applies a parametrised
function to the whole list). The definition of this operator is written in Erlang,
but it can be informally defined using an example: oneSust(trans([a, b, c])→ [d, b, c]) ⇒
trans([a, b, c])→ map(a→ d, [a, b, c]).

The second operator, nSust, which fits with the second and the third prob-
lem, also is a two-step mechanism similar to the previous one, but, instead of
returning only one rule with a simple substitution, it returns as many rules as
possible “complex” changes can be done from the difference between the input
and output lists. This operator can be informally defined using an example:

nSust(trans([a, b, c])→ [a, d, e, c])⇒ { trans([a, b, c])→ map(b→ de, [a, b, c])
trans([a, b, c])→ map(b→ dec, [a, b, c])

.

The third and fourth operators, addPrefix and addSuffix, just check whether
the input list is a suffix or prefix, respectively, of the output list and take the dif-
ference. If so, it is returned the input rule where the rhs has been substituted by
the concatenation of the difference and the input list (prefix) or by the concate-
nation of the input list and the difference. For instance: addPrefix(trans([a, b, c])→



[z, a, b, c]) ⇒ trans([a, b, c]) → [z] + +[a, b, c]), addSuffix(trans([a, b, c]) → [a, b, c, z]) ⇒
trans([a, b, c])→ [a, b, c] + +[z]).

Finally, we need a way of generalising the rules. That is performed by the
fifth and the sixth operators, genLHS and genRHS, which generalise the input
and output strings, respectively: genLHS(trans(X) → Y ) ⇒ trans(VS) → Y and
genRHS(trans(X)→ Y ) ⇒ trans(X)→ VS where VS is a string variable.

With these six operators gErl is able to solve any of the previous problems
simply applying a sequence of the correct operators for each problem. For in-
stance, given the instance trans([a, b, c])→ [a, d, c] , we have the sequence of operator
applications:

genPat(trans([a, b, c])→ [a, d, c]) ⇒ trans([a, b, c])→ map(b→ d, [a, b, c])
genLHS(trans([a, b, c])→ map(b→ d, [a, b, c])) ⇒ trans(VS)→ map(b→ d, [a, b, c])

genRHS(trans(VS)→ map(b→ b, [a, b, c])) ⇒ trans(VS)→ map(b→ d, VS)

where the latter rule trans(VS)→ map(t→ u, VS) is the solution.
Since we want to analyse the ability of the system to improve the learning

process when reusing past policies, we will solve each of the previous problems
and we will reuse the policy (each model) obtained on a previous problem to
solve the rest of the problems (including itself). We will also add a few number
of non-relevant operators to increase the difficulty to solve each problem. The
set of operators O used has ten operators. To make the experiments independent
of the operator index, we will set up 5 random orders for them. Each problem
has 20 positive instances e+ and no negative ones. From each problem we will
extract 5 random samples of ten positive instances in order to learn a policy
from them with each of the five order of operators (5 problems × 5 samples ×
5 operator orders =125 different experiments).

First, we show the results without the use of previous policies. The mean
number of steps needed to solve each problem is shown in Table 2. Next, we
see the results with policy reuse in Table 3, showing the aggregated means (in
number of steps) of each sample and operator order.

To analyse whether the differences are significant (between the results that
do not reuse and those that do), we used the Wilcoxon signed-ranks test with a
confidence level of α = 0.05 and N = 25 (5 samples × 5 operators orders). The
results which significantly improve the performance obtained without using pre-
vious policies are shown in bold. Interestingly, the results obtained reusing works
for most combinations (in those combinations where the difference is not signif-
icant, it is still better in magnitude), including those cases where the problems
have nothing to do and do not reuse any operator, suggests that the abstract
description of states and rules is beneficial even when the problems are not re-
lated and gives support to the idea of a general system that can perform better
as it sees more and more problems, one of the reasons why the reinforcement
model and the abstract representations were conceived in gErl.

7 Conclusions and future work

One of the problems of reusing knowledge from previous learning problems to
new ones is the representation and abstraction of this knowledge. In this paper we
have investigated how policy reuse can be useful even in cases where the problems
have no operators in common, simply because some abstract characteristics of
two learning problems are similar at a more general level. In order to make more
conclusive claims, more experiments should be done on other domains.



l→ c e→ ing d→ pez Prefixover Suffixmark

Steps 108.68 76.76 74.24 61.28 62.28
Table 2: Results not reusing previous policies.

Problem
PCY from l→ c e→ ing d→ pez Prefixover Suffixmark

l→ c 65.68 58 70, 64 48.84 49.12
e→ ing 66.48 50.04 56.4 45.2 45.36
d→ pez 56.36 49.6 57.32 52.24 45.84

Prefixover 58.8 48.96 60.6 43.8 46.88
Suffixmark 102, 72 64.4 67.32 56.16 57.48
Average 70.01 54.2 62.46 49.25 48.94

Table 3: Results reusing policies

There are many other things to explore in the context of gErl. We would like
to include features for the operators as well. In more general terms, we think
that a way (or measure) of similarity between problems would help us to better
understand when the system is able to detect these similarities, from the point
of view of better assessing the achievements of the system. Finally, while we
have focussed on the system gErl, we think that many of the ideas in this paper
could also be applied to other kinds of systems, most especially learning classifier
systems, reinforcement learning and other evolutionary techniques.

References

1. gErl system. http://goo.gl/XlTmN, 2012.
2. T. Dietterich. Hierarchical Reinforcement Learning with the MAXQ value function

decomposition. J. Artif. Int. Res., 13(1):227–303, 2000.
3. T. Dietterich, P. Domingos, L. Getoor, S. Muggleton, and P. Tadepalli. Structured

Machine Learning: the next ten years. Machine Learning, 73:3–23, 2008.
4. K Driessens. Relational Reinforcement Learning. Phd Thesis. Department of Com-

puter Science, K.U.Leuven, Leuven, Belgium, 2004.
5. F. Fernandez and M. Veloso. Probabilistic policy reuse in a Reinforcement Learning

agent. In AAMAS 06, pages 720–727. ACM Press, 2006.
6. J. Holland and Booker. What is a learning classifier system? In Learning Classifier

Systems, volume 1813 of LNCS, pages 3–32. 2000.
7. J.Carroll. Fixed vs Dynamic Sub-transfer in Reinforcement Learning. In

ICMLA’02. CSREA Press, 2002.
8. Y. Liu and P. Stone. Value-function-based transfer for reinforcement learning using

structure mapping. AAAI, pages 415–20, July 2006.
9. N. Mehta. Transfer in variable-reward hierarchical reinforcement learning. In In

Proc. of the Inductive Transfer workshop at NIPS, 2005.
10. T. J. Perkins and D. Precup. Using options for knowledge transfer in Reinforcement

Learning TITLE2:. Technical report, Amherst, MA, USA, 1999.
11. B. Price and C. Boutilier. Accelerating Reinforcement Learning through implicit

imitation. Journal of Artificial Intelligence Research, 19:2003, 2003.
12. R. Sutton. Between MDPs and semi-MDPs: A framework for temporal abstraction

in Reinforcement Learning. Artificial Intelligence, 112:181–211, 1999.
13. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.
14. M. Taylor and P. Stone. Transfer learning for Reinforcement Learning domains: A

survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009.
15. C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.


