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Abstract: This paper presents a theoretical and general 
differentiation among descriptional induction, explanatory 
induction and abduction.  Descriptional induction is 
based on the idea of compression (justified by mean- or 
cross-validation). Explanatory induction is characterised 
by a 'balanced' compression (exception-free validation). 
Finally, abduction is the more elusive notion, where the 
validation comes from a background theory. Since this 
background theory can also be used in both kinds of in-
duction, we must distinguish between an auxiliary use 
and a necessary or ‘consilient’ use of the background 
knowledge. 
We introduce many new concepts and formalisations for 
this goal, mainly the idea of ‘intrinsic exception or anom-
aly’, consilience and an operative measure of reinforce-
ment for logic programs. Finally, the difference between 
induction and abduction is seen in the context of growth 
of knowledge and theory revision. 
Keywords: Abduction, Induction, Explanation, Compres-
sion, Reinforcement, Kolmogorov Complexity, Intensional 
Complexity, Consilient / Coherent Theories, Philosophy of 
Science, ALP, ILP, EBL. 

1 Introduction 

Abduction (Sherlock Holmes’ intelligence [Josephson & Jo-

sephson 1994]) is a kind of hypothetical inference introduced 

by Sanders Peirce (1839-1914) because, in his opinion, neither 

deduction nor induction, alone or combined, could unveil the 

internal structure of meaning [Yu 1994]. 
Although we will get back on the problem of meaning in 

the last section, nowadays, abduction is usually considered as a 

special kind of induction or, at most, both are seen as different 

kinds of hypothetical inferences, as [Michalski 1987] points 

out: “inductive inference was defined as a process of generat-

ing descriptions that imply original facts in the context of 

background knowledge. Such a general definition includes 

inductive generalisation and abduction as special cases”. 

More concretely, it is usually accepted that abduction is a 

mechanism for completing knowledge about a certain individ-

ual (generally inventing a fact to fit with a theory that is given), 

thus explaining why the given observations were not predicted 

by the initial knowledge. On the contrary, induction tries to 

extend knowledge (or to make a new theory) for predicting 

future observations. 

In our view, the difference may be more of nature than of 

purpose: induction works without constraint (although an aux-

iliary background theory can be used) whereas abduction tries 

to find a hypothesis that is ‘compliant’ with some higher law 

that constrains how hypotheses can be. In this way, abduction 

may be seen as induction in a fixed context, closer to Peirce’s 

original postulate [Flach 1996]: 

The surprising fact, C, is observed; 

But if A were true, C would be a matter of course. 

Hence, there is reason to suspect that A is true. 

This “matter of course” is usually represented as a background 

theory or common-sense theory T (known as paradigm in phi-

losophy of science or a constraint bias in inductive learning). 

Accordingly, abduction can be represented as usually: 

A ∪ T = C 

but with the additional condition that A cannot be an anomaly 

in the context of T and it cannot be an invention either (a fan-

tastic but possible assumption). Since many A's could be found, 

some selection criteria must be chosen in order to find the most 

appropriate one. Two criteria are generally used: simplicity and 

consilience. Simplicity means that a very large assumption 

does not seem a good explanation. On the other hand, consil-

ience means that A and C have to be consilient with T (or in 

misspelled words, T and C must be ‘consiliated’ by A), for 

turning the anomaly into a matter of course. 

Still, there is another kind of induction that is known as 

“explanatory induction”. Moreover, abduction often has been 

characterised as the inference to the best explanation [Harman 

1965], where an explanation distinguishes from an enumerative 

induction [Ernis 1968] using some coherence criteria (or met-

rics [Ng & Mooney 1990]). Given an observation, in the ab-

sence of noise, an explanation must give the causes for the 

whole observation. For instance, if we have seen smoke and 

fire co-occurring 999 times over 1000 times, we can describe 

this observation as “P(smoke-fire) = 0.999” and we have a 

reliable prediction. However, no explanation is given, mainly 

because there is not any underlying mechanism justifying the 

co-occurrence nor the anomaly. 

It is clear that an explanation must have some degree of 

plausibility to avoid fantastic hypotheses, but in many applica-

tions, like scientific discovery or abduction, we must regard an 

explanation as an investment, even a “risky bet” that could be 

soon falsified. This is merely Popper's criterion of falsifiability. 

He argued [Popper 1962] that one does not always want the 

most likely explanation, because it is also the less informative. 

This dilemma between informative and probable hypothe-

ses pervades most of discussion about the nature of abduction, 

too. The usual equation P(h) = 2-I(h), being P the probability of 

h and I(h) the information of h makes the idea of information 

rather counterintuitive, because any redundancy (even useful) 

makes a theory less probable. This paper shows that it is possi-

ble to look for a good compromise between information and 

probability of an explanation. 

Finally, there is another trait of abduction related with cau-

sation. Different frameworks for formalising causation soon 

appeared with the early expert diagnosis systems, exemplified 

by causal networks, especially Peng and Reggia's causal ab-

ductive network [Peng & Reggia 1987], along with other prob-

abilistic or possibilistic frameworks like Pearl's Causal Theo-

ries, using a Bayesian belief network [Pearl 1988], [Pearl 

1993]. In this context, an explanation consisting of an only 

cause for all the data is frequently preferable over separate 

causes for co-occurring phenomena, following Reichenbach’s 

principle of common cause [Reichenbach 1956]. We will in-

troduce different variants of the notion of consilience to show 

how and when this common cause may be ficticious. 



The paper is organised as follows. Section 2 presents inten-

sional complexity and explanatory complexity, two informa-

tion-theoretic concepts derived from Kolmogorov Complexity, 

which avoid 'intrinsic anomalies' in the hypotheses. These will 

be used in section 3 to characterise descriptive induction and 

explanatory induction as compression and ‘comprehension’, 

seen the latter in terms of explanatory complexity.  

Sections 4 translates these ideas to logical theories and 

compares them with other criteria in explanatory induction. 

Section 5 addresses abduction, comparing consilience with 

simplicity and generality. Once established what abduction is, 

section 6 introduces the necessity of weights, costs or prob-

abilities to select from all the possible abductions. Section 7 

integrates induction and abduction in the context of growth of 

knowledge and theory revision under the notion of reinforce-

ment. Section 8 relates abduction with meaning and intelli-

gence. Section 9 closes the paper discussing the results and the 

open questions. 

2 Intensional Complexity 

We have mentioned that the purpose of an explanation is to 

turn anomalies into “matter of course”. So we need first to 

discern what an anomaly (or exception) is. There is only a the-

ory where we can characterise objectively and generically what 

an anomaly is: algorithmic complexity.  

Algorithmic Complexity, Descriptional Complexity or, 

commonly, Kolmogorov Complexity are different names for a 

simple concept. The algorithmic complexity of a string x for a 

given machine φ is defined as the length in bits of the shortest 

program p in φ  which outputs x. By the Church-Turing thesis, 

a Turing machine can emulate any computable function. This, 

this length depends only on the string x to be described and not 

on the descriptional machine φ, up to a constant denoted by 

O(1). If an arbitrary Turing machine or other computable 

mechanism is fixed, algorithmic complexity is simply denoted 

by C(x). In the following, px denotes any program for x. If we 

use an arbitrary prefix-free Turing machine, Kolmogorov 

Complexity is denoted by K(x) and it has some additional in-

teresting properties. See [Li & Vitányi 1997] for accurate and 

detailed definitions. 

In [Hernández-Orallo & García-Varea 1998] the formal no-

tion of the “exception degree” of a description has been for-

malised for any descriptional mechanism, but, at the same time, 

it has been shown that, in general, it is only possible if space 

considerations are taken into account. In addition, it has been 

shown that it is only effective if time is considered. 

Informally, “an exception is something we can take apart 

from a description so leaving it much simpler with respect to 

the magnitude of the length of the elements removed” 

[Hernández-Orallo & Minaya-Collado 1998]. More concretely, 

a description is exception-free if it does not exist a subdescrip-

tion that produces almost all the data, i.e., there is not a reduc-

tion in the description that could be greater that the corre-

sponding reduction in the described data. 

The description px for the data x is c-exception-free (de-

noted ∆c(px) = 0) iff there does not exist a subprogram py of px 

such that K(px) − K(py) ≥ [K(x) − K(y)] / c. Note that in the case 

it exists, px − py is the exception. The parameter c can be tuned 

depending on the deductive framework and the approximation 

for computing K, usually computing the length instead. In the 

following, c is assumed to be 1. 

Obviously, a formalisation of subprogram is necessary in 

the deductive framework which would be chosen. As we will 

see, in the case of logical theories, this question is trivial but, in 

other cases, it can be very arduous.  

EXAMPLE 2.1: 

Consider the facts F = { f1, f2, …, f10 } and a theory Ta = 

{ t1, t2 } that covers these facts in the following way: t1 

covers f1 to f9 and, separately, t2 covers f10. Since t1 and t2 

are separable, we can check the condition simply as K(t1) 

≥ K(f10). If it is the case, we say that f10 is an exception 

wrt. to Ta. In contrast, we may find a theory Tb = {t1, t2, 

t3) longer than Ta that covers the facts in the following 

way t1 covers f1 to f4, t2 covers f5, f6, f7 and t3 covers f8, f9, 

f10.  It is said that this theory is ‘balanced’ if K(t1) ≈ K(t2) 

≈ K(t3). Finally, we can consider another theory Tc = { t1 

} longer than Tb which is not only balanced, but t1 cannot 

be split up to cover separately subsets of F. That is to 

say, Tc consiliates F. 

Later we will give formal characterisations of a consilient logic 

program and exception-free logic program. For the moment, 

we can give a general measure of the quality of descriptions, 

avoiding extensional parts, forcing all the theory to describe the 

data in an intensional way: 

DEFINITION  2.1 

The Intensional Complexity of a string x on a bias β, de-

noted Eβ(x), is defined as follows: 

 Eβ(x) = min { lβ(px) : ∆(px)= 0} 

i.e., the shortest program for x without intrinsic excep-

tions. lβ(px) denotes the length of px in β. 

There can be short intensional descriptions whose computa-

tional cost would be so high that they are of little use as theo-

ries. In addition, definition 2.1 turns out to be non-computable 

(like K(x)). In [Hernández-Orallo & Minaya-Collado 1998] is 

introduced an explanatory variant of intensional complexity 

which is defined in the following way: 

DEFINITION  2.2 

The Explanatory Complexity of a string x on a bias β, 

denoted Etβ(x), is defined as follows: 

 Etβ(x) = min { LT β(p) : ∆(p) = 0} 

LTβ (p) is chosen lβ(p) + log cost β(p) —the same weighing as 

Levin's Kt— because it provides a good compromise between 

space and computational time [Levin 1973], but another pa-

rameterised relation could be tuned. 

There are good reasons to choose a time-weighted defini-

tion of the best explanation. The intuitive view of explanation 

entails that the hypothesis can be explained to others. At the 

moment a system has to tell or communicate the explanation to 

other system (or internally work with it), there are two impor-

tant topics: the space of the discourse and the time the system 

will need to relate it. Moreover, people and Science expect that 

nature has underlying mechanisms that emerge ‘quickly’ in our 

observations, simply because nature is not a reliable computer 

for executing long programs. 

3 Descriptive vs. Explanatory Induction 

The principle of simplicity, represented by Occam’s razor, 

selects the shortest hypothesis as the most plausible one. This 

principle was rejected by Karl Popper because, in his opinion 

(and at that moment) there was no objective criterion for sim-

plicity. However, Kolmogorov complexity K(x) is an objective 

criterion for simplicity. This is precisely what R.J.Solomonoff 

proposed as a ‘perfect’ theory of induction [Li & Vitányi 

1997]. Algorithmic Complexity inspired J. Rissanen in 1978 to 

use it as a general modelling method, giving the popular MDL 

principle [Rissanen 1978], recently revised as a one-part code 

[Rissanen 1996] instead of two-part codes. 

It is remarkable (and often forgotten) than Kolmogorov 

Complexity just gives consistency to this theory of induction, 



but Occam's razor is assumed3 but not proven. Nonetheless, 

some justifications have been given in the context of physics, 

reliability and entropy, but, in our opinion, it is the notion of 

reinforcement (or cross validation) which justifies the MDL 

principle more naturally. In general, it seems that the higher the 

mean compression ratio the higher the mean reinforcement 

ratio. 

The problem of the MDL principle for explanation is that 

for the sake of maximum mean compression, some part of the 

hypothesis can be not compressed at all, resulting in a very 

compressed part plus some additional extensional cases. This 

extensional part is not validated, makin the whole theory weak.  

Summing up, the MDL principle says that, in absence of 

any other knowledge about the hypotheses distribution, we 

should select the prior P(h) = 2-K(h). For explanatory induction 

we propose to use P(h) = 2-Et(h) instead. This principle is known 

as the shortest explanatory description (SED). In this way, we 

give priority to the avoidance of extensionality over simplicity. 

There are other approaches to finding intensional theories. 

Wexler claimed that the subset principle was an intensional 

principle [Wexler 1992], for the case of positive data only. The 

subset principle (also known as Least General Generalisation 

(lgg) by Plotkin [Plotkin 1970]) means that if two theories 

explain some positive data, we should select the more specific 

one, because it is the more informative (and the more falsifi-

able). The problem of the subset principle is that it must be 

combined with some simplicity criterion, because, if not, the 

more specific hypothesis is the data themselves, which is com-

pletely extensional. 

4 Exception-Free Logic Programs 

The preceding definitions and ideas are general enough to be 

adapted to any inductive framework, in order to distinguish 

between descriptive induction and explanatory induction. Nev-

ertheless, this generality renders difficult the comparison with 

other works and it cannot be made operative easily. Particu-

larly, we will adapt the previous notions to first order logic, 

providing a means to identify explanatory hypothesis in Induc-

tive Logic Programming (ILP) [Muggleton 1991]. Further-

more, this concretion for logic theories will make possible to 

address the problem of understanding what exactly abduction 

is, which has been more generally studied in a logical frame-

work. 

Although the notion of subprogram is easy, we will try to 

refine the notion of partition before. 

DEFINITION 4.1 

Consider a program P as a set of Horn clauses with its 

minimal Herbrand model M
+

(P) equal to the set of 

ground literals Li such that P = Li. 

P is n-separable in the partition of different programs Π = 

{ P1, P2, ... , Pn } iff 

 M
+

(P) = ∪i=1..n M
+

(Pi) and 

∀i=1..n  (M
+

(Pi) ≠ ∅) 

DEFINITION 4.2 

P is non-subset n-separable in the partition Π = { P1, P2, 

... , Pn } iff it is n-separable into Π and  

∀i, j=1..n (Pi ⊆ Pj implies i = j). 
                                                           
3  Furthermore, in the case the universal distribution 2−K(x) is assumed, 

giving a priori predilection of short programs, the a posteriori optimal-
ity of the MDL principle is proven, supposing the randomness of the 

hypothesis to the data [Vitányi & Li 1997]. But precisely in explana-

tory prediction, if the hypothesis is random to the data, it cannot be the 
cause! 

The existence of a non-subset 2-separation can be regarded as a 

condition to avoid exceptions. However, this exception-free 

condition would be so strict that it would ban any modularity in 

the program. 

DEFINITION 4.3 

P is disjoint n-separable in the partition Π = { P1, P2, ... , 

Pn } iff it is n-separable into Π and  

∀i, j=1..n (Pi ∩ Pj = ∅) 

DEFINITION 4.4 

P is non-subset model n-separable in the partition Π = { 

P1, P2, ... , Pn } iff it is n-separable into Π and  

∀i, j=1..n (M
+

(Pi) ⊆ M
+

(Pj) implies i = j). 
DEFINITION 4.5 

P is disjoint model n-separable in the partition Π = { P1, 

P2, ... , Pn } iff it is n-separable into Π and  

∀i, j=1..n (M
+

(Pi) ∩ M
+

(Pj) = ∅) 

To show they differ, we give some examples: 

EXAMPLE 4.1 

Given the following program P1= { p(a). q(X) :- r(X). 

r(a). } it is separable for all  the definitions we have 

given in the partition  Π = {{p(a)} , {q(X) :- r(X). 

r(a)}}.  

The program P2= { q(X) :- r(X). r(a). } is not separable 

for any of the definitions we have given.  

The program P3= { q(X) :- r(X). p(X) :- r(X). r(a). } is 

non-subset (model) separable into Π = {{ q(X) :- r(X). 

r(a)}, {p(X) :- r(X). r(a). }} but it is not disjoint (model) 

separable. 

The program P4= { q(a). p(X) :- q(X). p(a) } is 

non-subset (model) and disjoint separable into Π = {{ 

q(a). p(X) :- q(X). }, {p(a)}} but it is not disjoint model 

separable. 

The program P5= { s(X):- p(X), q(b). p(X) :- q(X). 

t(X):-p(X),q(a) } is non-subset (model) and disjoint 

separable model into Π = {{ s(X) :- p(X), q(b). p(X) :- 

q(X) }, { p(X) :- q(X), t(X) :- p(X), q(a) } but it is not 

disjoint separable. 

Moreover, it is trivial to show the following theorems: 

THEOREM 4.1 

If a program P is disjoint separable then it is non-subset 

separable. 

THEOREM 4.2 

If a program P is disjoint model separable then it is 

non-subset  model separable. 

At this point, different notions of exception can be given by 

using definitions 4.1 (single partition), 4.2 (non-subset parti-

tion), 4.3 (disjoint partition), 4.4 (non-subset model partition), 

4.5 (disjoint model partition) that we dub modes.  

We translate the informal definition we have given: “an 

exception is something we can take apart from a program so 

leaving the program much simpler with respect to the magni-

tude of the length of the elements removed” to Horn logic pro-

grams. 

DEFINITION 4.6 

A program P has e = card(M
+

(PE)) c-exceptions, denoted 

∆c(P) = e, generated from PE, iff there is a partition P = { 

PR, PE } such that:  

l(P) − l(PR) ≥ [l(M
+

(P)) − l(M
+

(PR)) ] / c 

Definition 4.6 means that what is reduced in the length (l) of 

the program is greater than what is reduced in the conse-

quences, but it would be slightly different depending on which 

of definitions 4.1-4.5 is used. 



The greatest value of c that still makes a program excep-

tion-free (i.e., ∆c(P) = 0) is known as its consilience level. On 

the other hand, when not indicated it is assumed to be 1, and 

we say that a program is exception-free. Finally, there are 

many ways to estimate the length of logic programs l(P), but, 

customarily, a syntactical measure is used. 

Let us illustrate the difference between explanatory induc-

tion and descriptional induction in an example: 

EXAMPLE 4.2   

Given the facts F = { even(0). even(s(s(0)). 

even(s(s(s(s(0)))), ¬even(s(0)) } the following programs 

can be induced: 

P1 = { even(0). even(s(s(X)) }, which is the shortest one 

but it is separable in all cases and even(0) is an exception. 

P2 = { even(0). even(s(s(X)) :- even(X) }, which is not 

separable in any case and logically it has not any excep-

tions.  

P'1 = { even(0) :- fant. even(s(s(X)) :- fant. fant. }, which 

is non-subset (model) separable, but it is not disjoint 

(model) separable and it has exceptions for the two first 

modes.  

The last program from example 4.2 shows that a ‘fantastic’ 

concept can make a program non-separable for some modes, 

hiding exceptions. It is easy to prove that any separable pro-

gram in the disjoint modes can be extended to a non-separable 

program using a fantastic concept. We say that the concept is 

not fantastic (it is really consilient) when it must reduce the 

size of the consiliated part. This implies that it is impossible to 

make every program exception-free, i.e., intensional. 

Although the non-subset mode alone is too strict and the 

disjoint mode easy to cheat, the non-subset mode combined 

with the value of c=1 for exceptions are appropriate to distin-

guish a consilient program for most applications. Indeed, dif-

ferent modes and values for c can be combined for various 

degrees of desired explanatory induction. 

The main problem of the definition of exception-free is that 

it must be computed w.r.t. to the given data (facts), because all 

the possible consequences can be infinite. In the next section, 

we will use these definitions to address the problem of abduc-

tion. 

It is outside of this paper to take into account the presence 

of noise, but a degree or ratio of exceptions could be fitted to 

the expected ratio ε making ∆c(p) = ε. 

In conclusion, Whewell [Whewell 1847] coined the term 

consilience to comprise the relevant basics in scientific theo-

ries: prediction, explanation and unification of fields. In this 

sense, the previous notions around the idea of inten-

sional/explanatory complexity present a formal view of Tha-

gard’s notion of “explanatory coherence” [Thagard 1978]. In 

his view, a hypothesis exhibits explanatory coherence with 

another if it is explained by the other, explains the other, is 

used with the other in explaining other propositions, or if both 

participate in analogous explanations4. 

5 Consilience and Abduction 

Abduction in Logic Programming sometimes has been identi-

fied with different approaches of non-monotonic reasoning, 

where new hypothetical facts (assumptions) are introduced in 

the way that the ‘anomalies’ and ‘novelties’ are explained as 

consequences of the revised or extended model of the program. 

The purest approach in this line is known as ALP (Abductive 

Logic Programming) [Kakas et al. 1993]. 

                                                           
4 It is important to note that this notion differs with Thagard’s current 

works on coherence (see [Thagard 1998]), seen just as constraint satis-
faction or maximization. 

When abduction is seen in a qualitative manner (without 

costs, weights or probabilities), different selection criteria are 

advocated, depending on the dilemma between informative 

explanation and probable explanation. 

One criterion, which is generally accepted, is subset mini-

mality [Konolige 1991], [Bylander et al. 1991], [Poole 1985]: 

given two explanations E1 and E2  which explain the same 

fact, where E1 ⊂ E2, we should select the shortest one. 

Things do not stand so clear in the case of specificity vs. 

generality. The Most Specific Abduction [Stickel 1990] is the 

interpretation into abduction of Popper's criterion of falsifiabil-

ity. It has been used particularly well in diagnostic tasks, be-

cause it restricts the possible worlds (we look for an informa-

tive reason for the failure). Probability is not so crucial here 

because it can be checked revising the piece that is supposedly 

malfunctioning. 

Stickel also presents the contrary one, the least specific 

abduction, useful in natural language interpretation. Stickel 

argues that many times the interpretation of an observation is 

just the observation itself, without any further intention.  

Very related with the previous one, the Least Presumptive 

Explanation [Poole 1989] selects the hypothesis that makes less 

assumptions, and since it leaves more worlds open, 

model-theoretically, it is the most likely explanation. If not 

restricted, the least presumptive explanation coincides with the 

least specific abduction, completely extensional. 

In other cases, the least presumptive explanation is esti-

mated by the length or number of assumptions instead of the 

model simplicity [Ng & Mooney 1990]. In this case, we have 

the MDL principle applied to the abducibles (or possible hy-

potheses). Let us study the use of the MDL principle to the 

abducibles and to the whole model. 

Given a theory T and a fact C, if we are looking for an A 

such that it explains C under T, i.e. A ∪ T = C, in many cases, 

the abducible A which minimises K(A ∪ T ∪ C) or K(A) is just 

A=C, which is extremely probable but explains nothing. 

In response of this, we formulate the central argument for 

our position: consilience is more important than whole simplic-

ity for abduction. 

Formally,  the optimal A is the one that minimises Et(A ∪ 

T ∪ C), i.e., the shortest hypothesis without exceptions. For 

those cases where the theory has intrinsic exceptions previ-

ously, we will select PR of definition 4.6 as T. 

Consider simply the following example: 

EXAMPLE 5.1 

Given the program T = { p. lawn-wet :- rain. lawn-wet 

:-sprinkler-on } and the observation C = { lawn-wet } we 

have that A1=  C , A2 = { rain }, A3 = { sprinkler-on }  

are the shortest ones. But A 1 is an exception because l(A1 

∪ T) − l(T) = l(A1) ≥ l(M
+

(T) + C)) − l(M
+

(T)) = l(C). 

Contrarily, for A2 (and A3) we have l(A2 ∪ T) − l(T) = 

l(A2) < l(M
+

(T) + C + A2) − l(M
+

(T)) = l(C + A2). 

Even more, for an A4 like { lawn-net :- p } we have that  

l(A4) ≥ l(M
+

(T) + C)) − l(M
+

(T)) = l(C), so it is not a 

valid explanation. 

It is frequently assumed in the abduction literature (see e.g. 

[Aliseda 1996]) that the additional condition A ≠ C for expla-

nation, i.e., the anomaly must not imply the observation alone, 

is sufficient to characterise abduction. Example A4 shows that 

this idea has important flaws: A1 is discarded as a valid abduc-

tion, but A4 is not. The usual solution to this problem is to 

characterise abduction in a modal way or to restrict syntacti-

cally the abducibles to facts only. 

These all definitions, conveniently adapted, would allow a 

different way for integration abduction and explanation in ILP 



(in a different manner from the so-dubbed AILP (Abductive 

Inductive Logic Programming) [Adé & Denecker 1994]). 

6 Quantitative Abduction 

In the preceding section we have dealt with a characterisation 

of abduction, but, among all possible assumptions, we must 

still select the ‘best one’ without falling into the most probable 

nor the most informative. 

The following example from [Poole 89] shows that we 

cannot do much about selection when two assumptions have 

isomorphic derivations. 

EXAMPLE 6.1 

T = { intd-in-hardware � intd-in-logic ∧ intd-in-CS. 

          intd-in-formal-AI � intd-in-logic ∧ intd-in-CS. 

          intd-in-logic � borrows-logic-books. 

          intd-in-CS � writes-computer-programs. } 

Given the observation C = { borrows-logic-books ∧ 

writes-computer-programs } we have the following hy-

potheses satisfying A ∪ T = C: 

A1= C is the least specific hypothesis but it is an excep-

tion. 

A2= { intd-in-logic ∧ intd-in-CS } is the least presump-

tive explanation, it is intensional but it is long5. 

A3= { intd-in-hardware } and A4= { intd-in-formal-AI } 

are intensional and short and both are the most specific. 

A5= { intd-in-hardware ∨ intd-in-formal-AI } is the most 

general but it is more presumptive than A2. Besides, it is 

intensional. 

In this example, our criterion would select either A3 or A4, but 

we have not any ground to select the most plausible one from 

them. 

Commonly, as [Leake 1995] remarks, the “best” explana-

tion is based on ‘probabilities’ or ‘costs’ of the assumptions. 

These costs can be assigned to a selected list of abducibles 

(what Stickel calls predicate specific abduction [Stickel 1990]), 

to the rules of the theory or to both. 

There are two main approaches, based on weights or prob-

abilities. The advantage of using weights is that there is more 

freedom of how to distribute these weights for both abducibles 

and theory. In addition, there are many different ways of how 

to operate with the weights (see e.g. Stickel’s chained specific 

abduction [Stickel 1990]). On the other hand, Poole’s approach 

based on probabilities [Poole 1989] must establish too many 

restrictions about independence of the abducibles to make con-

sistent the computation of probabilities. 

The problem of exactly establishing the abducibles and 

their costs as well as the theory results in an inversion of the 

problem of abduction into a non-monotonic deductive problem. 

In all these cases, the following questions arises: who 

chooses the assumptions? [Poole 1997], and who assigns the 

probabilities? 

To answer these questions, in our opinion, a coherent ac-

count for induction and abduction must be understood in the 

context of theory construction, growth and revision. 

                                                           
5 Anyhow, we can convert T into T’  

T’ = { interested-in-hardware � p. 

           interested-in-formal-AI � p. 

           p � interested-in-logic ∧ interested-in-CS. 

          interested-in-logic � borrows-logic-books. 

          interested-in-CS � writes-computer-programs. } 
and p would be selected along with A3 and A4. 

7 Knowledge Acquisition and Revision 

Abduction has been usually seen as belief revision [Boutilier & 

Becher 1995], usually combined with induction [Aliseda 

1996]. A theory T is constructed as the data suggest and, when 

new observations C are received, we can have three possible 

situations: 

• Prediction Hit. The observations are covered without 

more assumptions, i.e., T = C. The theory is reinforced. 

• Novelty [Aliseda 1996]. The observation is uncovered 

but consistent with the theory T , i.e., T ≠ C and T ∪ C 

≠ �. Here, the possible actions are: (1) T can be ex-

tended with a good explanation, (2) revised if a good ex-

planation cannot be found, (3) left it as an exception or 

(4) ignored. 

• Anomaly [Aliseda 1996]. The observation is inconsistent 

with the theory T, i.e., T ≠ C and T ∪ C = �. In this 

case, T can be revised if a good explanation cannot be 

found, left it as an exception or ignored. 

A non-explanatory approach to theory formation is Kuhn's 

theory of changing paradigms. According to the MDL princi-

ple, when too many exceptions to the paradigm are found, they 

are difficult to quote and the whole paradigm (or part of it) 

must be changed.  

In a different way, explanatory knowledge construction 

must minimise the exceptions, so the revisions are much more 

frequent. Even more, the goal is anticipating instead of pre-

serving the current knowledge, as many approaches to minimal 

revisions aim for  [Mooney 1997], supported by the obvious 

fact that a minimal revision is usually less costly than making 

the whole theory from scratch. 

Whatever the approach to knowledge construction (lazy or 

eager), the revision of knowledge must come from a loss of 

reinforcement (or apportionment of credit [Holland et al. 

1986]). We present a way to compute the reinforcement map 

for a given theory, depending on past observations. 

DEFINITION 7.1 

The pure reinforcement ρρ(r) of a rule r of a theory T 

wrt. to some given observation C = {c1, c2, …, cn} is 

computed as the number of proofs of ci where r is used. 

If there are more than one proof for a given ci, all of them 

are reckoned, but in the same proof, a rule is computed 

only once. 

DEFINITION 7.2 

The (normalised) reinforcement ρ(r) = 1 - 2-ρρ(r). 

These definitions show that, in general, the most reinforced 

theory is not the shortest one. In addition, redundancy does not 

imply a loss of reinforcement ratio. However, the measure of 

reinforcement of the theory would present the same problems 

of fantastic concepts we have been discussing in section 4. 

Fortunately, the solution comes from measuring the validation 

wrt. the data. 

DEFINITION 7.3 

The course χ(f) of a given fact f wrt. to a theory is com-

puted as the product of all the reinforcements ρ(r) of all 

the rules r used in the proof of f. If a rule is used more 

than once, it is computed once. If f has more than one 

proof, we select the greatest course. 

In this case, we can select the theory with the greatest mean of 

the courses of all the data presented so far. If we want a com-

pensated theory, we can use a geometric mean instead. If we do 

not want exceptions we can discard theories where a fact has a 

course value less than the mean divided by a constant. The 

following example shows the use of these new criteria for 

knowledge construction: 

EXAMPLE 7.1 



Suppose we have an incremental learning session as fol-

lows: 

♦ Given the following background theory B = { s(a,b), 

s(b,c), s(c,d) } we observe the evidence E = { e1
+: 

r(a,b,c), e2
+: r(b,c,d), e3

+: r(a,c,d), e1
−: ¬r(b,a,c), e2

−: 

¬r(c,a,c) } : 

The following programs could be induced, with their 

corresponding reinforcements and courses: 
P1 = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= 0.875 

P2 = {r(X,c,Z) : ρ = 0.75  

          r(a,Y,Z) : ρ = 0.75} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= 0.75 

P3 = {r(X,Y,Z) :- s(X,Y) : ρ = 0.75  

          r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= 0.875 

P4 = {r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.875 

          t(X,Y) :- s(X,Y) : ρ = 0.875 

     t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.5} 

 χ(e1
+)= χ(e2

+)= 0.7656, χ(e3
+)= 0.3828 

P5 = {r(X,Y,Z) :- t(X,Y) : ρ = 0.875  

          t(X,Y) :- s(X,Y) : ρ = 0.875 

     t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5} 

 χ(e1
+)= χ(e2

+)= 0.7656, χ(e3
+)= 0.3828 

At this moment, P1 and P3 are the best options by far. For 

the moment, P4 and P5 seem fantastic theories according 

to the evidence 

♦ e4
+

 = r(a,b,d) is observed. 
P1 does not cover e4

+ and it is patched to:  

P1a’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

            r(a,b,d) : ρ = 0.5} 

 χ(e1
+)= χ(e2

+)= χ(e3
+) = 0.875, χ(e4

+) = 0.5 

 Mean = 0.78, GeoMean = 0.76 

P1b’ = {r(X,Y,Z) :- s(Y,Z) : ρ = 0.875 

             r(X,Y,d) : ρ = 0.875 } 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= χ(e4

+) = 0.875   

P2’ is reinforced = {r(X,c,Z) : ρ = 0.75.  

            r(a,Y,Z) : ρ = 0.875} 

 χ(e1
+) = 0.875, χ(e2

+) = 0.75, χ(e3
+)= χ(e4

+) = 0.875   

P3’ is reinforced = {r(X,Y,Z) :- s(X,Y) : ρ = 0.875.  

             r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= χ(e4

+) = 0.875   

P4’ is reinforced. 

P4’ = { r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.9375 

           t(X,Y) :- s(X,Y) : ρ = 0.9375 

      t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.75} 

 χ(e1
+)= χ(e2

+)= 0.8789, χ(e3
+)= χ(e4

+) = 0.6592 

 Mean= 0.77, GeoMean = 0.76 

P5’ is slightly reinforced 

P5’ = { r(X,Y,Z) :- t(X,Y) : ρ = 0.9375.  

           t(X,Y) :- s(X,Y) : ρ = 0.875 

     t(X,Y) :- s(X,Z), t(Z,Y) : ρ =  0.5}  

At this moment, P1b’ and P3 are the best options. Now P4 

seems less fantastic. 

♦ We add e3
− = ¬r(a,d,d) 

P1a’ remains the same and P1b’ and P2a' are inconsistent. 

The following two theories could also be 'patches' for 

them: 
P2a’ = {r(X,c,Z) : ρ = 0.75.  

           r(X,b,Z) : ρ = 0.75} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= χ(e4

+) = 0.75 

P2b’ = {r(X,Y,Z) :- e(Y) : ρ = 0.9375.  

           e(b) : ρ = 0.75 

      e(c) : ρ = 0.75} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= χ(e4

+) = 0.7031 

P3' and P4' remain the same and P5' seem to be inconsis-

tent.  

♦We add e5
+ = r(a,d,e) 

P1a’, P2a’, P2b’ can only be patched with e5
+ as an exception and 

not abduction is possible. 

P3’ has abduction as a better option. 

P3’' = {s(d,e) : ρ = 0.5 

           r(X,Y,Z) :- s(X,Y) : ρ = 0.875  

      r(X,Y,Z) :- s(Y,Z) : ρ = 0.9375} 

 χ(e1
+)= χ(e2

+)= χ(e3
+)= 0.9375,  

 χ(e4
+) = 0.875, χ(e5

+) = 0.46875  

 Mean= 0.831, GeoMean = 0.805 
P4’ makes the same abduction 

P4’' = { s(d,e) : ρ = 0.5 

      r(X,Y,Z) :- t(X,Y), t(Y,Z) : ρ = 0.96875 

           t(X,Y) :- s(X,Y) : ρ = 0.96875 

      t(X,Y) :- s(X,Z), t(Z,Y) : ρ = 0.875} 

 χ(e1
+)= χ(e2

+)= 0.9385, χ(e3
+)= χ(e4

+) = 0.8212,

 χ(e5
+) = 0.4106 

 Mean= 0.786, GeoMean = 0.754 
The example illustrates the advantages of explanatory induc-

tion (the shortest theories are not the best ones in general6). 

More importantly, it also shows that as soon as a theory gains 

some solidity, abduction can be applied. 

The way reinforcements are reckoned makes that very 

complex programs are avoided, but redundancy is possible. In 

some way, computational complexity could also be restricted if 

a rule was computed more than once, when used more than 

once in a proof. 

Furthermore, there is not any risk of fantastic concepts. 

Formally, for any program P composed of rules ri of the form { 

h :- t1, t2, .. tn }, which covers m examples E = { e1, e2, ...  em } 

and their reinforcements ρi, a fantastic rule rf  can be added to 

the program and all the rules can be modified in the following 

way ri  = { h :- t1, t2, .. tn , rf}. The program seems consilient, 

but as the following theorem shows is not reinforced over the 

original one: 

THEOREM 7.1 

We cannot increase the course of any example by the use 

of fantastic concepts. 

PROOF 

Since the fantastic concept rf now appears in all the proofs 

of the m examples, the reinforcement of rf is exactly 1 − 2−n 

and the reinforcements of all the ri remain the same. Hence, 

the course of all the m examples is modified to χ’(ej) = 

χ(ej) · rf = χ(ej) − χ(ej) · 2
−n. From here, for all ej ∈ E, χ’(ej) 

never can be greater than χ(ej) .� 

8 Abduction and Meaning 

Briefly, meaning is definitely associated with intention, and the 

latter with an agent or source S which pursues a goal G with an 

action N. When one receives as perception some of the effects 

C of action N, one tries to discover the final cause G. This is 

also applicable to language and meaning. If the background 

theory T contains the description of the mentality of the source 

TS (its intentions) and the ‘usual’ actions and environment of S 

(its behaviour TSB), the discovering of the cause G can be 

translated into two chained abductions N ∪ TSB = C and then 

G ∪ TS = N. Hence, abduction should be considered as the 

main mechanism for hermeneutics. In general, and in natural 

language interpretation, the chain of cause-effects must be 

stopped at an informative (or interesting) point but still with 

some reliability. This differenct in interest makes that [Stickel 

1990] could consider the most specific and the least specific 

abductions for language interpretation. 

Finally, and more rhetorically, this ability to comprehend 

(or looking for explanations) has been recognised as funda-

mental for intelligence and it is usually exploited by psycho-

metrics when making IQ tests. There have been many propos-

                                                           
6 Although —in the limit [Gold 1967]— the MDL principle is an ex-
cellent principle for achieving reinforcement 



als for an inherent characterisation of meaning directly related 

with intelligence [Hofstadter 1979]: 

It would be nice if we could define intelligence in 

some other way than “that which gets the same 

meaning out of a sequence of symbols as we do”. [...] 

This in turn would support the idea of meaning being 
an inherent property. 

In [Hernandez-Orallo & Minaya-Collado 1998] a “C-test” was 

developed from k-comprehensible strings using explanatory 

complexity. The correlation of abduction problems with IQ 

tests was 0.68 and the correlation with explanatory prediction 

was 0.77, whereas the correlation with compression was much 

lower. This suggests (cautiously since one psychometric study 

is not representative) that the ability of discovering explana-

tions (either inductive or abductive) is at the core of the set of 

computational abilities that intelligence tests measure. 

9 Discussion and Future Work 

We have studied the nature of explanations under the view of 

intensional complexity, which is a formalisation of the idea of 

consilience or coherence of a theory, distinguishing three kinds 

of “non-deductive reasoning”: 

• Descriptional (or Enumerative [Ernis 1968]) Induction  

uses background knowledge as a help but it has no ex-

pectancy of the source to conciliate (and no restriction 

either), so a hypothesis is constructed as the data suggest, 

and in this case, the MDL principle can be used. 

• Explanatory Induction sometimes looks for more infor-

mative theories instead of the most probable, regarding 

the process as an investment, something that is also very 

common in the case of analogical reasoning. 

• Abduction can be defined as a biased explanatory induc-

tion, where the hypothesis (usually facts) must be a 

“matter of course” w.r.t. the background knowledge, 

which does not only ensure consistency but also consil-

ience. 

The distinction between the last two is subtle and sometimes 

only terminological. In fact, as long as our background theory 

grows and the language is more expressible7, the assumptions 

to abduce are so small wrt. to the paradigm T that not only facts 

but complete theories could be abduced as cases from T. In 

other words, what makes a difference (and in our opinion a 

continuous one) between abduction and induction is the im-

portance, solidity, constraint and size of the background theory 

T wrt. to the explanation A [Goebel 1997]. 

The most important critique to our approach is abduction in 

the presence of noise. We are working on induction under a 

known ratio of exceptions, intrinsically characterisable in the 

hypothesis using intensional complexity. In any case, for ex-

planation, it is difficult to accept a very short hypothesis (with 

some minor unexplained anomalies) if we are able to find a 

much more complicated exception-free explanation. Think for 

instance that the noise surrounding Newton's physics was used 

by Einstein to develop a new theory. 

Finally, Deduction must not be longer seen as a static 

process that does not bring any information and cannot be 

creative. Moreover, Induction and Abduction should not be 

seen as  inverse processes of Deduction, in terms of informa-

tion gain. Indeed, any computable induction and abduction 

must be done in a computer system, so it is deductive some-

                                                           
7 Think about higher-order logic, where a complete theory can be an 

abduction of another supertheory. Or even, complete theories can be 

deduced from 'megatheories', as it is usual in theoretical physics no-
wadays. 

how8. Further work must be done to reconcile deduction, in-

duction and abduction [Hernandez-Orallo 1998].  

Summing up, the distinction between abduction and (ex-

planatory) induction is more general than some syntactical, 

causal or modal approaches. We also think that the role of in-

duction and abduction in knowledge acquisition is portable 

even from expert systems and diagnostic systems to neural 

networks (training = induction, recognition = abduction). 

However, a logical framework seems an extremely adequate 

tool to advance and combine different areas and applications: 

ILP, ALP, EBL, Analogical Reasoning, Reinforcement Learn-

ing and some kinds of non-monotonic reasoning. Our current 

work deals with evaluating in practice our intensional princi-

ples in inductive systems [Hernandez-Orallo &  Rami-

rez-Quintana 1998]. 

As future work, we plan to relating reinforcement with ex-

planatory induction in a more formal way (a very interesting 

work which is connected with this goal is [Dieterich & Flann 

1997]. It would also be very attractive to include negative facts 

in the reinforcement measures and to study thoroughly the 

entanglements between the length of rules and reinforcements.  
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