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Introduction 
 
Semantically,g  iven an evidence C and a background 
theory T, non-deductive inference tries to obtain A 
from T and C. 
 

A ∪∪∪∪ T’  ==== C 

 
Different motivations: 
• Purpose: Descriptional / Predictive / Explanatory 

• Kind: Enumerative (laws) / Assumptive (facts) 

• Justification: Causal / Non-causal 

 

⇓ 
 

Different Paradigms: Enumerative Induction, 
Explanatory Induction, Best Explanation, 
Abduction… 
 

Is there an intrinsical differentiation 
of non-deductive inference mechanisms? 
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Intrinsical Criteria 
 
Syntactical (How is the hypothesis?) 
• Syntactic Complexity (MDL principle). 

 
Semantical (What does the hypothesis cover?): 
• ‘Informativeness’ (Popper) vs. Non-Presumptiveness. 

• Generality vs. Specificity. 

• Exact-Complete vs. Approximate-Partial. 

  
‘Behavioural’: (How does the hypothesis cover the evidence?) 
• Computational (time) Complexity. 

• ‘Consilience’ (Whewell 1847) — ‘Common Cause’ 
(Reichenbach 1956) — Coherence (Thagard 1978) 

  vs. Separate Covering. 

• Intensionality vs. Tolerance of Partial Extensionality. 



 4

Abduction 
The semantical schema is apparently the same: 
 
 

A ∪∪∪∪ T  ==== C 

 
Characterising restrictions (some of them incompatible): 
 

• A is usually a fact (easy for FOL but not in general). 

• C should be explained by A in the context of T. (A ≠ C). 

• A should be likely (the least presumptive, the shortest…). 

• A should be informative (A≠C, the most presumptive…). 

• A should not be an uncertain, non-monotonic or 
probabilistic deduction from T (non-nomological 
abduction). 

• A must be simple: wrt. inclusion (subset minimality) and 
syntactically (MDL). 

 
Abduction shares with Induction the most important 
dilemma between likely vs. informative hypotheses. 
 

• We want a hypothesis that should be informative but, at 
the same time, it should be a matter of course. 

 

What is a matter of course? 
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Matter of Course and Exceptions 
 

Intrinsical Exception: Something we can take apart 
 from a hypothesis so leaving it much simpler wrt. the 

magnitude of the evidence which would become uncovered. 
 

EXAMPLE: 
• Evidence C= { f1, f2, … f10 } 

• Hypotheses T = { t1, t2 }, T’ = {t’’} and T’’ = {t’1, t’2, t’3}  
   where T is shorter than T’ and shorter than T’’. 
 

T’ 

T’’ 
f3 

t ’’1 

t ’’2 

t ’’3 

t 

’

 

t1 

t2 

T 

Evidence 

f2 f1 f1 

f4 f5 f6 f7 

f8 f9 

f1

Evidence 

 
 
• Is f10 a matter of course wrt. T?    wrt. T’?     wrt. T’’?  

 

T’’ shows there are two different (but closely related) notions: 
• T’ and T’’’ are intensional. They have no exceptions. 

• T and T’’ are separable. They are not consilient. 
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Intensional Complexity 
∆(p)= e denotes the no. of exceptions e of a description p. 
 

DEFINITION  2.1. INTENSIONAL COMPLEXITY 
The Intensional Complexity (IC) of a string x on a bias β :  

 Eβ(x) = min { lβ(px) : ∆(px)= 0} 
 

px denotes any program for x in β and lβ(px) denotes the length of px in β. 
 

i.e. the shortest program for x without intrinsic exceptions. 

 
E(h) integrates avoidance of exceptions, consilience 
and syntactical simplicity because: 
• A formal definition of ∆(p) for any descriptional 

mechanism requires a general definition of subprogram. 
This must be necessary based on the idea of separation: 
“something is separable if the cost of describing the whole is 
similar to the cost of describing the parts” which is as well 
very related to the idea of exception. 

 

The prior P(h) = 2−E(h) could be seen as an adaptation 

for explanation of the MDL principle (P(h) = 2−K(h)). 
• Simplicity is important but secondary. 

• Nothing is noise or casual, all must be explained. All is 
intensional. All has a meaning, a cause… 
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Consilient Logic Theories 
Logic theories or programs composed of Horn rules. 
Minimal Herbrand model M+(P) defined as usual. 
 

DEFINITION 4.1. SEPARABLE PROGRAMS 
A program P is n-separable in the partition  

of different programs Π = { P1, P2, ... , Pn } iff 
 

 M+(P) = ∪i =1..n M+(Pi)   and 

∀i =1..n  M+(Pi) ≠ ∅ 
 

Additional restrictions (modes) of separation: 
I. non-empty: DEF 4.1 

II. non-subset: DEF 4.1 +∀i,j =1..n (Pi ⊆Pj ⇒ i=j). 

III. disjoint: DEF 4.1 + ∀i,j =1..n (Pi ∩ Pj = ∅). 

IV. non-subset model: DEF 4.1 +∀i,j =1..n (M
+
(Pi) ⊆ M

+
(Pj) ⇒ 

i=j). 

V. disjoint model: DEF 4.1 +∀i,j =1..n (M
+
(Pi) ∩ M

+
(Pj) = ∅). 

 
A theory is consilient iff it is not separable. 
• The modes give 5 characterisations of consilient theories. 
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Example 
 

EXAMPLE: 
• P1= { p(a). q(X) :- r(X). r(a). } is {i-v}separable into Π = 

{{p(a)} , {q(X) :- r(X). r(a)}}.  
  

• P2= { q(X) :- r(X). r(b). } is not {i-v}separable.  
  

• P3= { q(X) :- r(X). p(X) :- r(X). r(a). } is non-subset (model) 

separable into Π = {{ q(X) :- r(X). r(a)}, {p(X) :- r(X). r(a). }} 
but it is not disjoint (model) separable. 

  

• P4= { q(a). p(X) :- q(X). p(a) } is non-subset (model) and 

disjoint separable into Π = {{ q(a). p(X) :- q(X). }, {p(a)}} 
but it is not disjoint model separable. 

  

• P5= { s(X):- p(X), q(b). p(X) :- q(X). t(X):-p(X),q(a) } 
is non-subset (model) and disjoint separable model into 

Π = {{ s(X) :- p(X), q(b). p(X) :- q(X) }, { p(X) :- q(X), t(X) :- 
p(X), q(a) } but it is not disjoint separable. 

  

 
Problems of non-modularity (I, II, IV): 
 
Problems of fantastic consilient concepts (III, V): 
    P1 can be consiliated by a fantastic concept f 
into P’1= { p(a) :- f. q(X) :- r(X), f. r(a), f. f. } for iii-iv.  
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Exception-Free Logic Theories 
 

DEFINITION 4.6. EXCEPTIONS IN A LOGIC PROGRAM 
A program P has e = card(M+(PE)) c-exceptions 

generated from PE, denoted ∆c(P, PE) = e,  
iff there is a partition P = { PR, PE } such that:  

 

l(P) − l(PR) ≥ (1 / c) · [l(M+(P)) − l(M+(PR))] 
 

where l denotes any syntactical measure of length. 
 

If PE is not specified, ∆c(P) = max { e | ∆c(P, PE) = e } 
 

Fixing l and an exception-degree c (usually c = 1), 

a theory P is said to be exception-free iff ∆c(P) = 0 
 
Pragmatics: 
• The modes give 5 characterisations of intensional 

(exception-free) theories. 

• Mode ii and c=1 allow modular programs and avoid 
fantastic concepts. 

• For instance, P = { p(X). q(X) } for evidence { p(a), p(b), 
p(e), q(a), q(d), q(e), q(f) } is separable but it has no 
exceptions. 
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Exceptions and Abduction 
 
 

A ∪∪∪∪ T  ==== C 
 

A must be a matter of course. It cannot be an exception 

wrt. to T. ⇒ Apply DEF. 4.6 and choose PR = T. 

 
EXAMPLE: 

Program T = { p. 
                          lawn-wet :- rain. 
                          lawn-wet :- sprinkler-on. } 

Observation C = { lawn-wet }, 
and the following short explanations: 
A1=  C, A2 = {rain}, A3 = {sprinkler-on}, A4 = {lawn-net :- 
p} 

 
• A1 is an exception because l(A1 ∪ T) − l(T) = l(A1) ≥ 

l(M+(T) + C)) − l(M+(T)) = l(C). 

• A2 (and A3) are not because we have l(A2 ∪ T) − l(T) = 

l(A2) < l(M+(T) + C + A2) − l(M+(T)) = l(C + A2). 

• A4 is also an exception because l(A4) ≥ l(M+ (T) + C)) − 
l(M+(T)) = l(C), so it is not a valid explanation. 
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Incremental Setting 
 

Knowledge Acquisition and Revision 
 

A theory T is constructed as the data suggest. 
 

Each time a new observation C is perceived, there are 
three possible situations: 
 

 

• Prediction Hit. The observations are covered without 

more assumptions, i.e., T = C. The theory is reinforced. 
  

• Novelty. The observation is uncovered but consistent 

with the theory T , i.e., T ≠ C and T ∪ C ≠ �. Here, the 
possible actions are: 

1. Extension: T can be extended with a good 
explanation, 

2. Revision: T can be modified if a coherent explanation 
cannot be found, 

3. Patch: left it as an intrinsical exception, or 
4. Rejection: ignored. 

  

• Anomaly. The observation is inconsistent with the theory 

T, i.e., T ≠ C and T ∪ C = �. In this case, we have three 
possibilities: revision, patch or rejection. 
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Reinforcement 
Further detail on the relation hypothesis �evidence: 
 

DEFINITION 7.1. PURE REINFORCEMENT 
The pure reinforcement ρρ(r) of a rule r from a theory T 

wrt. to some given observation C = { c1, c2, …, cn } is 
computed as the number of proofs of ci where r is used. 

 If there are more than one proof for a given ci, all of them 
are reckoned. In the same proof, a rule is computed once. 

 

DEFINITION 7.2. NORMALISED REINFORCEMENT 
ρ(r) = 1 − 2−ρρ(r). 

 

Properties: 
• The most reinforced theory is not the shortest one. 

• Redundancy does not imply a loss of reinforcement ratio. 

• Measure is wrt. the theory � fantastic concepts. 
 

DEFINITION 7.3. REINFORCEMENT WRT. THE DATA 
The course χ(f) of a given fact f wrt. to a theory is computed 

as the product of all the reinforcements ρ(r) of all the rules r 
used in the proof of f. If a rule is used more than once, it is 
computed once. If f has more than one proof, we select the 

greatest course. 
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Characteristics of Reinfocement  
 

• Redundancy is possible, although MDL usually ensures a 
good mean course ratio.  

• However, theorem 7.1 shows that the use of fantastic 
concepts cannot increase artificially the courses. 

 

�Advantages: 
• Reinforcement is easy to compute and allows a 

flexible evaluation of a theory and the data it covers. 

• It provides a measure of the predictive accuracy or 
assumption feasibility. 

• It works for evidences with noise. 

�Drawbacks: 
• Theories cannot be evaluated for infinite evidences. 

 

Selection Criteria: 

• The Most Reinforced One: The greatest mean (mχ)of the 

courses of all the data presented so far. 

• More Compensated: a geometric mean instead. 

• Intensional: all facts should have a course value greater 
than the mean divided by a constant (no exceptions). 

• Consilience can be better studied: a theory is 

well-separable if mχ is not decreased after separation. 
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Examples: 
 

1)  E = { p(a), p(b), p(e), q(a), q(d), q(e), q(f) } 

     P = { p(X) : ρ = 0.875 

              q(X) : ρ = 0.9375 } mχ(E,P) = 0.90625 

     P1 = { p(X) : ρ = 0.875 }     

     P2 = { q(X) : ρ = 0.9375 } mχ(E,P1 ⊕ P2) = 
0.90625 
 
2)  E = { q(a),p(a),¬r(a), q(b),p(b),r(b), q(c),¬p(c), ¬q(d),¬q(e) } 

     Pa = { p(a) : ρ = 0.75 

       r(b) : ρ = 0.875 

 q(X) :- p(X) : ρ = 0.75 

 p(X) :- r(X) : ρ = 0.875 

 q(c) : ρ = 0.5 } mχ(E,Pa) = 0.6393 (low) 

      PMDL = E+  mχ(E,PMDL) = 0.5 (very low) 
 

Abduction is possible with Pa: 
 Evidence: q(f) 
 Possible Assumptions: 

 q(f)?  mχ(E,Pa ∪ { q(f) } ) = 0.619 

  p(f)?  mχ(E,Pa ∪ { p(f) } ) = 0.627 
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  r(f)?  mχ(E,Pa ∪ { r(f) } ) = 0.657 
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Long Example (1 from 3) 
 

Incremental learning session: 
 
♦ Background theory 

B = { s(a,b), s(b,c), s(c,d) } 
 

we observe the evidence 
E = { e1+: r(a,b,c), 
         e2+: r(b,c,d), 
         e3+: r(a,c,d), 

         e1
−: ¬r(b,a,c), 

         e2
−: ¬r(c,a,c) }  

 
Hypotheses: 
 

P1={r(X,Y,Z) :- s(Y,Z) : ρ = 0.875} 

 χ(e1+)= χ(e2+)= χ(e3+)= 0.875 
 

P2={r(X,c,Z) : ρ = 0.75  

        r(a,Y,Z) : ρ = 0.75} 

 χ(e1+)= χ(e2+)= χ(e3+)= 0.75 
 

P3={r(X,Y,Z) :- s(X,Y) : ρ = 0.75  

        r(X,Y,Z) :- s(Y,Z) : ρ = 
0.875} 

 χ(e1+)= χ(e2+)= χ(e3+)= 0.875 
 
P4={r(X,Y,Z):-t(X,Y),t(Y,Z):  

ρ=0.875 

       t(X,Y):-s(X,Y): ρ = 0.875 

       t(X,Y):-s(X,Z),t(Z,Y): ρ = 0.5} 

  χ(e1+)= χ(e2+)= 0.7656,χ(e3+)= 
0.3828 
 

P5={r(X,Y,Z) :- t(X,Y) : ρ = 0.875  

       t(X,Y) :- s(X,Y) : ρ = 0.875 

       t(X,Y):-s(X,Z),t(Z,Y): ρ =  
0.5} 

χ(e1+)= χ(e2+)= 0.7656, χ(e3+)= 0.3828 
 
At this moment, P1 and P3 are the 
best options by far. 
P4 and P5 seem fantastic theories 
according to the evidence 
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Long Example (2 from 3) 
 

♦ e4+ = r(a,b,d) is observed. 
 
P1 does not cover e4+ and it is 
patched to:  

P1a’={r(X,Y,Z):-s(Y,Z) : ρ = 0.875 

          r(a,b,d) : ρ = 0.5} 

 χ(e1+)= χ(e2+)= χ(e3+) = 0.875, 

     χ(e4+) = 0.5 
Mean = 0.78, GeoMean = 0.76 

P1b’={r(X,Y,Z):-s(Y,Z) : ρ = 0.875 

          r(X,Y,d) : ρ = 0.875 } 

  χ(e1+)= χ(e2+)= χ(e3+)= χ(e4+) = 
0.875   
 
P2’ is reinforced 

 P2’={r(X,c,Z) : ρ = 0.75.  

         r(a,Y,Z) : ρ = 0.875} 

     χ(e1+) = 0.875, χ(e2+) = 0.75, 

     χ(e3+)= χ(e4+) = 0.875   
 
P3’ is reinforced 

  P3’={r(X,Y,Z): s(X,Y) : ρ = 0.875.  

       r(X,Y,Z):-s(Y,Z): ρ = 
0.875} 

   χ(e1+)= χ(e2+)= χ(e3+)= χ(e4+)= 
0.875   
 
P4’ is reinforced. 

P4’={r(X,Y,Z):-t(X,Y),t(Y,Z):ρ=0.937
5 

         t(X,Y) :- s(X,Y) : ρ = 0.9375 

         t(X,Y) :- s(X,Z), t(Z,Y):ρ = 
0.75} 

    χ(e1+)= χ(e2+)= 0.8789, 

     χ(e3+)= χ(e4+) = 0.6592 
Mean= 0.77, GeoMean = 0.76 
 
P5’ is slightly reinforced 

  P5’={r(X,Y,Z):-t(X,Y):ρ = 0.9375.  

           t(X,Y) :- s(X,Y) : ρ = 
0.875 

           t(X,Y):-s(X,Z),t(Z,Y): ρ= 
0.5}  
 
At this moment, P1b’ and P3 are the 
best options. Now P4 seems less 
fantastic. 
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Long Example (3 from 3) 
 

♦ We add e3
− = ¬r(a,d,d) 

 
P1a’ remains the same. 
 
P1b’ and P2a’ are inconsistent. The 
following two theories could also 
be 'patches' for them: 

P2a’ = {r(X,c,Z) : ρ = 0.75.  

           r(X,b,Z) : ρ = 0.75} 

    χ(e1+)= χ(e2+)= χ(e3+)= χ(e4+) = 
0.75 

P2b’={r(X,Y,Z) :- e(Y) : ρ = 0.9375.  

          e(b) : ρ = 0.75 

          e(c) : ρ = 0.75} 

 χ(e1+)= χ(e2+)= χ(e3+)= χ(e4+)= 
0.7031 
 
P3' and P4' remain the same and P5' 
seem to be inconsistent.  
 

♦We add e5+ = r(a,d,e) 
 
P1a’, P2a’, P2b’ can only be patched 
with e5+ as an exception and not 
abduction is possible. 

 
P3’ has abduction as a better option. 

P3’’={ s(d,e) : ρ = 0.5 

          r(X,Y,Z):-s(X,Y) : ρ = 
0.875  

          r(X,Y,Z):-s(Y,Z): ρ= 
0.9375} 

   χ(e1+)= χ(e2+)= χ(e3+)= 0.9375, 

 χ(e4+) = 0.875, χ(e5+) = 0.46875  
Mean= 0.831, GeoMean = 0.805 
 
P4’ makes the same abduction 

P4’’={ s(d,e) : ρ = 0.5 
          

r(X,Y,Z):-t(X,Y),t(Y,Z):ρ=0.969 

          t(X,Y):-s(X,Y) : ρ = 
0.96875 
          t(X,Y):-s(X,Z),t(Z,Y) 

:ρ=0.875} 

    χ(e1+)= χ(e2+)= 0.9385, 

χ(e3+)=χ(e4+)=0.8212,χ(e5+)=0.4106 
Mean= 0.786, GeoMean = 0.754 
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• The example illustrates that as soon as a theory gains 
some solidity, abduction can be applied. 
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Proposed Taxonomy 
 

• Descriptional (or Enumerative) Induction: uses background 
knowledge as a help but it has no expectancy of the 
source to conciliate (and no restriction either), so a 
hypothesis is constructed as the data suggest (according 
to a prior). There may be noise: exceptions are tolerated. 

  

• Explanatory Induction: looks for more informative theories 
instead of the most probable. Exceptions are not allowed, 
because the hypothesis must explain all the data. 

  

• Abduction: assumptions (hypothesis that are usually 
facts) should be a “matter of course” wrt. the background 
knowledge, i.e. not only consistency but also consilience 
is required. 

 

The difference between enumerative and 
explanatory induction is the intensionality of the 
hypothesis (avoidance of exceptions). 
 

The subtle distinction between Explanatory Induction 

and Abduction resides in that, for the latter, A ∪ T 
must be consilient, and it is only possible when T has 
more relative importance and validation wrt. to A.  
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Conclusions 
 

• Syntactic and Semantic considerations are not sufficient 
to distinguish between induction and abduction. 

  

• The relation between the hypothesis and the evidence 
(i.e. how the hypothesis covers the data) allow further insight 
in the evaluation and character of the hypotheses. 

  

⌦ Intensionality and Presence of Noise: there are acceptable 
explanations in the presence of noise. 

∗ We can use the intrinsic degree or percentage of exceptions 

∆c(p) / n being n the number of examples. If we know the 

noise ratio ε, the hypotheses should observe ∆c(h) / n = ε . 
 

Current and Future work 
 

• Evaluating in practice these intensional principles in 
inductive systems [Hernandez-Orallo &  Ramirez-Quintana 1998]. 

  

• Integrate reinforcement propagation for deductive 
inference and negative evidence. Relate with 
non-monotonic reasoning frameworks. 

  

• Extend the incremental knowledge construction setting 
to interactive frameworks (query learning or actions and 
reward) and the common view of reinforcement learning. 


