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ABSTRACT. The Minimum Description Length (MDL) principle is the modern
formalisation of Occam’s razor. It has been extensively and successfully used in
machine learning (ML), especially for noisy and long sources of data. However,
the MDL principle presents some paradoxes and inconveniences. After discussing
all these, we address two of the most relevant: lack of explanation and lack of
creativity. We present new alternatives to address these problems. The first one,
intensional complexity, avoids extensional parts in a description, so distributing
compression ratio in a more even way than the MDL principle. The second one,
information gain, forces that the hypothesis is informative (or computationally
hard to discover) wrt. the evidence, so giving a formal definition of what is to
discover.
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1. INTRODUCTION

The maxim “induction as compression” has become increasingly
popular in Predictive Modelling and Machine Learning since R.J.
Solomonoff recognised in 1964 that the unsupervised learning
of a grammar from raw data may be understood as information
compression.

Some other relevant landmarks in this trend have been the
Minimum Message Length (MML) principle (Wallace and Boulton
1968), the view of pattern recognition as data compression
(Watanabe, 1972), up to Rissanen’s milestone: the Minimum
Description Length (MDL) principle (Rissanen, 1978).

They all are “fresh interpretations” (Conklin and Witten, 1994)
under Algorithmic Information or Stochastic Complexity (Merhav
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and Feder, 1998) of a much older idea attributed to William of
Ockham 1290?–1349?:

Occam’s Razor Principle:
“If there are alternative explanations for a phenomenon, then,all other things
being equal, we should select the simplest one.”

The MDL principle represents a formal and sound incarnation of
Occam’s Razor. Since its appearance in 1978, the principle has been
extensively used in practice (see e.g. Quinlan and Rivest, 1989;
Cheeseman, 1990; Derthick, 1990; Muggleton et al., 1992; Zemel,
1993; Pfahringer, 1994; Conklin and Witten, 1994) and the ML liter-
ature is full of assertions like: the shorter the theory the better, the
more likely, the more plausible. . .

This has motivated such a popularity about the MDL principle
that there are radical claims like “all kinds of computing and formal
reasoning may usefully be understood as information compression
by pattern matching, unification and search” (Wolff, 1995).

Although we share the view that the MDL philosophy is positive,
we think that the MDL principle should only be used justifiably
in the prototypical case of large andnon-randomdata from noisy
sources. However, the MDL principle presents many problems for
creative (or informative) induction and for the inference to the
best explanation (loosely known as abduction), two cases of non-
deductive inference which are essential for scientific discovery and
everyday reasoning.

In this paper we highlight these and other problems of the
MDL principle and we present two alternatives ensuring that the
hypotheses are explanatory and creative.

2. FORMALISATION AND USAGE OF THE MDL PRINCIPLE

Occam’s razor has been frequently rejected because therewas no
objective criterion for simplicity, Popper being the major partisan
of this position. However, Stochastic Complexity and Kolmogorov
Complexity are well-established criteria of simplicity. Moreover,
Algorithmic ComplexityC(·) or Kolmogorov ComplexityK(·) (see
e.g. Li and Vitányi, 1997) is been gradually recognised as a key issue
in statistics, computer science, artificial intelligence, epistemology
and cognitive science.
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DEFINITION 2.1. KOLMOGOROV COMPLEXITY

The Kolmogorov Complexity(KC) of a string x given y on a descriptional
mechanism (or bias)β:

Kβ(x|y) = min{lβ(px(y))}
wherepx denotes any “prefix-free”β-program forx using inputy and lβ (px)
denotes the length ofpx in β.

The complexity of an objectx is denoted byKβ (x) = Kβ (x|∈)
where∈ denotes the empty string. It can be seen elsewhere (e.g.
Li and Vitányi, 1997) that Kolmogorov Complexity is an absolute
and objective criterion of simplicity, and it is independent (up to a
constant term) of the descriptional mechanismβ.

In absence of any other knowledge about the hypotheses distri-
bution, one choice is the prior distribution P(h) = 2−K(h). This is
precisely what R.J. Solomonoff proposed as a ‘perfect’ theory of
induction. This prior distribution was popularised by J. Rissanen in
1978 as a general modelling method, under the name of the popular
MDL principle:

Minimum Description Length Principle (Rissanen, 1978):
“The best model to explain a set of data is the one which minimises the sum of:
the length, in bits, of the description of the theory; and, the length, in bits, of data
when encoded with the help of the theory. Then, we enclose the exceptions, if any”.

This two-part code formulation (the hypothesis + the data encoded)
has recently been modified to a one-part code (Rissanen, 1996)
(Barron et al., 1998), which is almost exactly the same as theideal
MDL principle (Vitányi and Li, 1996), i.e., the best descriptiony for
some datax is the one such thatl(y) = K(x).

Since the principle is not computable in general, it is usually
approximated or used in restricted descriptive mechanisms, like
attribute languages. The main motivation of its success is that it
avoids overgeneralisation (overfitting) when the data is noisy or it
may contain errors.

In Vitányi and Li (1997) and Li and Vitányi (1997) it is shown
that in many cases Bayesian reasoning “is prone to overfitting”
while MDL is not. Referring to the “ideal MDL principle”, Vitányi
and Li discuss (Vitányi and Li, 1996) that “with a more complex
description of the hypothesis H, it may fit the data better and there-
fore decreases the misclassified data. If H describes all the data,
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then it does not allow for measuring errors. A simpler description of
H may be penalized by increasing the number of misclassified data.
If H is a trivial hypothesis that contains nothing, then all the data are
described literally and there is no generalization. The rationale of
the method is that a balance in between seems required [. . ..]”. This
is the reason why the MDL principle has become popular as a means
to avoid over-generalisation (underfitting) and under-generalisation
(overfitting).

Theoretically, the MDL principle is closely related to the
Minimum Message Length (MML) principle and Maximum Likeli-
hood Estimators (Case and Smith, 1983) . It has also been compared
with cross-validation (Kearns et al., 1999) and Bayesian Learning
(Gull, 1988).

Philosophically, the MDL principle matches with Kuhn’s notion
of “changing paradigms” (Kuhn, 1970):Exceptions are patched
until they are long enough to force the revision of the paradigm (or
model) of the theory.

3. SOME PROBLEMS OF THE MDL PRINCIPLE

Our discussion is motivated from the apparent contradiction
between the so-called “no-free-lunch” theorems about induction
(Wolpert, 1992; Schaffer, 1994) which state that one learner cannot
be better than another when performance is averaged uniformly over
all possible problems. These results only allow that a learner could
be better than another for a particular distribution of problems.

Vitányi and Li (Vitányi and Li, 1997) show that the MDL prin-
ciple is almost optimal for the universal distribution 2−K(x). Of
course, the universal distribution (i.e. Occam’s Razor formalised)
is just a choice when you have no information at all about the real
origin of the information.

This choice, although successful in many applications, presents
many theoretical and practical problems. Most problems have been
eclipsed because the MDL principle is a reasonable option for
almost every kind of learning paradigm. In the end, there is an
important methodological reason: if the model is not much predict-
able, at least it is short and manageable.
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1. The first problem is thatK(·) is not computable. At first sight, it
seems that the goal of MDL modelling is to obtain shorter and
shorter theories for a given datax, and it is not relevant to know
where is the limitK(x). However, the priorP(h) = 2−K(h) is
not computable, and the posterior probabilities must be approx-
imated. Even using a computable approximation, like Lenin’s
variantKt(·) or simply the length of the hypothesis, the prin-
ciple turns out to be ultimately relative, because the probability
of a hypothesis dynamically changes as the learner knows that
something can be further compressed.

2. Frequently unmanageable: For the sake of maximum compres-
sion, the theory can be computationally intractable. This
problem can be solved in a similar way as the previous problem,
by using the Levin’s variant which compensates length and
computational time.

3. Perfect data: the MDL under-fits perfect data: new examples
are quoted until their compression is worthy. In the words from
Vitányi and Li: “with some amount of overstatement one can
say that if one obtains perfect data for a true hypothesis, then
Ideal MDL interprets these data as data obtained from a simpler
hypothesis subject to measuring errors. Consequently, in this
case Ideal MDL is going to give you the false simple hypothesis
and not the complex true hypothesis.” (Vitányi and Li, 1996).

4. Short data: all the theoretical justifications of the MDL principle
and its relationship with other principles are asymptotic, i.e.
when the size of the data grows to infinity. This has been clearly
recognised by Grünwald (Grünwald, 1999), “(T)he MDL Model
Selection Criterion (. . .) will only work well if one really has a
lot of data, since the neglected constant can be very large.” It is
important to realise that, for short data, the MDL hypothesis is
usually the extensional data itself.

5. Discontinuous: The reliability of the theory is not always
increasing with the number of examples that have confirmed
the theory. E.g. the sequence (anbn)* is more compressible ifn
= 1010 than ifn = 78450607356.

6. Inconsistent with Deduction: the use of the MDL principle to
obtain a hypothesis is usually separated from any deductive
work with the hypothesis, because any deduction could increase
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the length of knowledge. For instance, givenTa andTb, intuition
(and logic) says thatT = Ta ∨ Tb should have more probability,
but the MDL principle assigns less probability toT because it
is larger. It is remarkable to see that ILP (Muggleton and De
Raedt, 1994) has successfully used variants of the MDL prin-
ciple because the representational language, Prolog, does not
allow disjunction in the head.

7. Frequently non-explanatory: Under the MDL principle
paradigm, for the sake of maximum mean compression, some
parts of the data are left as exceptions. Consequently, these have
no predictive character. Recently, the initial MDL principle
two-part code formulation has been corrected to a one-part
code (Rissanen, 1996). It has been argued that this correction
solves the problem of partially extensional descriptions, but this
is absolutely false. The same problem can appear intrinsically,
some part can be very compressed (the main rule) and other
parts are quoted as exceptions.

8. Frequently Non-Informative or Non-Creative: Popper advocated
for informative hypotheses, because they are more falsifiable.
Moreover, it is important to distinguish the hypothesis genera-
tion from their evaluation. An inductive algorithm or learner can
generate one or multiple hypotheses. Its performance should be
measured by the informativeness and creativity of the hypoth-
eses it generates. An algorithm that generates almost always
evident hypotheses from the data is not very useful for scientific
discovery and many other learning paradigms. The worst case
takes place when the datax is random, namely the extremely
frequent caseK(x) ≈ l(x), and the hypothesis is simply the data
extensionally quoted. Apart from the problems of explanation,
because the data itself does not explain anything, it provides null
information.

Most of these problems are produced because the MDL principle
is autistic: “the principle simply obtains the hypothesis which is
suggested by the data” (Vitanyi and Li, 1996). In other words, there
is no goal for explanation, no idea of surprise or interest in the result
of the learning algorithm. Are we always so autistic about the source
of the information that we pretend to discover? Is this the case
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in many applications of machine learning, scientific discovering or
even cognition?

In the following we will present two alternatives to the MDL
principle for explanation (7) and discovery (8). Aimlessly, problems
(1) to (4) are also solved by the first alternative and (6) is clarified by
the second. A completely different approach to solve these problems
(including problem 5) is presented in Hernandez-Orallo (1999a).

4. EXPLANATION AND INTENSIONALITY

In the previous section we have identified a major problem of the
MDL principle for explanation, some part of the data is left as
an extensional quotation. It is understood as noise, and this means
that it is not comprehended. This extensional part is not validated,
making the whole theory weak. An ontology is difficult to construct
from here if the exceptions are unrelated (not explained) with the
other facts.

Although intensionality (avoidance of extensionality) and expla-
nation are very close notions, there is an important difference
between them. An explanation must be manageable in order to
communicate it and convince oneself and others. We will first under-
take the notion of intensionality, extensively used in mathematics
and philosophy but never formalised, and then we will give an
explanatory adaptation of it.

4.1. Intensional Descriptions

The distinction between extensional and intensional description of a
set or a function is something that is learnt in elementary school. It is
soon realised that infinite sets can only be described by intensional
descriptions. Intensionality is also closely related to the classical
and fundamental philosophical problem of sense, reference and
meaning, but there has not been presented to date any definite
account or framework to distinguish intensional and extensional
definitions forfinitedata andgeneraldescription languages.

For instance, nowadays, there is no general and objective way to
answer to the question: what is the difference between the descrip-
tion “the numbers 2, 4, 8, 16, 32, 64” and the description “the powers
of 2 with less than 3 Digits”. One of the best ideas to approach this
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problem is to think that an intensional description is a ‘compressed’
description. This would recognise the MDL principle as the best
principle to obtain intensionality. The next example shows that this
is not the case for finite data:

EXAMPLE 4.1. Consider the following finite data: “1, 2, 3, 5, 7, 11, 13”. From the
infinite many possible descriptions we show some of them:
Extensional Description: D1 = “1,2,3,5,7,11,13”
Partially Intensional Descriptions:
D2a = “Odd numbers untiln = 13 with positive exception 2 and negative exception
9”.
D2b = “The 9–2 first odd numbers with positive exception 2 and negative excep-
tion 9”.
Intensional Descriptions:
D3 = “The valuese1 to e7 given by the following series:e−1 = 0, e0 = 0 ande1 =
e1−2 + ei−1 + 1 – {(i–1) div 2}”.
D4a = “Prime numbers untiln = 13”.
D4b = “The first 7 prime numbers”.
D4c = “Prime numbers untiln< 14”.
D5 = “The roots of the polynomialP” whereP is easily computed to satisfy that
P(x) = 0 iff x ∈ 1,2,3,5,7,11,13.
Intensional? Description:
D6 = “The roots of the polynomialP1 and the roots of the polynomialP2” where
P1 is easily computed to satisfy thatP1(x) = 0 iff x ∈ {1,2,3,5} andP2 is easily
computed to satisfy thatP2(x) = 0 iff x ∈ {7,11,13}.

The first description,D1, would probably be the shorter for most
of descriptional languages, because the other require a lot of auxil-
iary concepts, which make them larger. This illustrates that the MDL
principle is not useful for short data.D2a is a partially intensional
description because part of the data (2 of 7 examples) are given
extensionally, as exceptions. Finally,D3, D4c, andD5 are apparently
fully intensional descriptions.

The way to obtain fully intensional descriptions is to avoid exten-
sionalities, i.e., exceptions, as the following subsection formalises.

4.2. Formalising Intensionality

Example 4.1. shows that the idea of exception as “recognising some-
thing in the description exactly equal to the data” is easy to cheat.
Some part of the description can be entangled to make the compar-
ison difficult (see e.g.D2b). Conversely, some part of the description
may casually match with the data (see e.g.D4a andD4b). Moreover,



EXPLANATORY AND CREATIVE ALTERNATIVES TO THE MDL PRINCIPLE 193

descriptionsD3 and D5 show that an exception is something that
could be ‘disguised’ in many ways, even a systematic way (D5). In
any case, the only way to avoid these ‘disguises’ must be based on
the comparison of the mean compression ratio instead of a direct
comparison of the information.

Given a descriptional language or machineφ, we will denote with
φ(T) the extension (or output) of a theory or programT.

DEFINITION 4.1. COMPRESSIONRATIO

The Compression Ratio of a theoryT wrt. an evidenceE is defined as:

CRE(T ) = l(E ∩ φ(T ))/{l(T )+ l(φ(T )− E)}
If E is omitted thenCR(T ) = CRφ(T )(T ) = l(φ(T ))/ l(T ),

which is the usual formula of compression ratio.
From here, an exception could be approximated by any subtheory

or subprogramE of a theoryT such thatCR(E) < CR(T). However,
there are auxiliary parts which do not cover anythingaloneand, in
this way, almost any theory would have exceptions. Nonetheless,
this idea could be used conversely, by detecting ageneral rule G
which is more compressed than the whole theory.

DEFINITION 4.2. COMPENSATEDDESCRIPTION

A theory or descriptionT is non-compensated iff there does not exist a proper
subtheory or subprogramG of a theoryT such that:

Rφ(T )(G) ≥ CR(T )
This definition accounts for all the descriptions in example 4.1.
For instance, descriptionsD3 to D5 are compensated because there
is not a subprogram with more compression ratio. By the use of
the subscriptφ(T), the trick of selecting the subprogram “prime
numbers until 1000” ofD4a is not valid becausel(φ (G) – φ (T))
is great. In contrast,D2a and D2b, would not be compensated if
the definition of odd is short because the ratio of the subdescription
“odd numbers untiln = 13” will be high becausel(φ (G) – φ(T)) is
low (only there is a negative exception 9). On the other hand, if the
description of odd is long, then the description “positive exception
2” has better compression ratio thanD2a. The limit case is the fully
extensional descriptionD1, where any part can be chosen as a subde-
scription with the same compression ratio as the whole description.
Finally, D6 is not compensated.
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Definition 4.2 represents the idea of compensated compression.
The comparison≥ is used instead of> in order to make the defini-
tion more independent of the description mechanism (if, casually,
it turns to be thatCRφ(T )(G) = CR(T ), there are many other
languages where this equality would not hold).

In general, the idea of intensionality must also avoidextensional
exceptions, i.e., parts whose compression ratio would be less than
1. The formalisation of this is more difficult because there are many
ways to select a part that covers few evidence (or none). Maybe
the best idea would be to extend the notion of general rule into the
following one:

DEFINITION 4.3. PATCHED GENERAL RULE

A theory or subprogramG is apatched general ruleof a theoryT iff:

CRφ(T )(G) ≥ CR(T )andl(φ(T )− φ(G))/mfq · (l(T )− l(G))+ af{q} ≤ 1

whereafq and mfq are the additive and multiplicative factors of quoting. For
most representational languages ımfq = 1 andafq is very close to 0 and it can
be discarded (the length of introducing a code or instruction like “PRINT x”).

A refinement of definition 4.2 by using this extension is direct:

DEFINITION 4.4. INTENSIONAL DESCRIPTION

A descriptionT is intensional iff it has nopatched general rule.

The terml(φ (T) – φ (G)) / { l(T) - l(G)} represents the compres-
sion ratio of the rest (the exception). Obviously, any compensated
description is also intensional.

Under this definition 4.4,D6 is still not intensional. However if
we have the description “Repeata 10,000 times and then repeatb
30,000 times” to give the stringa10,000b30,000, it is not compensated
intensional but it is non-compensated intensional because both parts
have compression ratio much greater then 1.

Although definitions 4.2, 4.3 and 4.4 are easy to define for model-
based languages which are constructed of rules, like first-order
logic, equational languages, grammars. . ., the idea of subprogram
is not so straightforward in general. In Hernandez-Orallo (1999b),
a fundamental (but neglected) question of computer science is
addressed: “what is a subprogram?”. Without more discussion, we
just present here the definitions of part and subprogram.
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DEFINITION 4.5. SUBPART

The objecty is a subpart of an objectx in β, denoted byy⊆β x, iff:

Kβ(y|x) < logKβ(y)

It is interesting to compare the definition of subpart with the notion
of subset. For instance, it is easy to show that the empty string is
never a subpart of any non-empty string and that most objects (but
not all) are subparts of themselves. It is more intuitive to see the idea
of subpart as a cognitive notion, such a subpicture.

The idea of subprogram is derived from definition 4.5:
DEFINITION 4.6. Subprogram (or subtheory)
The objecty is a subprogram of an objectx in β iff

y ⊆β xandφ(y) ⊆β φ(x)
DEFINITION 4.7 PROPERSUBPART

The objecty is a proper subpart of an objectx in β, denoted byy⊂β x, iff y⊆β x
but x*β y.

DEFINITION 4.8 PROPERSUBPROGRAM(OR SUBTHEORY)
The objecty is a proper subprogram of an objectx in β iff

y ⊂β x andφ(y) ⊆β φ(x)

With these later concepts, definitions 4.2, 4.3 and 4.4 are now form-
ally settled for any descriptional mechanism or language. Finally,
we can define:

DEFINITION 4.9. GREATESTEXCEPTION

With 4 (T) = e we denote the length (in bits) of the greatest exception of a
descriptionT, computed ase= l(T) - l(G), whereG is the smallest patched general
rule ofT ande= 0 if T has not any patched general rule.

5. AN EXPLANATORY PRINCIPLE

The previous section has dealt with the distinction between inten-
sional descriptions from non-intensional ones. However, since there
are an infinite number of intensional descriptions (the same kind
of description can be codified in infinite many ways), it would
be useful to define selection criteria for intensional descriptions.
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In this section we present two principles or description preference
criteria which avoid the possible exceptions of the MDL principle:
intensional complexity and explanatory complexity.

5.1. Intensional complexity

Straight from definition 4.8, we can define intensional complexity
in the following way:

DEFINITION 5.1. INTENSIONAL COMPLEXITY

TheIntensional Complexity(IC) of a stringx on a biasβ:

Eeβ(x|y) = min{lβ(px(y)) : 4(px) ≤ e}
wherepx denotes anyβ-program forx using inputy andlβ (px) denotes the length
of px in β.

In the same way as for Kolmogorov Complexity, we denoteEeβ
(x) =Eeβ (x|ε). The termEβ (x) = E0

β (x) represents the length of the
shortest program for x without intrinsic exceptions.

The priorP(h) = 2−E(h) could be seen as an adaptation for expla-
nation of the Occam’s Razor principle (P(h) = 2−K(h)). Under this
prior, simplicity is important but secondary. Explanation is the first
issue to be ensured by a description: nothing can be noise, or casual;
everything is intensional, everything has a meaning, a cause. All the
data must be explained.

5.2. Explanatory complexity

However, Intensional Complexity is still not sufficient for an expla-
nation. Intuitively, something is an explanationonly if it can be
explained (and consequently related) to others.

Accordingly, there is a third factor to have in mind,time. There is
a very appropriate way to weight space and time of a program, the
formula LTβ (px) = l(px) + log2 Cost(px), introduced by Levin in
the seventies (see e.g. Levin, 1973). A variant ofK(·) can be easily
defined from it:

DEFINITION 5.2 LEVIN’ S LENGTH-TIME COMPLEXITY

TheLevin Complexityof a stringx on a biasβ:

Ktβ(x|y) = min{LTβ(px(y))}
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This is a very practical alternative of Kolmogorov Complexity,
because on behalf of avoiding intractable descriptions, it is comput-
able. In any way, the intuitive idea of simplicity is more encom-
passed by a reduction of both time and space, and Occam’s Razor
should be better formalised by 2−Kt(h).

Nonetheless, for our purpose of explanatory description, we
must not forget intensionality. The final combination of these
three factors: time, space and intensionality, gives the following
definition:

DEFINITION 5.3. EXPLANATORY COMPLEXITY

TheExplanatory Complexity(EC) of a stringx on a biasβ:

Eteβ(x|y) = min{LTβ(px(y)) : 4(px) ≤ e}

In the same way as Kevin Complexity,Et0 avoids intractable
descriptions and is computable.

5.3. The SED principle

In the same way as the MDL principle, we can define Shortest
Explanatory Description (SED) Principle as follow:

“The best model to explain a set of data is the one which minimises the sum
of: the length, in bits, of the description of the theory and the data jointly; and,
the logarithm of the computational cost of the description. Explicit or Intrinsic
Exceptions are not allowed”.

This changes the statement that “optimal compression (Minimum
Description Length (MDL)gives you the best hypothesis provided
the data are random with respect to the hypothesis, the data are not
completely perfect and the data grow to infinity)” (Vitányi and Li,
1997) into the following one “the SED principle gives you a more
robust hypothesis when the data are perfect”. Moreover, it does not
require that “the data grow to infinity”, so it can be used to undertake
finite real problems, where the auxiliary concepts would make it not
worthy to compress.

In the framework of incremental learning, the SED criterion
is less conservative than the MDL principle, and consequently it
usually minimises the number of whole ‘mind changes’ (although
these changes are usually more radical) when the data is perfect.
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Loosely, we should say that the MDL principle complies with
Kuhn’s philosophy of changing paradigms; when the number of
exceptions is too great, the paradigm must be changed. In contrast,
the SED usually anticipates this necessity since any exception forces
the revision of the model.

One main critique to our principle is that in real problems of
machine learning there is no perfect data. However, this is precisely
the most practical result ofexplanatory complexity. Given some data
x, if we have an expectancy of noise of about 3%, we must only
search for descriptions where4 (px) ≈ l(x) · 0.03. It is important to
realise that the MDL principle gives anuncontrollableandunpre-
dictableexception ratio, which only depends on the data and usually
will underfit (for explanation) or overfit. In this way, explanatory
complexity allow a less autistic evaluation of the hypotheses.

Explanatory complexity solves some of the problems (2, 3, 4,
7) highlighted in section 3. Other problems (1, 5, 8) are softened.
However, the last one can still be solved completely and it is the
most relevant one for scientific discovery and, as we will see, for a
complete re-understanding of what is to learn.

6. COMPUTATIONAL INFORMATION GAIN

In example 4.1, we can observe that then–1 order polynomial for
n points of data (descriptionD5), although intensional, has few
informative value. The question is to distinguish which descriptions
are really valuable or, in a relative way, which objects are valuable
wrt. other objects. This can be particularised for studying which
hypotheses are valuable wrt. the data.

DEFINITION 6.1 COMPUTATIONAL INFORMATION GAIN The Computational
Information Gainof an objectx wrt. an objecty:

G(x|y) = Kt(x|y)/Kt(x)

The rationale of the definition is to measure to what extent the
use ofy is useful for describingx.

THEOREM 6.2. Limits ofGβ (x | y)
For everyx andy, log l(x)/(l(x) + log l(x)) <+ G(x | y) ≤ 1.
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PROOF. The second inequalityG(x | y) ≤ 1 is obvious by choosingy = ε and the
definition ofKt(x) asKt(x | ε). The first inequality is justified by the fact that the
numerator

Kt(x|y) ≥ log l(x)(1)

becausex must be printed and this takes at leastl(x) units of time.
In fact this limit can be come close ifx = y because the program
“print y” has cost approximately 2-l(x) for reading and writingx.

The denominator must follow the relation

Kt(x) <+ l(x)+ logl(x)(2)

because in the worst case, whenx is random, we needl(x) + c bits
of information for the program “printx” and at leastl(x) units of
time to be printed. From (1) and (2) we have thatlogl(x)/(l(x) +
logl(x)) <+ G(x|y).

Before interpreting definition 6.1 in the following section, it is
interesting to study if this definition could be ‘cheated’ in some way.
For instance, if we have an efficient method to go fromy to x, then,
intuitively, it is not more valuable to havey than to havex, because
we can easily go fromy to x. The following theorem states that this
intuition is captured well by definition 6.1.

THEOREM 6.3. Robustness to polynomial learners
Consider alearning or discovereralgorithm A* in P (i.e. polynomial), namely
∃p ∈ N : O(np−1) ≤ O(A∗) ≤ O(np), being A* of constant size, i.e.,l(A∗)
= c, such that this algorithm deterministically transformsy into x, wherex is a
program fory, beingn = l(y).

If Kt(x) > k · p · logn, thenG(x|y) ≤ 1/k.

In other words, ifx is complex, but it can be easily obtained fromy,
thenG(x|y) is low.

PROOF. For every string of datay us constructx the following way:x = “apply
A∗ toy”. Since we can constructx from< A∗, y > in an easy wayp = “apply 1st
argument to 2nd argument”Kt(x| < A∗, y >) ≤ LT (p) = l(p)+log cost (p) ≤
c + log np). It is obvious thatKt(x|y) <+ Kt(x| < A∗, y >). So we have that
Kt(x|y) ≤ log np = p log n.
If, as supposed,Kt(x) > k · p · log n, then the quotientG(x|y) =
Kt(x|y)/Kt(x) ≤ 1/k.
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7. INFORMATIVENESS AND CREATIVITY

Most selection criteria (as the MDL or our SED principle) talk about
“the best model”. However, this is a fallacy, because if we remove all
the models which are long, intractable or non-explanatory there may
still be many good models for a given data. In this case, it is only
reasonable to talk about “the best model” if this model is signifi-
cantly better than the second best model. But after all, the second
best model is usually the first model with a slight modification. In
other words, there are no discontinuities in the goodness of models.
Thus, it would be more percipient to talk about an absolute goodness
of a model, how short it is, how intensional it is, how explanatory,
etc.

But it would be even more insightful to evaluate how much
valuable is to obtain a concrete description and whether it is
worthy to remember or forget it. This would be especially useful
if an inductive method can consider different hypotheses at a time,
because some surprising, strange, difficult to obtain, or curious
hypotheses which have not been refuted can be kept for future use.
On the other hand, obvious or easy hypotheses can be forgotten
because they would be easily generated again when needed.

In this way,G(x|y) provides a uniform measure of the relative
value of the hypothesis wrt. the data, the gain of the computational
effort which has been invested in the process from the data to the
hypothesis. More precisely, ifx is the theory andy is the data, the
two extreme cases are illustrative:

• Minimum: G(x|y) = logl(x)/(l(x) + log (l(x)) ≈ 0. The
theory is evident from the data. It is very easy to describe
the theory from the data. Some examples which can produce
this minimum are: the polynomial obtained using the data, a
description full of exceptions or full of great extensionalities
because they can be described easily from the data.

• Maximum:G(x|y) = 1. The theory issurprisingor creative
wrt. the data. The data is useless (in time-space terms) to
describe the theory(Kt (x|y) = Kt(x)). A great computa-
tional work on the data y is necessary to obtain the theory or
there is a need for external information. In other words, the
computational effort invested justifiesx to be retained.
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7.1. Informative Hypotheses

This engages with the classical dilemma between informative and
probable hypotheses. It is clear that an explanation must have some
degree of plausibility to avoid fantastic hypotheses, but in many
applications, like scientific discovery or abduction, we must regard
an explanation as an investment, even a “risky bet” that could
be soon falsified. This is merely Popper’s criterion of falsifiab-
ility (Popper, 1962): one does not always want the most likely
explanation, because sometimes it is the less informative too.

The issue is clear when the data are random (and this usually
happens with short data because it makes nu worthy any compres-
sion). The MDL principle just gives the data themselves, which does
not correspond to the idea of ‘model’. By forcing a gain near to 1,
different informative hypotheses can be induced. This gives clues
to the enigma of “hyper-learning” or “poverty of stimulus” in those
cases where the data suggests some obvious (but useless) hypothesis
instead of more creative ones.

Moreover, deduction can be informative, something that Hintikka
vigorously vindicated (Hintikka, 1970), which places deduction
and induction as either informative or non-informative processes
depending onG(x|y), y being the data andx being the inferenced
result (an inductive hypothesis or a deductive derivation). This is
contrary to the traditional idea of induction as an always information
increasing inference process and deduction as an always informa-
tion decreasing inference process (Bar-Hillel and Carnap, 1953) and
provides ways to solve problem 6 of section 3.

7.2. What is to Discover? What is to Learn?

A further insight in the learning of finite data indicates that if the
hypothesis is evident from the data, not much learning has taken
place. However, the most important learning paradigms are based
on the idea of identification: identification in the limit (Gold, 1967),
PAC model (Valiant, 1984), and Query-Learning (Angluin, 1988).
However, these paradigms are designed for infinite data, because a
learning algorithm that always gives a complete extensional (and not
valuable) description “printx” for any finite datax would formally
learn, something that is quite counterintuitive.
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We can say that a concept or theoryx is anauthentic learningor
discoveringwrt.x a contextβ iff Gβ(x|y) is close to 1 andGβ(y|x)
is close to 0, i.e,x is surprising fory andx is an efficient theory
for y. In a proper way, discovering should be accompanied by a
confirmation, whereas learning must not necessarily be confirmed,
becausex is valuableper se.

From here, and very far from the classical notion of ‘identifi-
cation’, we propose a different notion of learning (or discovering):
the more a system learns the more valuable the description is with
respect to the data.

8. RELATION BETWEEN EXPLANATION AND
INFORMATIVENESS

Computational Information Gain was motivated by the fact that
intensional does not mean creative or informative. The last descrip-
tions of example 4.1 are easy to obtain from the data, so they are
not much valuable. Moreover, the construction of then–1 order
polynomial forn points of data is a systematic method, so there is
always an ‘easy’ intensional description for any evidence. The major
coincidence between intensionality and a high value ofG(x|y) is
that extensional quoting are avoided, as the next theorem shows:

THEOREM 8.1
Given an efficient descriptionx for a long datay, such thatx contains a sequential
quotingQ of a random sequenceq fromy of reasonable size, namely,l(q) = e >
log2l(y), thenx is not intensional andG(x|y) < 1− e/l(x).

For instance, 1,000 bits of data with a description of lengh 200
bits that contains a sequential quoting of 120 bits is intensional and
G(x|y) < 0.4.

PROOF. SinceQ is a quoting like “Printyk, yk+1, . . . , yk+e−1” thenCR(Q) =
e/{mfq · e + afq} ≤1. The first assertion,x is not intensional, is obvious by
choosingG as the rest ofT removingQ.

Since n > 1, the compression of the whole theoryCR(T ) > 1, then
CRφ(T )(G) ≥ CR(T ) becauseCR(Q) ≤ 1, andl(φ(T )−φ(G))/{mfq · (l(T )−
l(G))+ afq} ≤ 1, because the first term is preciselyCR(Q).

The second assertion isGβ(x|y) = Kt(x|y)/Kt(x). Since there is a part of
x which is exactly iny, it can be recognised from the inputy only by selecting
the beginning of the sequence iny and the lengthe. Coding this information



EXPLANATORY AND CREATIVE ALTERNATIVES TO THE MDL PRINCIPLE 203

Kt(q|y), in any case, cannot be greater in length than log(l(y)) + cl , because
a position can be coded by a usual digital notation and it cannot be greater in
time thanl(y) + ct , to traverse the sequencey. Jointly, we have thatKt(q|y) ≤
log(l(y)) + cl + log(l(y) + ct ) = 2 · log(l(y)) + clt . Sincey is long,clt can be
ignored.

Sinceq is random,Kt(q) ≥ l(q) + log l(q) = e + log e ≥ e. The term
Kt(x) can be decomposed into the cost of describingq and the code of describing
the rest, sayg, namely,Kt(x) = Kt(g) + Kt(q). However,Kt(x|y) is exactly
Kt(g|y) + Kt(q|y). SinceKt(g|y) is always less or equal thanKt(g) and we
have stated thatKt(q|y) ≤ 2 · log(l(y)) thenKt(x|y) ≤ Kt(g) + 2 · log(l(y)).
From here,G(x|y) = Kt(x|y)/Kt(x) ≤ {Kt(g) + 2 · log(l(y))}/{Kt(g) +
Kt(q)} ≤ {Kt(g)+ 2 · log(l(y))}/{Kt(g)+ e} = {Kt(g)+ 2 · log(l(y))+ e −
e}/{Kt(g)+ e} = 1− {e− 2 · log(l(y))}/{Kt(g)+ e}. Sincee > log2(l(y)) and
l(y) is long we can ignore the term log(l(y)), givingG(x|y) ≤ 1+ e/{Kt(g)+ e}

SinceKt(g) + Kt(q) = Kt(x), by using again the value ofKt(q), then we
have thatKt(g) ≤ Kt(x)− e and we finally have thatG(x|y) ≤ 1− e/{Kt(x)−
e + e} = 1− e/Kt(x) and sincelogl(x) ≤ Kt(x) ≤ l(x)+ logl(x) ≈ l(x) then
G(x|y) ≤ 1− e/l(x).

Apart from these commonalties, they express quite different but
compatible notions which are worthy to combine. The idea is to
obtain explanatory descriptions and to preserve those which are
valuable in terms of computation gain. In other words, free compu-
tational resources (time and space) should be invested in informative
hypotheses.

9. CONCLUSIONS

In this paper we have critically discussed the maxim of “learning
as Compression”. In any case, the two major problems of MDL’s
‘autism’: explanation and informativeness make that the maxims
“explanation as compression” and “discovering as compression” are
not sustainable.

We have introduced two different solutions for both problems.
First, we have presented “Explanatory Complexity” to address the
problems of Kolmogorov Complexity for explanation. Secondly, we
have elaborated the idea of “Computational Information Gain” to
clarify what is an informative hypothesis and to give more light to
the blurry notions of surprise, discovering and creativity. In the end,
computation information gain can be used to give a more reliable
certification that real learning has taken place.
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As a result we are able to counter two assertions from the advoc-
ators of the MDL principle. Their first claim is: “a model that is
much too complex is worthless, while a model that is much too
simple can still be useful.” (Grünwald, 1999). Our response is that a
model that is evident or extensional is worthless, while a surprising
model or intensional can still be useful. In the same line, Grünwald
presents “another way of looking at Occam’s Razor” as: “If you
overfit, you think you know a lot but you do not. If you underfit,
you do not know much but you know that you do not know much.
In this sense, underfitting is relatively harmless while overfitting
is dangerous”. However, sincemost of data sequences are non-
compressible, the MDL principle gives no knowledge at all, in
general. Maybe not knowing, i.e., ignorance, is relative harmless,
but it is also useless.

In conclusion, the MDL principle works well in those environ-
ments where the bias does not allow extensional descriptions or
where the data are huge and from statistical or imperfect sources.
But, when faced with a concrete learning problem or in scientific
discovery, we have to tune length, computational time, intension-
ality and informativeness of descriptions according to the expecta-
tion we have about the source of knowledge. In our view, Occam’s
Razor should be understood in this non-autistic way.
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