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What is ‘Consilience’?

Term coined in 1847 by Whewell for the selection of
inductive theories:

‘Structural’ Criterion:
How does the hypothesis cover the evidence?

SO\

Separate Unification
Covering of Fields

Consilience: the evidence is ‘conciliated’ or uni-

fied by the theory.

Related concepts:

 Principle of ‘Common Cause’ (Reichenbach 1956).

» Explanatory Induction and Scientific Explanation
(Harman 1965, Hempel 1965, Ernis 1968).

e Coherence (Thagard 1978).

* Intensionality vs. Tolerance of Partial Extensionality.



Distinguishing Consilience

EXAMPLE:
* Evidence E={fi, f2, ... fi0}
* Hypotheses:
T={t,t2}, T’={t"}and T"’= {t’1,t’2,1’3}

Evidence
T

T’ shows two different (but closely related) notions:
e T° and T’ are intensional. They have no exceptions.
 Tand T’ are separable. They are not consilient.



Towards Computational Consilience

We denote M"(T) the model of a theory T.

DEFINITION 1. Separable Theories
A theory T is n-separable in the partition
of different theories M ={ T1, T2, ..., Tn } iff

M+(T) = |:|i=1..n M+(Ti)
and

Ui, M(T)20O

Additional restrictions (modes) of separation:

I. non-empty: DEF 1

I. non-subset: DEF 1 +0J;; , (P;UP; = i=j).

1L disjoint: DEF 1 + [;; .4 ,, (Pi n Pj=0).

IV.non-subset model: DEF 1 +0J; ., ,, (M (Pi) DM*(p]') = i=}).
V. disjoint model: DEF 1 +0;;_, , (M (Pi) n M (Pj) = D).

A theory is consilient iff it is not separable.
e The modes give 5 characterisations of consil-
ient theories.



Example

EXAMPLE (Using Horn Theories):

* Pi={p(a). q(X) :- r(X). r(a). } is {i-v}separable into 1 =
@)}, 1q(X) = r(X). r(@)}}-

e DPr={q(X) :-1(X). r(b). } is not {ii-v}separable.

e P3={q(X) :- 1(X). p(X) :- 1(X). r(a). } is non-subset
(model) separable into T = {{ q(X) :- 1(X). r(a)}, {p(X)
:- 1(X). r(a). }} but it is not disjoint (model) separable.

* Ps={q(a). p(X) - q(X). p(a) } is non-subset (model)
and disjoint separable into 1 = {{ q(a). p(X) :- q(X). },
{p(a).}} but it is not disjoint model separable.

But there is " = {{ q(a). } {p(X) :- q(X). p(a). }}

* P5=15(X):- p(X), q(b). p(X) :- q(X). t(X):-p(X),q(a) }

is non-subset (model) and disjoint separable model

into I = {{ s(X) :- p(X), q(b)- p(X) - q(X) }, { p(X) :-
q(X), t(X) :- p(X), q(a) } but it is not disjoint separable.

Problems of non-modularity (I, I1, IV):

Problems of fantastic consilient concepts (III, IV & V):
P; can be “conciliated” by a fantastic concept f

into P"1={ p(a) :- f. q(X) :- r(X), f. r(a), . f. } for iii-iv.



Exception-Free Theories

DEFINITION 2. Exceptions in a Theory

A theory T has e = card(M " (T%)) c-exceptions generated
from Tg, denoted Ac(T, Tg) = e, iff there is a partition T =
{ Tk, Tk } such that:

I(T) = K(Tr)2 (1/ ¢) - [(M(T)) = [(M (Ty))]
where | denotes any syntactical measure of length.
If Tk is not specified, Ac(T) = max { e | Ac(T, Tg)=e }
Fixing | and an exception-degree c (usually c = 1),
a theory T is said to be exception-free itf Ac(T) =0

Pragmatics:

* The modes give 5 characterisations of inten-
sional (exception-free) theories.

* Modeii and c=1 allow modular programs and
avoid fantastic concepts.

* For instance, T = { p(X). q(X) } for evidence

{p(a), p(b), p(e), q(a), q(d), q(e), q(f)} is separa-
ble but it has no exceptions.



Reinforcement (1 of 2)

Further detail on the relation hypothesis ¢ evidence:

Given a theory, a rule or component r; is neces-
sary for eiff T =e O T-{r) lZe

A theory T is reduced for e iff
T |=e O -DOr 0T such that it is not necessary
for e.

S1, S» are alternative models of T for e iff
S$0OT,S5 0T, S1# S,and S1, S» are reduced for e.

We define Model(e, T) as the set of alternative
models for example e with respect to T.

We define Model,(e, T) as the set of alternative
models for example e with respect to T that con-
tain r. Formally,

Model.(e, T) = { S U Model (e, T) Ur O S }.



Reinforcement (2 of 2)

DEFINITION 3. Pure Reinforcement.

The pure reinforcement pp(r) of a rule r from a theory T
wrt. to some given observation E = { ej, e, ..., ey} is
computed as the number of models of e; where r is
used.

If there are more than one model for a given e;, all of
them are reckoned. In the same model, a rule is com-
puted once. Formally,

pp(r)= Zi=1.. card(Model,(e;, T))

DEFINITION 4. Normalised Reinforcement
p(r) =1 —27PP0),

To avoid fantastic concepts:

DEFINITION 5. Reinforcement wrt. the Data.

The course X(f) of a given fact f wrt. to a theory is com-
puted as the product of all the reinforcements p(r) of all
the rules r used in the model of f. If a rule is used more
than once, it is computed once. If f has more than one
model, we select the greatest course. Formally,

X(f) = maxsomoder,ry { Mrosp(r) }



Characteristics of Reinforcement

® Advantages:

* Reinforcement is easy to compute and al-
lows a flexible evaluation of a theory and
the data it covers.

It provides a measure of the predictive ac-
curacy or assumption feasibility.

It works for evidences with noise.

$Drawbacks:

 For infinite evidence it must be approxi-
mated by using a finite sample.



Selection Criteria using Reinforcement

» The Most Reinforced One: The greatest mean (mY)
of the courses of all the data presented so far.
» More Compensated: a geometric mean instead.

DEFINITION 6. A theory is worthy iff mX(T,E) = 0.5.

If the language is expressible enough there is al-
ways a worthy theory for every evidence (just
choose every example as an extensional rule).

Easy to define another criteria:

 Intensional: all facts should have a course
value greater than the mean divided by a con-
stant (no exceptions).

 Consilience can be better studied: a theory is
well-separable if my is not decreased after
separation.
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Examples:

EXAMPLE 2: (using equational theories)

Consider the following evidence ¢—e,:

E={¢: e4) - true,
. e(3) — false,
¢: e(7) — false,
¢e: e(20) - true,
¢: 0(3) - true,

T=1 e(s(s(X)) - e(X)

o(s(0)) - true

27

5
:3
12

1

1

&:
. e(2) - true,
: e(7) - false,
: e(0) - true,

e(12) - true,

¢0- 0(2) — false}

where natural numbers are represented as e.g. s(s(s(0))) means 3.

0.992
0.969
0.875
0.75
0.5
0.5)

The courses are X(e,, ¢, ey, ¢, ¢) = 0.992 -0.969 = 0.961, X(es, ¢,
¢) = 0.992 -0.875 = 0.868, X(¢) = 0.75 -0.5 =0.375 and X(¢,,) =
0.75 -0.5 =0.375. The mean course my is 0.8159.

T,

Z

=1{ e(s(s(X)) - e(X)

e(s(0)) — false

o(X) - not(e(X))
not(true) — false
not(false) — true

9
16
4

2

1

1

0.998
0.984
0.938
0.75
0.5
05}

The courses are X(e,, ¢, ey, ¢, ¢;) = 0.998 -0.984 = 0.982, X(es, ¢,
¢) = 0.998 -0.938 = 0.936, () = 0.75 - 0.5 - 0.998 -0.938 =
0.351 and X(¢,,) = 0.75 - 0.5 -0.998 -0.984 = 0.368. The mean

course my is 0.8437.
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Computational Consilience

DEFINITION 7. A theory T is partitionable wrt. an evi-
dence Eiff LI, T, : T, U T, T, J T'and T, # T, such that
e O E: T, |:eDT2 =e.

We define E,={¢0E: T, lFe}and E,={¢OE: T, |Fe}
and E,, = E, n E,.

We will use the term SY(T;, U T,, E) to denote:
mX(T,, E)):[card(E,)—card(E,,)/2] + mX(T,, E,):[card(E,)—card(E,,)/2 ]

DEFINITION 8. A theory T is consilient wrt. an evidence
E iff there does not exist a partition T;, T, such that:

Sx(I, U T, E) 2 mX(T, E) - card(E).

In other words, a theory T'is consilient wrt. an evidence
E iff there does not exist a bipartition PUU (T), such that
every example of E is still covered separatedly without
loss of reinforcement.
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Computational Consilience (Example)

EXAMPLE 3:
E={p(a), p(b), p(e), q(a), q(b), q(e), q(f) }
P={p(X):p=0.875
q(X) : p=0.9375} mX(E,P) =
0.9107
The partition:
Pi={pX):p=0.875} mX(E1,P1) = 0.875
Pr={q(X):p=0.9375} mX(E2, P2) = 0.9375
SX(Pl [ Py, E) = m)((E1,P1) 3+ mX(Ez, Pz) 4 =
mx(E, P) - card(E) =
0.9107 -7.
P 1s not consilient.

Definition 8 can be parameterised by introducing a
consilience factor.
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Intrinsical Exceptions and Consilience

An intrinsecal exception or extensional patch is
defined as a rule »with p= 0.5, i.e. a rule that just
covers one example e.

We must distinguish between:

» completely extensional exceptions, when r does
not use any rule from the theory to cover ¢,

 partially extensional exceptions when ruses
other rules to describe e.

Theorem 1. If a worthy theory T for an evi-
dence E has a rule r with p = 0.5, and com-
pletely extensional, then T'is not consilient.

This justifies the use of consilience as the motor
or maxim of theory formation:

If part of the evidence is covered extensionally, a revi-
sion should be made to conciliate it with the rest.

For explanatory induction, not only prediction
errors or anomalies motivate theory revision.
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Proof of Theorem 1

Just choose the partition T, = T —rand T, = T. Since p
= 0.5 then ris only used by one example ¢. Since it is
a completely extensional exception, we have that r
does not use any rule from T, to cover ¢, so p'(r) =
P(r) for all ~.00 T,. Let » be the number of the exam-
ples of the evidence E. Hence, zX(T), E,) = [»X(T, E) -
=X 1/ (=) = (T B - n =]/ (1) = [mx(T,
E) - n+myTE) —mx(T, B - %]/ (1) = mx(T, E) +
X(T, E) =2 / (n-1).
From def. 7, the inequality simplifies as follows:
SYT, 0 Ty, B) =
mX(Ty, E,) - [ card(E,) = card(Ey,)/2 |+ mx(Ty E») - |
card(E,) — card(E,,) /2] =
(YT, E) + [ mx(T, E) =4 / (1) } - [ (r=1) = (r=1)/2
[+ mX(T, B) - [ = (r—1)/2] =
wX(T B - [ (=1) = (=1)/2 + n = (r=1)/2] + [ mX(T, E) -
Vol [ 1) = (=1)/2] / (n1) =
WXL E) - [n] + [ mX(T, E) =21/ 2
Since T'is worthy, then »X(T, E) 2 0.5., and finally
SX(T, 0T, E)y2mX(T, E) - n=mX(T, E) - card(E). O
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Consilience and Coherence

Thagard’s modern view of coherence is
equivalent to constraint satisfaction wrt. the
background knowledge B.

Coherence allows the analysis of:

e Deductive Compatibility with B.

* Explanatory Compatibility with B. (abduction
or nomological induction)

However, it is not constructive, so it is not useful
for non-nomological induction = the idea of sat-
isfaction is not clear...

Consilience represents this notion of “accordance’
with the background knowledge B, by measuring
the direct or constructive inter-relation with B.
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Conclusions

Formalising “Consilience’:

 First approach to consilience based on model
partition.

* Second approach based Reinforcement: Further
detail on the relation between hypothesis and
evidence.

From here we have shown that:

» Consilience is different (but related) that inten-
sionality.

» Consilience can be used to detect which parts
of the theory are weak.

» Consilience and Coherence are somehow com-
plementary.

A consilient model is the goal of theory construction.
Exceptional or unconsilient parts should trigger
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Notes:

* Slide “Towards Computational Consilience”

+

(If T was a Logic Theory, M (T) could be the Minimal Herbrand Model of T).
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