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What is ‘Consilience’? 
Term coined in 1847 by Whewell for the selection of 
inductive theories:  
 

‘Structural’ Criterion: 
How does the hypothesis cover the evidence? 

 

Separate

Covering
Unification

of Fields
 

 

Consilience: the evidence is ‘conciliated’ or uni-
fied by the theory. 
 

Related concepts: 
• Principle of ‘Common Cause’ (Reichenbach 1956). 

• Explanatory Induction and Scientific Explanation 
(Harman 1965, Hempel 1965, Ernis 1968). 

• Coherence (Thagard 1978). 

• Intensionality vs. Tolerance of Partial Extensionality. 
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Distinguishing Consilience 

 
EXAMPLE: 

• Evidence E= { f1, f2, … f10 } 

• Hypotheses: 
T= { t1,t2 }, T’= {t’’} and T’’= {t’1,t’2,t’3}  
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T’’ shows two different (but closely related) notions: 
• T’ and T’’ are intensional. They have no exceptions. 

• T and T’’ are separable. They are not consilient. 
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Towards Computational Consilience 
 

We denote M+(T) the model of a theory T. 
 
DEFINITION 1. Separable Theories 
A theory T is n-separable in the partition  

of different theories Π = { T1, T2, ... , Tn } iff 
 

 M+(T) = ∪i =1..n M+(Ti)   
and 

∀i =1..n  M+(Ti) ≠ ∅ 
 

Additional restrictions (modes) of separation: 
I. non-empty: DEF 1 

II. non-subset: DEF 1 +∀i,j =1..n (Pi ⊆Pj ⇒ i=j). 

III. disjoint: DEF 1 + ∀i,j =1..n (Pi ∩ Pj = ∅). 

IV. non-subset model: DEF 1 +∀i,j=1..n (M
+
(Pi)⊆M

+
(Pj) ⇒ i=j). 

V. disjoint model: DEF 1 +∀i,j =1..n (M
+
(Pi) ∩ M

+
(Pj) = ∅). 

 
A theory is consilient iff it is not separable. 

• The modes give 5 characterisations of consil-
ient theories. 



 5

Example 
 

EXAMPLE (Using Horn Theories): 
 

• P1= { p(a). q(X) :- r(X). r(a). } is {i-v}separable into Π = 
{{p(a)} , {q(X) :- r(X). r(a)}}.  

  

• P2= { q(X) :- r(X). r(b). } is not {ii-v}separable.  
  

• P3= { q(X) :- r(X). p(X) :- r(X). r(a). } is non-subset 

(model) separable into Π = {{ q(X) :- r(X). r(a)}, {p(X) 
:- r(X). r(a). }} but it is not disjoint (model) separable. 

  

• P4= { q(a). p(X) :- q(X). p(a) } is non-subset (model) 

and disjoint separable into Π = {{ q(a). p(X) :- q(X). },  
{p(a).}} but it is not disjoint model separable. 

 But there is Π’ = {{ q(a). } {p(X) :- q(X). p(a). }} 
  

• P5= { s(X):- p(X), q(b). p(X) :- q(X). t(X):-p(X),q(a) } 
is non-subset (model) and disjoint separable model 

into Π = {{ s(X) :- p(X), q(b). p(X) :- q(X) }, { p(X) :- 
q(X), t(X) :- p(X), q(a) } but it is not disjoint separable. 

  

 
Problems of non-modularity (I, II, IV): 
 

Problems of fantastic consilient concepts (III, IV & V): 
P1 can be ‘conciliated’ by a fantastic concept f 
into P’1= { p(a) :- f. q(X) :- r(X), f. r(a), f. f. } for iii-iv.  
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Exception-Free Theories 
 

DEFINITION 2. Exceptions in a Theory 

A theory T has e = card(M
+
(TE)) c-exceptions generated 

from TE, denoted ∆c(T, TE) = e, iff there is a partition T = 
{ TR, TE } such that:  

l(T) − l(T R) ≥ (1 / c) · [l(M
+
(T)) − l(M

+
(TR))] 

 

where l denotes any syntactical measure of length. 
 

If TE is not specified, ∆C(T) = max { e | ∆c(T, TE)=e } 
 

Fixing l and an exception-degree c (usually c = 1), 

a theory T is said to be exception-free iff ∆c(T) = 0 
 
Pragmatics: 

• The modes give 5 characterisations of inten-
sional (exception-free) theories. 

• Mode ii and c=1 allow modular programs and 
avoid fantastic concepts. 

• For instance, T = { p(X). q(X) } for evidence 
{p(a), p(b), p(e), q(a), q(d), q(e), q(f)} is separa-
ble but it has no exceptions. 
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Reinforcement (1 of 2) 

Further detail on the relation hypothesis �evidence: 
 

Given a theory, a rule or component ri is neces-

sary for e iff T = e   ∧   T − { ri } ≠ e 
 
A theory T is reduced for e iff 

T = e  ∧  ¬∃ ri ∈ T such that it is not necessary 
for e. 

 
S1, S2 are alternative models of T for e iff 

S1 ⊂ T, S2 ⊂ T, S1 ≠ S2 and S1, S2 are reduced for e.  
 

We define Model(e, T) as the set of alternative 
models for example e with respect to T. 

 
We define Modelr(e, T) as the set of alternative 
models for example e with respect to T that con-
tain r. Formally, 

Modelr(e, T) = { S ⊂ Model (e, T) ∧ r ∈ S }. 
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Reinforcement (2 of 2) 

DEFINITION 3. Pure Reinforcement. 

The pure reinforcement ρρ(r) of a rule r from a theory T 
wrt. to some given observation E = { e1, e2, …, en } is 
computed as the number of models of ei where r is 
used. 
If there are more than one model for a given ei, all of 
them are reckoned. In the same model, a rule is com-
puted once. Formally, 

ρρ(r)= Σi=1..n card(Modelr(ei, T)) 
 

DEFINITION 4. Normalised Reinforcement 

ρ(r) = 1 − 2−ρρ(r). 
 
 
 

 

To avoid fantastic concepts: 
 

DEFINITION 5. Reinforcement wrt. the Data. 

The course χ(f) of a given fact f wrt. to a theory is com-

puted as the product of all the reinforcements ρ(r) of all 
the rules r used in the model of f. If a rule is used more 
than once, it is computed once. If f has more than one 
model, we select the greatest course. Formally, 

χ(f) = maxS ⊂ Model(f, T) {  Πr ∈ S ρ(r)  } 
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Characteristics of Reinforcement 

 

�Advantages: 

• Reinforcement is easy to compute and al-
lows a flexible evaluation of a theory and 
the data it covers. 

• It provides a measure of the predictive ac-
curacy or assumption feasibility. 

• It works for evidences with noise. 

�Drawbacks: 

• For infinite evidence it must be approxi-
mated by using a finite sample. 
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Selection Criteria using Reinforcement  
 

• The Most Reinforced One: The greatest mean (mχ) 
of the courses of all the data presented so far. 

• More Compensated: a geometric mean instead. 

 

DEFINITION 6. A theory is worthy iff mχ(T,E) ≥ 0.5. 
 

If the language is expressible enough there is al-
ways a worthy theory for every evidence (just 
choose every example as an extensional rule). 
 
Easy to define another criteria: 

• Intensional: all facts should have a course 
value greater than the mean divided by a con-
stant (no exceptions). 

• Consilience can be better studied: a theory is 

well-separable if mχ is not decreased after 
separation. 
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Examples: 
 

EXAMPLE 2: (using equational theories) 
Consider the following evidence e1–e10: 

 E = { e1: e(4) → true, e2: e(12) → true, 

  e3: e(3) → false, e4: e(2) → true, 

  e5: e(7) → false, e6: e(7) → false, 

  e7: e(20) → true, e8: e(0) → true, 

  e9: o(3) → true, e10: o(2) → false } 
where natural numbers are represented as e.g. s(s(s(0))) means 3. 
 

 Ta= { e(s(s(X)) → e(X) : 7 0.992   

  e(0) → true : 5 0.969 

  e(s(0)) → false : 3 0.875 

  o(s(s(X)) → o(X) : 2 0.75 

  o(0) → false : 1 0.5 

  o(s(0)) → true  : 1 0.5 } 

The courses are χ(e1, e2, e4, e7, e8) = 0.992 · 0.969 = 0.961, χ(e3, e5, 

e6) = 0.992 · 0.875 = 0.868, χ(e9) = 0.75 · 0.5 = 0.375 and χ(e10) = 

0.75 · 0.5 = 0.375. The mean course mχχχχ is 0.8159.  
 

 Tb= { e(s(s(X)) → e(X) : 9 0.998 

  e(0) → true : 6 0.984 

  e(s(0)) → false : 4 0.938 

  o(X) → not(e(X)) : 2 0.75 

  not(true) → false : 1 0.5 

  not(false) → true  : 1 0.5 } 

The courses are χ(e1, e2, e4, e7, e8) = 0.998 · 0.984 = 0.982, χ(e3, e5, 

e6) = 0.998 · 0.938 = 0.936, χ(e9) = 0.75 · 0.5 · 0.998 · 0.938 =  

0.351 and χ(e10) = 0.75 · 0.5 · 0.998 · 0.984 = 0.368. The mean 

course mχχχχ is 0.8437. 
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Computational Consilience 
 

DEFINITION 7. A theory T is partitionable wrt. an evi-

dence E iff ∃T1, T2 : T1 ⊂ T, T2 ⊂ T and T1 ≠ T2 such that 

∀e ∈ E : T1 = e ∨ T2 = e . 

 

We define E1 = { e ∈ E : T1 = e } and E2 = { e ∈ E : T2 = e } 

and E12 = E1 ∩ E2. 
 

We will use the term Sχ(T1 ⊕ T2, E) to denote: 
 mχ(T1, E1)·[card(E1)−card(E12)/2] + mχ(T2, E2)·[card(E2)−card(E12)/2 ] 

 

DEFINITION 8. A theory T is consilient wrt. an evidence 
E iff there does not exist a partition T1, T2 such that: 

Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · card(E). 
 

In other words, a theory T is consilient wrt. an evidence 

E iff there does not exist a bipartition P∈℘(T), such that 
every example of E is still covered separatedly without 
loss of reinforcement. 
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Computational Consilience (Example) 
 

EXAMPLE 3: 
 E = { p(a), p(b), p(e), q(a), q(b), q(e), q(f) } 

 P = { p(X) : ρ = 0.875 

                 q(X) : ρ = 0.9375 }     mχ(E,P) = 
0.9107 
 The partition: 

 P1 = { p(X) : ρ = 0.875 }  mχ(E1,P1) = 0.875 

 P2 = { q(X) : ρ = 0.9375 } mχ(E2, P2) = 0.9375 

Sχ(P1 ⊕ P2, E) = mχ(E1,P1) · 3  + mχ(E2, P2) · 4 =  

                             mχ(E, P) · card(E) = 
0.9107 · 7. 
P is not consilient. 

 
 

Definition 8 can be parameterised by introducing a 
consilience factor. 
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Intrinsical Exceptions and Consilience 

An intrinsecal exception or extensional patch is 

defined as a rule r with ρ = 0.5, i.e. a rule that just 
covers one example e. 

 

We must distinguish between: 

• completely extensional exceptions, when r does 
not use any rule from the theory to cover e, 

• partially extensional exceptions when r uses 
other rules to describe e. 
 
Theorem 1. If a worthy theory T for an evi-

dence E has a rule r with ρ = 0.5, and com-
pletely extensional, then T is not consilient. 
 

This justifies the use of consilience as the motor 
or maxim of theory formation: 
 

If part of the evidence is covered extensionally, a revi-
sion should be made to conciliate it with the rest. 

 

For explanatory induction, not only prediction 
errors or anomalies motivate theory revision. 
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Proof of Theorem 1 

Just choose the partition T1 = T − r and T2 = T. Since ρ 
= 0.5 then r is only used by one example er. Since it is 
a completely extensional exception, we have that r 

does not use any rule from T1 to cover er, so ρ’(ri) = 

ρ(ri) for all ri ∈ T1. Let n be the number of the exam-

ples of the evidence E. Hence, mχ(T1, E1) = [mχ(T, E) · 

n − χ(er,T) ] / (n−1) = [mχ(T, E) · n − ½ ] / (n−1) = [mχ(T, 

E) · n + mχ(T, E) − mχ(T, E) − ½ ] / (n−1) = mχ(T, E) + 

[mχ(T, E) − ½] / (n−1). 
From def. 7, the inequality simplifies as follows: 

Sχ(T1 ⊕ T2, E) = 

mχ(T1, E1) · [ card(E1) − card(E12)/2 ]+ mχ(T2, E2) · [ 

card(E2) − card(E12)/2 ] = 

{ mχ(T, E) + [ mχ(T, E) − ½] / (n−1) } · [ (n−1) − (n−1)/2 

]+ mχ(T, E) · [ n − (n−1)/2 ] = 

mχ(T, E) · [ (n−1) − (n−1)/2 + n − (n−1)/2 ] + [ mχ(T, E) − 

½ ] · [ (n−1) − (n−1)/2 ] / (n−1) = 

mχ(T, E) · [ n ] + [ mχ(T, E) − ½ ] / 2 

Since T is worthy, then mχ(T, E) ≥ 0.5., and finally 

Sχ(T1 ⊕ T2, E) ≥ mχ(T, E) · n = mχ(T, E) · card(E). � 
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Consilience and Coherence 
 

Thagard’s modern view of coherence is 
equivalent to constraint satisfaction wrt. the 
background knowledge B. 
 

Coherence allows the analysis of: 

• Deductive Compatibility with B. 

• Explanatory Compatibility with B. (abduction 
or nomological induction)  

 

However, it is not constructive, so it is not useful 
for non-nomological induction � the idea of sat-
isfaction is not clear... 
 

Consilience represents this notion of ‘accordance’ 
with the background knowledge B, by measuring 

the direct or constructive inter-relation with B. 
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Conclusions 

Formalising ‘Consilience’: 

• First approach to consilience based on model 
partition. 

• Second approach based Reinforcement: Further 
detail on the relation between hypothesis and 
evidence.  

From here we have shown that: 

• Consilience is different (but related) that inten-
sionality. 

• Consilience can be used to detect which parts 
of the theory are weak. 

• Consilience and Coherence are somehow com-
plementary.  

 

A consilient model is the goal of theory construction. 
 Exceptional or unconsilient parts should trigger  
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Notes: 
 
* Slide “Towards Computational Consilience” 

(If T was a Logic Theory, M
+
(T) could be the Minimal Herbrand Model of T). 

 


