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Abstract Animals, including humans, are usually judged on what they could
become, rather than what they are. Many physical and cognitive abilities in
the ‘animal kingdom’ are only acquired (to a given degree) when the subject
reaches a certain stage of development, which can be accelerated or spoilt de-
pending on how the environment, training or education is. The term ‘potential
ability’ usually refers to how quick and likely the process of attaining the abil-
ity is. In principle, things should not be different for the ‘machine kingdom’.
While machines can be characterised by a set of cognitive abilities, and mea-
suring them is already a big challenge, known as ‘universal psychometrics’, a
more informative, and yet more challenging, goal would be to also determine
the potential cognitive abilities of a machine. In this paper we investigate
the notion of potential cognitive ability for machines, focussing especially on
universality and intelligence. We consider several machine characterisations
(non-interactive and interactive) and give definitions for each case, consider-
ing permanent and temporal potentials. From these definitions, we analyse the
relation between some potential abilities, we bring out the dependency on the
environment distribution and we suggest some ideas about how potential abil-
ities can be measured. Finally, we also analyse the potential of environments
at different levels and briefly discuss whether machines should be designed to
be intelligent or potentially intelligent.
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1 Introduction

In about the last fifteen years, there have been several efforts to give formal
definitions, measures and tests of intelligence based on computation theory and
(algorithmic) information theory [10,8,9,23,15,16,38,33,18,11,21,22]. All of
these works have worked on the notion of actual intelligence, i.e., the intelli-
gence which is measured over a system at a particular stage of its development
(or a particular moment of its life). If this is not already a very difficult ques-
tion, things become even more complex when we try to evaluate potential
intelligence, which can be loosely defined (for now) as the capacity that a
system has to eventually become intelligent, where the terms ‘capacity’ and
‘eventually’ will be understood respectively as ‘probability’ and ‘in a given
future time under a range of circumstances’.

Small human children are said to be potentially intelligent even though
their actual intelligence is very low compared to an adult’s. In fact, an adult rat
has higher actual intelligence than a new-born baby, for whom perception and
reaction are still inoperative or very primitive. Potential intelligence is linked to
the notions of development environment and education, and also to the nature
vs. nurture dilemma. In other words, having the potential does not mean that
this potential will ever be attained (or realised). A very talented child can
be spoilt with an inappropriate education, while another, less talented, child
can be boosted with the appropriate, specialised education. In this natural
context, the notion of potential makes sense, as either a limit that a subject
can attain or the easiness (in terms of education or environment) to reach a
given level.

Things start becoming more interesting (but perhaps counter-intuitive, as
well) when we move from biological systems to artificial systems. Let us con-
sider, for the moment, universal Turing machines (UTMs). And let us assume,
for the moment, that intelligence is not a score, but a binary property (a sys-
tem is either intelligent or not, by, e.g., setting a threshold relative to which
we consider a system intelligent). Let us also assume that this property is
computably realisable!. Under these conditions, as we will show (in a more
formal, straightforward way), any UTM can become intelligent. If we define
potential intelligence as the possibility of reaching actual intelligence, then we
have that any UTM is potentially intelligent. This is not very informative,
since we know that some (universal) machines are potentially more intelligent
than others. This shows that the notion needs to be refined to be more useful.

The way-out from here is the definition of potential intelligence as the prob-
ability that a machine becomes intelligent for a random input (or education, or
life, or “possible world”). With this definition we could say that a machine is
more potentially intelligent than another if we are able to show (theoretically,
or empirically) that it becomes intelligent more frequently (or with shorter
inputs).

1 We use the term ‘computably realisable’ to express that there is at least one (Turing)
machine with the property. This does not mean that determining whether a machine has
the property is decidable. All this will be further clarified in section 2.3.
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Intelligence is not the only cognitive ability or property we will be interested
in. In the past, the probability of UTMs acquiring or preserving a property
has been studied a few times. For instance, the probability of a UTM’s halting
for a random input was first investigated by Zvonkin and Levin? [59], and also
by Chaitin [5], and very important results about randomness were obtained.

More recently, another property, and the probability of a UTM’s preserving
it, has been studied. This is the universality probability®, or 1 minus the prob-
ability that a UTM loses its universality (becomes non-universal) after feeding
it with a random input. It has been shown in [3] that this probability is strictly
between 0 and 1 for any UTM. The universality probability was first suggested
by Chris Wallace [6, footnote 70][7, sec. 2.5] with the intuition of whether an
‘educated machine’ could lose its capacity to learn. Certainly, universality and
capacity to learn are related, but they are not the same thing. In fact, the
capacity to learn is more closely related to intelligence than universality.

The notion of universality probability and the results obtained in [3] may
have implications concerning (or may be helpful for addressing) the notions of
potential cognitive abilities in general, and intelligence in particular. This is the
starting point of this paper. This is also an important source of hindrances, but
also opportunities, throughout the paper, since universal machines are able to
become intelligent machines (with some probability), and intelligent machines
are, arguably, able to imitate any other machine and, hence, universal, in a
slightly different sense.

This relation between intelligence and universality shows how important
it is to realise that it is one thing to become a different machine and another
thing to imitate or model another machine for a while. Also, it is important to
distinguish between an individual agent and a whole system, which may have
subsystems inside having a property.

The analysis of all these fundamental questions concerning potential cog-
nitive abilities, universality and resource-bounded machines is the main goal
of this paper.

The paper is organised as follows. Section 2 discusses some previous works
on measuring actual abilities for machines, like intelligence, several notions
of ‘potential’ intelligence in psychology, the ideas of training sequences and
educating Turing machines, the notion of cognitive ability /property, and the
notion of universality probability of a Turing machine and the generalisation
of the permanent preservation of any property. Section 3 introduces the defini-
tion of potential of a property for non-interactive (classical) Turing machines,
and highlights the relevance of the input distribution and the number of steps
considered (the temporal period), in order to make sense of the definition.
From the temporal notion of potential we make the first important distinc-
tion between TMs becoming or imitating another TM. Section 4 extends and
adapts some of the previous definitions for computable agents, i.e., interac-

2 Possibly even earlier by Martin-Lof, from Levin’s personal communication.

3 Note the difference with the concept of “universal probability” (distribution), as intro-
duced by Solomonoff [45].
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tive Turing machines inside an environment. This brings out a more realistic
perspective, also including speed, and more sophisticated relations between
potential and the distribution of environments. Section 5 deals with the chal-
lenge of evaluating potential properties. We are interested in how the potential
can be approximated from behaviour, not from internal introspection. Section
6 discusses related, but different, notions, such as the exploration/exploitation
dilemma, which is a recurrent issue in reinforcement learning, and the dis-
tinction between fluid vs. crystallised intelligence, a crucial concept in psycho-
metrics. Section 7 closes the paper with a discussion of potential in terms of
‘emergence’ in complex systems, some open questions and the implications for
building intelligent machines.

2 Background

The evaluation of cognitive abilities for humans and non-human animals can
be traced back to the now consolidated disciplines of psychometrics and com-
parative psychology. There is also a large and important body of work compar-
ing abilities between humans and non-human animals, and the hybridisation
between both disciplines is becoming stronger (see, e.g., [24,25]). However,
generalising cognitive abilities for different species is not easy, since the as-
sumptions about the required abilities and the proper interfaces required to
evaluate each individual is always at issue. From a scientific point of view, and
most especially from an evolutionary stance, it makes sense to evaluate the
cognitive abilities of any subject in the ‘animal kingdom’ (including humans)
at any stage of its development.

2.1 Evaluating cognitive abilities in the machine kingdom

If things were not already complex enough for the animal kingdom, there
is a diverse new realm that is still unexplored: the ‘machine kingdom’, i.e.,
the set of all machines*. This uncharted space is much more complex than
the animal kingdom, because we can define a machine to behave in virtually
any possible way, including emulating any animal. The only constraints are
computability and resources. Clearly, in order to assess the behaviour of a
plethora of machines, bots, robots, artificial agents, avatars, animats, any other
artificial life beasts and hybrids and communities thereof, we require a powerful
set of cognitive tests. This is precisely the goal of a proposed new discipline,
‘universal psychometrics’ [19,21]. While part of the methods and concepts
can be borrowed from psychometrics and comparative psychology, universal
psychometrics has its formal grounds in the works on machine intelligence
evaluation that have taken place in the past fifteen years or so.

4 In the first part of the paper we will consider non-interactive (classical) Turing machines,
while in the second part we will refer to the set of interactive (and resource-bounded)
machines, as in [21].
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These works are not based on Turing’s imitation game [52] or its many
extensions (see, e.g., [40]), but on the notions of learning, inductive inference,
Turing machines and compression. In particular, Solomonoft’s theory of in-
ductive inference [45], the Minimum Message Length (MML) principle [55,56,
54,7], algorithmic information theory [4], Kolmogorov complexity [31,45] and
compression theory paved the way in the 1990s for a new approach for defin-
ing and measuring intelligence based on algorithmic information theory and
two-part compression.

The first proposal introduced an induction-enhanced Turing Test [9], where
a general inductive ability could be evaluated. The importance was not that
any kind of ability could be included in the Turing Test, but that this ability
could be formalised in terms of MML and cognate ideas, such as (two-part)
compression. Related intelligence tests were also developed, such as the C-test
[23] [15], composed of sequences of prediction problems that were generated
by a universal distribution [45] and their difficulty assessed by a variant of
Kolmogorov complexity. Other cognitive abilities were addressed in [16], by
the introduction of other ‘factors’, and the suggestion of using interactive
tasks where “rewards and penalties could be used instead”, as in reinforcement
learning.

Similar ideas followed relating compression and intelligence, such as [38],
and the ‘universal intelligence measure’ [33], where intelligence is seen as
weighted average performance in a range of environments, where the envi-
ronments are just selected by a universal distribution.

Some more recent works have focussed on the construction of actual tests
and their use for evaluating machines and humans in the same way. For in-
stance, the anytime intelligence test in [18] could be applied to any kind of
subject: machine, human, non-human animal or a community of these. The
term anytime was used to indicate that the test could evaluate any agent
speed, it would adapt to the intelligence of the examinee, and that it could
be interrupted at any time to give an intelligence score estimate. Preliminary
tests based on these ideas have since been done and applied to the evaluation
of humans [15] and machines [29,34], and the comparison of both humans and
machines [28].

For a more comprehensive view of this line of research and its relation
with other approaches, such as human psychometrics and the Turing Test, the
reader can see [11,21,22].

All the previous approaches focus on actual cognitive abilities, such as
induction, deduction, planning, etc. Following [21], we can give the following
definition of cognitive ability:

Definition 1 A cognitive ability is a property of individuals in the machine
kingdom which allows them to perform well in a class of information-processing
tasks.

A class is a (possibly infinite) set of problems. From each class, in order
to construct a test, we can sample tasks using a distribution, which does not
need to be uniform (in fact, in many cases, it cannot be defined as a uniform
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distribution). For instance, we can define the ability of multiplying two natural
numbers. If we were to select some specific tasks from there, we would need a
distribution to give more or less probability to some numbers. For instance, we
could precisely define the ability as the correct multiplication of numbers of 3
digits (where all of them could have the same probability) as a first (example
or) case. As a second case, we could precisely define the ability of multiplying
numbers of n and m digits, where n and m are taken as the closest natural
number from a truncated normal distribution with mean at 3 and standard
deviation 1 (and then generating each of the m and n digits respectively in a
uniform way®). In the first case, the number of possible exercises is finite while
it is infinite in the second case. In what follows, we assume that a class is a set
of information-processing tasks (or environments) possibly with an associated
probability distribution.

Note that actual abilities are linked to performance and, ultimately, to the
observational demonstration of the ability, and not determined by any solely
intrinsic property of the internal code of the individual (its program). To our
knowledge, there has not been any attempt to define potential abilities and
consider their evaluation on machines, perhaps because, at first sight, this
seems to require the inspection of the machine code.

2.2 Previous notions of potential

Unlike artificial intelligence, the term ‘potential’ has already been used in
psychology and other disciplines®. For instance, in psychometrics the terms
‘potential’, ‘capacity’ and others have been used for “differentiating a measured
intelligence score from some higher score which an individual is presumed
capable of obtaining” [39]. A ‘potential’ ability is then understood as the
maximum score that an individual can score on a test of that ability. Clearly,
this is an issue related to measuring error produced by how tests are conducted.
Typically, tests not only require the co-operation of the subject but also a
great degree of implication and motivation. For instance, a very intelligent
subject can score poorly at an intelligence test if she is not properly motivated
(e.g., rewards are not appropriate or well understood —see also [46, sec. 6]) or
any other problem with the interface (e.g., language, background knowledge,
perception limitations, etc.). This is a great concern in the evaluation of animal
abilities, since it is a frequent discovery to find that some animals do have an
ability that was previously considered absent in these animals just because
no proper test had been devised to accurately measure the ability for that
species. This difference between the actual result of a test and the maximum

5 The first digit of each number would be generated uniformly from 1 to 9 and the re-
maining digits would each be generated uniformly from 0 to 9.

6 In fact, the distinction between potentiality and actuality can be traced back to Aristo-
tle’s Methaphysics, in book © (IX) [2], with his distinction between potentiality (dunamis)
and actuality (entelecheia or energeia). In part 6 he says: “potentially, for instance, a statue
of Hermes is in the block of wood [...], and we call even the man who is not studying a man
of science, if he is capable of studying”.
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achievable result, and the fact that the former is usually lower than the latter,
leads to considering the result of a cognitive test as a lower bound of the actual
ability. Note that with this interpretation, the ‘potential’ would be the right (or
corrected) value of an ability, while measurements would be approximations,
which are typically —but not always— below that value. This has led to
approaches to convert this lower bound into a less biased estimate, trying
to predict ‘potential’” intelligence [51] or calculating how far a test score can
be from the actual measure [37]. In a nutshell, the difference between actual
and ‘potential’ would really be applied to the measurement, but not to the
individual.

The meaning of potential that we will use in this paper differs from the
measurement ‘potential’ described above. We will deal with the probability
that a system or individual acquires (or reaches a certain level for) a given
ability. This is clearly a notion related to the state of a system and not about
the test or measurement error. This state can change by inner mechanisms or
can be induced by outer mechanisms (or both). Note that we use the term
‘probability’ instead of ‘capacity’, which is a less precise term and usually
associated with the mazimum value, while probability is associated with the
average or expected value.

Let us think, for a moment, about non-cognitive abilities or traits, because
the concept of potential is simpler. For instance, human height growth has been
commonly used as a parallel to the development of other cognitive abilities,
such as intelligence. Consider that we measure the height of a 6-year-old child
and get an actual height of 120 cm. What is her potential height? We would
certainly not give 248 cm (the maximum value recorded in history for a woman)
as an answer, even though this is physically possible (or even feasible in general,
by using drugs). The question is typically understood as the height that she
is expected to reach as an adult woman under a range of circumstances. This
is the concept of potential we are using in this paper. Crucially, we need to
identify two important things in this concept. First, we are talking about the
expectation for a future time and, second, we are considering some particular
or general circumstances. For instance, we could just ask a different, more
specific (second) question: what is her expected height at age 10 assuming
a diet poor in calcium and vitamin D? In this case both the time and the
context have been modified, and the answer should be different. This is the
parameterised concept of potential we want to explore in this paper.

Remarkably, a different thing is the way to answer these questions. In other
words, one thing is to define potential and another thing is to measure it. For
instance, for human height we have some tools, such as a growth chart, as
shown in Figure 1. Looking at that chart we can get a rough estimation for
the answer to the first question (e.g., 170 cm) and perhaps, with some extra
knowledge, to the second question as well.

Finally, note that the potential property in a future time does not have to
match the actual property at that time once the time has passed. For instance,
the potential height of this 6-year-old child under normal circumstances can be
said to be around 170 cm. However, if, after 20 years, we measure her height
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Fig. 1 A growth chart of stature with percentiles of U.S. females aged 2-20 (NCHS 2000).
Potential height at a future age under normal circumstances can be roughly estimated
from this chart. Taken under public licence from wikimedia commons from an original U.S.
government chart.
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and we record 155 cm, this does not necessarily mean that the potential height
of 170 cm was wrong. Perhaps she had a serious illness, or an accident or a
bad nutrition record. Even knowing her actual height as an adult we would
still say that her potential height was 170 cm, had she grown up under normal
circumstances. In fact, we would say that her height is 155 cm, while it was
expected to be 170 cm.

For cognitive abilities, things become more subtle, especially because we
almost always associate some learning process with these kinds of abilities.
In animals, there are some cognitive abilities which are not learned (they are
innate), such as a frog distinguishing small dark spots from big dark spots.
They may even be there from birth, with no variation whatsoever during
the animal lifespan. Some others may appear after a time, as a programmed
development. For instance, a new-born baby may not be able to recognise
colours, but this ability may develop in a few weeks’ time. If the baby is fed
and cared for adequately, this ability will develop without further training or
conditions. On the contrary, other abilities are not innately programmed (i.e.,
have to be acquired). For example, a person may not be able to calculate square
roots now, but she can learn to do it and have the ability after some time.
Clearly, in this case, acquiring the ability requires some particular specialised
training. This gives a complementary (and essential) perspective for the notion
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of potential. Some abilities can only be acquired with appropriate training
environments.

In fact, things become really interesting when we bring these concepts
from the animal kingdom to the machine kingdom. The study of the so-called
training sequences for Turing machines was first discussed by Solomonoff [44]
(possibly influenced by Turing [52, sec. 7]7). Also, the notion of perfect se-
quence, as a sequence of exercises that makes a system acquire or learn a
concept with the minimum amount of effort or information, was further stud-
ied by Solomonoff [48]. Clearly, finding these sequences is not easy, as any
teacher knows. Similarly, Wallace also considered the problem of ‘educating’
Turing machines and several problems related to this issue [54, sec. 2.3][6, foot-
note 70][7, sec. 2.5], and also gave at least some thought directly to training
sequences [6, sec. 0.2.5, p542; col. 1].

While we will mostly deal with individuals acquiring, increasing, preserving,
decreasing or losing an ability, the term potential can also be applied to systems
for which a given property develops or emerges inside the system (on some of
its parts). For instance, we can ask whether a given initial pattern in Conway’s
game of life [13] would eventually lead to substructures with self-replicating
power. This does not mean that the pattern is self-replicating, but rather
that it leads to self-replicating structures. We will go back over these issues
later on, but for the moment it is important to be clear how we use the
term potential, and the accompanying verb(s) —such as becoming, imitating,
emulating, hosting, preserving, etc.

2.3 Properties, universality and preservation

Let us denote by B the set {0,1} and by B* the set of finite binary strings
of any length, including the empty string A. The length of a string o € B* is
denoted by |o|. We can restrict the range of strings by their length, where B
denotes all the strings o € B* such that m < |o| < n. We use B" as shorthand
to denote B™". We will also work with infinite sequences. The set of all infinite
sequences will be denoted by B>°. If ¢ is a finite string in B* or an infinite
sequence in B>, we use 0,5 to denote the finite substring between positions
a and b inclusive (so having length b — a 4+ 1). If @ > b then o, = A. Given
a finite string o and a finite string or infinite sequence 7, the concatenation is
simply denoted by o7. The (cylinder) set of all the infinite sequences in B>
starting with finite string o is denoted by oo.

Any (possibly partial) computable function M : B* — B* can be calculated
by a Turing machine (TM), which we shall also call M. In order to properly
analyse the concept of universal Turing machine (UTM), we can, without

7 Section 7 of Turing (1950), entitled “Learning Machines”, says: “Instead of trying to
produce a programme to simulate the adult mind, why not rather try to produce one which
simulates the child’s? If this were then subjected to an appropriate course of education
one would obtain the adult brain. [...] We have thus divided our problem into two parts.
The child programme and the education process. [...] This process could follow the normal
teaching of a child.”
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loss of generality, work with prefix-free machines. A prefix-free machine is a
machine such that the domain is a prefix-free code on B*, or in other words,
programs are self-delimited (no program can be a prefix of another program). A
way to ensure that machines are prefix-free is by using self-delimiting® Turing
machines, where inputs can only be read sequentially and outputs are also
considered to be written sequentially. Input is hence not delimited and the
Turing machine can stop reading eventually. The work tapes are bidirectional.
We say that M halts on input ¢ € B* with output 7 € B*, and we write
M (o) =7, if o is on the left of the input head and 7 is on the left of the output
head after M halts. For the rest of the paper we will assume self-delimiting
Turing machines. In fact, the notion of self-delimiting Turing machine is closer
to the way we understand machines here as having a training input sequence
(or ‘life’, or ‘possible world’), where it is not possible to go back in time.

Any Turing machine M becomes another Turing machine (denoted by
M]r]) after being fed with an input 7, i.e., for every string o, M(r0) =
M]7](o). The set of all Turing machines is denoted by (2, and known as the
‘machine kingdom’. Two Turing machines M; and My are equivalent iff for
every o € B*, Mi(c) = Mz(c). A machine M is said to be null iff for every
o € B*, M(c) = A or is not defined (M is partial). A halted machine is a
null machine, but there may be null machines that may halt after reading
non-empty strings o.

From here, and following, e.g., [3], we can define universality:

Definition 2 A Turing machine® U is called universal (a Universal Turing
Machine, UTM) if for every machine M there is a string 7 such that for every
string o we have that M (o) = U(7o) (i.e., we have that M = U[7]).

Following, e.g., [27], we can define a probability measure over infinite se-
quences as follows:

Definition 3 A probability measure w is defined over the sample space of
infinite sequences B> using cylinder sets oo (with o being a finite string) and
their countable union and complement as event space, as given by the values
over the cylinder sets with the following properties:

w(Ao) =1
VYo € B* w(oo) = w(a00) + w(olo)

From here, and more intuitively, w(oo) is the probability that an infinite se-
quence starts with finite string o. Because of this, and somewhat loosely, we
will say that w is a probability measure (or distribution) on strings.

One special and important case of a probability measure is the uniform
probability measure, denoted by v:

8 We follow the definition of self-delimiting machines in [36, p.201] and the equivalent
definition of prefix TM in [27, p.35].

9 Technically, in the general case, both U and M must be prefix-free. However, since we
are assuming self-delimiting Turing machines, all this is ensured.
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Definition 4 The uniform probability (or Lebesgue) measure v is a proba-
bility measure for sets of infinite sequences defined as v(go) = 277! for any
finite string o.

This measure v represents the probability of sequences being constructed
with Os and 1s by tossing a fair coin. Other measures can of course behave
differently, by giving more or less probability (or even zero) to some string
prefixes. For instance, the universal semi-measure derived from UTM U (note
that we would need monotone Turing machines here), as the probability of a
sequence being output by U with fair coin tosses as inputs, could be normalised
as a probability measure uy (see, e.g., [36] for details), and would be a very
different way of assigning probabilities to sets of sequences starting with a
given string.

As discussed in the introduction, we are interested in cognitive properties
of machines, which are generally defined as follows:

Definition 5 A property is a real-valued function ¢ : £2 — [0, 1].

Higher values returned by the function ¢ imply a higher accomplishment
of the property. We will now enumerate several kinds of properties:

— A computadbly realisable property ¢ is any property such that there is at
least one Turing machine M for which ¢(M) > 0. Cognitive abilities are
assumed to be computably realisable, especially because we expect that
some machines may have them (while others not).

— A decidable property ¢ is any property such that there is an effective pro-
cedure to calculate ¢(M) (to arbitrary precision) for every M. Precisely
deciding ¢(M) will be impossible for many properties. Consequently, em-
pirical approximation through measurement, as discussed in section 5, will
be necessary.

— A Boolean property is a property where the domain is restricted to {0, 1},
i.e., not having or having the property. For instance, the property of being
universal, as per definition 2, denoted by (, is Boolean. Gradual properties
(not restricted to {0,1}) are said to be non-Boolean.

— A non-vanishing property is a property ¢ for which there is at least one
Turing machine M and two constants k,c € R, with 1 > k> 0and ¢ > 0
such that for every n € N there are at least [k2"] strings o € B" for
which ¢(M[o]) > c. This means that there is at least one machine with
the property and that it can keep a non-zero value (bounded below) of the
property indefinitely for a proportion of k of the inputs (the proportion is
bounded below). Clearly, non-vanishing implies computably realisable.

— A genuine property is a non-vanishing property ¢ such that for every null
machine M, ¢(M) = 0. In other words, the property does not hold for
any null machine, but there is at least another non-null machine M’ which
makes ¢ non-vanishing as well.

— A property ¢ is observable iff for any two equivalent machines M; and My
we have that ¢(M;) = ¢(My).
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In this paper, since we want to evaluate properties (and ultimately cognitive
abilities) by the behaviour of an individual, we will be especially interested in
observable genuine properties.

Now, let us analyse the universality property, denoted by ¢, and formally
defined as ¢ = 1 if U is a UTM, and 0 otherwise. Universality is genuine'°.
The analysis of the universality property is of utmost importance for computer
science and will be crucial for the proper understanding of the notion of poten-
tial ability, since UTMs are capable of becoming any other machine, and hence
are eventually able to have any computably realisable property. Universality
has almost always been studied as an actual property, i.e., a machine is either
universal or not. This perspective has been challenged a few times in the past,
and the interesting notion of probability makes the issue a matter of degree,
rather than an absolute thing. As said in the introduction, the probability of a
UTM halting for a random input was first investigated by Zvonkin and Levin
[59] and Chaitin [5]. This is a first notion of potential, because two different
machines may eventually halt but some machines may have a higher probabil-
ity of doing so than others. No less interesting is the universality probability,
the probability that a UTM preserves its universality (forever) after being fed
with a random input —i.e., for a sequence for which each bit is i.i.d. with prob-
ability 0.5 of being 0 (and ditto of being 1). Formally, the notion of property
preservation, as taken from [3], is:

Definition 6 An infinite sequence 7 preserves a Boolean property ¢ with
respect to machine M, denoted by preserves(¢,, M), if all machines M
defined from M, 7 and n € N as M £ M|ry.,] also have property ¢ (¢(M]) =

1).
From here we define the preserving probability of a property ¢:

Definition 7 The ¢-preserving probability for machine M, denoted by P]‘é[,
is the measure of the set of all infinite sequences] which preserve property ¢
with respect to M.

If we take ¢ (the property of universality), this probability was first sug-
gested by Chris Wallace [6, footnote 70][7, sec. 2.5], and conjectured to be
always 0. However, it has been shown in [3] that this probability is strictly be-
tween 0 and 1 for any UTM!!. There is a special thing about ¢, then; once it
is acquired it cannot be lost for all sequences (even though it must necessarily

10" Since universality is 0 for any null machine, to show that it is genuine we need only to
show that it is non-vanishing. This follows from the definition of universality probability as
a limit (from [6, footnote 70]) which we know (from [3, Theorem 2.4] or alternatively from
text in and surrounding our footnote 11) to have a lower bound greater than 0.

1A simpler proof of [3, Theorem 2.4 and Corollary 2.7] was given by Leonid Levin [3,
p3499], but an even simpler proof is based on the fact that a 1-dimensional fair (50%:50%)
random walk will pass any given point infinitely often from either direction. From there, we
sketch this proof. Consider a recursive enumeration of UTMs T, ..., T;,... (which might or
might not be identical) and a monotonically increasing recursive function g : N — N such
that g(1) > 1 and for all ¢ > 1 we have g(i+1) > g(i)+1. We define a UTM, U, as follows. For
a given string, z, let jz 1 < jz,2 < ... be the smallest values of j (in ascending order) such
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be lost for some sequences). And if there is just a single string which makes a
Turing machine M become a UTM then M is a UTM, and the probability of
preserving it will always be greater than 0.

Conversely, if we consider certain other properties which are preserved
indefinitely (become permanent), this means that the machine cannot be uni-
versal.

Proposition 1 For any genuine property ¢, if a machine M preserves ¢ in-
definitely for any input, then M cannot be universal.

Proof Assume M is universal. Then, it has a non-zero probability of halting.
Since a halted machine is a null machine, and property ¢ is 0 for a null ma-
chine since ¢ is genuine, then M has a non-zero probability of not preserving
property ¢. But we have assumed that M preserves ¢ indefinitely for any in-
put. So, by contradiction, M is not universal. a

Being universal implies that properties can be lost, since a machine can
become a different machine. This proposition is closer to Wallace’s intuition
[6, footnote 70], and can be seen as a companion result to [3], especially if
we consider that ¢ is intelligence, learning ability or some other significant
cognitive ability, such as ‘being educated’. If a system acquires an interesting
(or genuine) ability and keeps it forever for any input, then it has to renounce
its universality. In this way, an ‘educated’” machine must lose universality, as
Wallace conjectured.

In any case, the concept of preserving (forever) a given property is much
too specific. For many other properties, unlike universality, a machine M may
not have the property ¢, but may develop it after some inputs'?. And for some
other properties, we are not always interested in cases where the property is
kept forever. In other words, we are interested in a notion of potential such
that properties can be acquired and lost (or held to a higher or lower degree),
and the probability of this happening (and when it happens) is what potential
should really represent. This is what we address next.

3 Potential for properties of Turing machines

Let us start with sequential, deterministic machines, which is the most clas-
sical approach. Remember that ¢(M) denotes the degree of M for the actual

that the first 2j bits of = contain j Os and j 1s. If there is a k and an ¢ such that j, , = g(4),
then choose the smallest such k and ¢, and the first 2j, ; bits of x are used to get U to
emulate/become T;, and the subsequent bits of = are the input to T;. (This defines UTM,
U.) We can make the universality probability of U arbitrarily close to 1 by setting g(1) large
enough and having g grow sufficiently rapidly. Since the set {m/2" :1 < n,1 <m < 2"} is
dense in the open interval (0, 1), it also follows that the set of universality probabilities of
UTMs is dense in [0, 1].

12 The universality probability and the halting probability are very special cases. Once a
machine has halted, it can never re-start. Once a machine has lost its universality, it can
never again be universal.
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property ¢. As we have seen in the previous section we are interested in de-
scribing how this property changes after some inputs to M. But what inputs?
If we just consider a single input sequence, we may draw an evolution of the
property as shown in Figure 2 (left). However, this is not very informative
because other input sequences are also possible (and even more likely).

An alternative is to consider all the sequences, which means that a distri-
bution or measure over them must be determined. In fact, this is what we have
done in definition 7 above. This definition takes one important thing implicitly,
the measure of all sequences is the ‘uniform’ probability measure v (definition
4). It assumes that the probability of the ability is calculated with respect to
input sequences such that 0 and 1 are equally likely, i.e., inputs are just Os and
1s by tossing a fair coin. As already said, the ‘uniform’ probability measure
assumes a uniform weight on all the input sequences of a given length. There
are infinitely many other possibilities for this weight. For instance, we might
assume that input sequences are generated by another (possibly universal)
monotone Turing machine fed by the uniform probability measure v, which
would lead to a different weight for each input sequence and, consequently,
a different overall result in definition 7. In fact, this weighting given by each
probability measure is at the core of some fundamental results in inductive
inference, such as the expected value of squared prediction error, given in [47,
Theorem 3 (17)].

3.1 Point potential and period potential

Continuing from above, the idea now is to parameterise the expected (poten-
tial) value (of a property) with different probability measures. Also, instead of
considering how probable a Boolean property will be in the limit (i.e., perma-
nently), we can just define the expected value of a non-Boolean property for
a point t (i.e., temporally) as follows:

Definition 8 The point potential of property ¢ for machine M at point ¢,
under a probability measure w, is given by:

(M, ¢,t,w) £ " ¢(M[r]) - w(ro)

TEB?!

We can better understand the meaning of potential graphically. Figure 2
(right) shows a figurative evolution of point potential IT(M, ¢, ¢, w) for increas-
ing values of t. Note that the curve looks smooth because it is an average of
many (all) input sequences (using a probability measure), but it does not have
to be so (or continuous) in general.

We may also be interested in the potential for a period. A period is just
an input size range [a,b] of positive integers, where a < b, by considering all
the input strings o of size a < |o| < b. From here, we give our first definition
of period potential:
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Fig. 2 Left: Figurative evolution of a property for a given sequence (on the z-axis). Right:
Figurative evolution of point potential I1(M, ¢, t,w). The period potential IT(M, ¢, a, b, w)
is just the average of point potentials for the period t € [a, b].
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Definition 9 The period potential of property ¢ for machine M for a period
[a,b] (a <b), under a probability measure w, is given by:

II(M, ¢, t,w)

H(M’¢aa7baw)éz g_a+1

t=a

Clearly, II(M, ¢,t,t,w) = H(M,gb,t,w). Potential is then the (suitably
weighted) expected value of property ¢ after each and every input string o of
size a < |o| < b under the measure w. More precisely, it is the average value
of the property for all the machines that originate from M after feeding all
prefixes of sizes in [a, b] of sequences according to measure w, where each size
in [a,b] (rather than each sequence) is given an equal weight in the average.
Note that definition 9 also works for Boolean properties and the result is an
estimated probability.

Figure 2 (right) shows the figurative evolution of point potential I7 (M, ¢,t,w)
for increasing values of t. A period potential is just the average of any portion
in this curve (such as [a,b] in the figure).

The information given by potential is an expected value. On some occa-
sions, we may be interested in the whole distribution, i.e., how the property
¢ is distributed. While this is clearly much more informative, it also makes
things much more complicated. Alternatively, we could calculate the expected
value for a given distribution on the z-axis, as follows:

Definition 10 The generalised potential of property ¢ for machine M for a
time distribution p(t), under a probability measure w, is given by:

o0
(M, ¢,w,p) £ Y (M, ¢, t,w)p(t)
t=1
where p(t) is a discrete probability distribution on positive integers.

This would make sense when we want to weight some periods more than
others. Clearly a period potential between a and b is equal to the generalised
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potential using a uniform distribution p between @ and b (and 0 elsewhere).
For the rest of the paper, we will just stick to definition 9 as an expected value
on a period (weighted uniformly).

Clearly, the ¢-preserving probability for machine M introduced in defini-
tion 7, denoted by P;@, is just equal to lim;_, o f](M, ¢,t,v) where v is the
uniform probability measure (definition 4). The universality probability is just
a special case: limy_, o I1(M, ¢, t,v), which we know is strictly between 0 and
1 for any UTM. In fact, with a similar rationale, we can show that this holds
for any genuine property, which can be seen as an extension (or corollary) of
Theorem 2.4 in [3].

Proposition 2 For any genuine property ¢, the uniform probability measure
v and any UTM U, we have that liminf; . II(U, ¢,t,v) > 0 and
limsup,_, . II(U, ¢,t,v) < 1.

Proof The < 1 case is directly derived from the non-halting probability [5],
since some programs make a UTM halt (and this set is known to have measure
> 0) and a genuine property is 0 for these programs. The > 0 case is just
a consequence of a genuine property being a non-vanishing property, which
means that there is at least one Turing machine M and k& > 0, ¢ > 0 such
that there are at least [k2"] strings 7 € B™ for every n > 0 such that we
have ¢(M[7]) > c¢. Since U is a UTM, it can become M for at least one
input string o, so liminf, . II(U, ¢, t,v) > v(oo) liminf,_,o II(M,$,t,v) =
2~ lim inf,_, o > rem V(T0)p(M]T]) > 2719l ke > 0.

In fact, by properly choosing the UTM, we can get values arbitrarily higher
or lower (in the range of possible values for the property ¢). Nonetheless, it
is important to say that —for some properties ¢— there can be some non-
universal Turing machines for which the potential for property ¢ is much
higher.

The previous argument brings out (again) that the mere possibility of a
property being achieved is not really useful, especially if we are thinking about
observable properties. The important thing about the notion of potential is
how frequently the property can be achieved and when.

The use of a period in the notion of potential intelligence makes this ex-
plicit. It also makes the definition more precise. Actually, we can distinguish
between permanent potentials (a property is preserved forever) and temporal
potentials (a property is expected during a finite period). In practice we are
interested in temporal potentials. For instance, when we say that a baby is
potentially intelligent, we mean that it will probably have a certain degree of
intelligence during a period of her life, say, between 20 years and 60 years,
provided she has a somewhat typical education. We are not assuming that
intelligence will be preserved eternally.

Some derived notions can be defined as well. For instance, we can define
the speed that a machine takes to acquire'® an ability as follows:

13 We have used point potential here, but this could be extended to period potential.
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Definition 11 The acquisition speed that a machine M takes to reach a
threshold value c for an ability ¢ and distribution w is given by min{t :
II(M, ¢,t,w) > c}. Note that all these are expected values for a given mea-
sure w.

We can also take the perspective of the distribution and calculate, e.g.,
{w : II(M,¢,t,w) > ¢} for some ¢, which means all the distributions of
training sequences such that at least a degree of ¢ in property ¢ is achieved
after ¢ input bits. Note that this may return some distributions which assign
0 to many sequences, or may even assign all the probability mass to sequences
starting with one finite string. In the latter case, this could be understood as
perfect training sequences. We will get back on this issue later on, when we
define the notion of optimistic speed (definition 16).

3.2 Emulation

A Turing machine may be able to emulate another machine temporarily. This
raises the issue that the difference between a system having a property and
a system emulating another system having the property is indistinguishable
from a behavioural point of view. In fact, as already said, we are interested
in observable properties which are measurable by observing their behaviour,
so the distinction may be important from a conceptual point of view but not
really significant in many applications.

Our definition of potential above is parameterised for a given period, so
if we only consider a finite period, it is irrelevant whether the machine stops
emulating after the period and resumes some previous state, or keeps the
property forever. It is interesting to analyse the notion of emulation related
to the universality property . For instance, from definition 2 we can just give
the following refined definition:

Definition 12 A Turing machine U is n-universal if for every prefix-free ma-
chine M there is a string 7 such that for every string ¢ whose length is less
than or equal to n we have that M (o) = U(70).

Clearly, (n + 1)-universality implies n-universality, and co-universality is
the original definition of universality (definition 2). Note also that the result
of proposition 1 does not apply for n-universality'?.

It can be argued whether humans are potentially universal, in an informal
sense. There are some training sequences which are able to persuade a human
to do whatever the persuader wants (brain washing), and this is easier for n-
universality, since humans can be instructed (i.e., programmed) to do a given
cognitive task, as a job, especially under punishment or under threat. It is
true that humans cannot do every task, because of space and time limitations,
since human brains have finite memory (they are not ideal Turing machines)

14 There are n-universal machines which can resume their original ‘state’ after n input
bits.
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and some tasks have time constraints for which some (or all) humans may
be too slow. In any case, it is clear that humans can be instructed to do
many cognitive tasks. In a voluntary way, (resource-bounded) n-universality
is a common phenomenon for which we may have many examples, as actors
imitating other behaviours or a person knowing computer programming and
‘mentally executing’ any program, even without realising what the program
is actually calculating!®. In fact, the first (algorithm for a) computer chess
player was written by Turing and emulated by Turing himself (who had no
machine to run it on) in order to play matches with some friends (and quite
possibly also himself), although it has been estimated that the algorithm took
him approximately 15 minutes to execute per move.

It is not coincidental that the father of the concept of Turing-completeness,
i.e., UT Ms, introduced the first intelligence test for machines as an imitation
game. A computer being able to emulate (or just simulate) a human tem-
porarily could pass the test. The relation between the ability of imitating, in
general, as a UT'M, and the Turing test has recently been explored in [22].

In fact, we can imagine what Turing could have been able to do had he
designed a better computer chess player, memorised its code and emulated it
himself. This is, actually, what any human assisted by (or emulating) Chinook
(an optimal computer draughts player) can do, and become a perfect draughts
player [43]. Also, consider now any other property, such as having an 1Q of
200. If we were able to devise a program which can score 200 on regular IQ
tests, or the program for a super-intelligent agent [32], then, by emulating
it (and ignoring computational resources), any human could become super-
intelligent. This imitation (from good and not-so-good sources) is, in fact, a
great part of human learning, also present in other animals. Small children
learn by imitation, so acquiring the abilities that other humans have.

We will go back to some of these issues later on, but the concept of emu-
lation spurs two important issues: (1) resources (space and time) have to be
taken into account, and (2) interaction is an important feature that we have
been neglecting so far, since cognitive abilities are properties which are better
represented by interactive information-processing skills.

4 Potential abilities of interactive agents

Turing machines are useful for understanding some basic relations between
universality and other properties. Despite the original conception of Turing
machines as systems which read and write on the same tape (which is slightly
different to our use of self-delimiting Turing machines), the tape is not further
altered by any external agent once the computation has started. Consequently,
Turing machines are not interactive. However, cognitive abilities are usually
associated with interactive systems, embedded in a world where actions have
to be taken according to previous observations. Also, cognitive abilities have

15 Searle’s Chinese room elaborates on this for a different (and arguably misleading) pur-
pose.
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to be measured on resource-bounded interactive agents. Otherwise we may get
counter-intuitive results, since any UTM would ultimately be able to emulate
other agents if speed and space considerations were not taken into account.
From here on (recalling footnote 4), we will re-interpret the machine kingdom
{2 as the set of all resource-bounded interactive agents, as in [21]. We see this
below.

4.1 Considering computational resources

Reinforcement learning [50,58] is an appropriate setting for considering agents
interacting in an environment. Although the setting typically uses a discrete
(alternating) interaction scheme (actions and observations alternate with no
time delays), we can extend the notion of interactive system considering time.
Over the next two pages or so, we outline a formalisation for deterministic
asynchronous resource-bounded agents and environments, where they can issue
no outputs for a while (or take some time to ‘respond’), whereas the peer may
issue several outputs during this time:

Definition 13 An interactive system is defined as a tuple (7,S,0,Z, $,0),
where 7 is the time space provided with a strict order relation <, S is the
state space, O is the output space, Z is the input space, §(s,%) is a transition
rate function: § x Z — AS, and 4(s,7) is an output function: § x T — O.
There is an initial state sg and an initial start time .

We will consider that the sets 7, S, O and Z are recursively enumerable
and the transition rate and output functions are computable. In what follows,
we will assume that 7 is the set of positive rational numbers (including zero,
with tg = 0). By coupling this domain with actual (physical) or virtual time,
we can turn the definition into a time-bounded one. We will assume that sys-
tems are deterministic'®. Agents are interactive systems where outputs are
called actions, and inputs are called perceptions or observations. Similarly,
environments are also interactive systems, where outputs are called observa-
tions and inputs are called actions. The set of agents is a r.e. set. The set of
environments is a r.e. set.

We now adapt the definitions in the previous section (sec. 3) to interactive
systems. Instead of input sequences, we consider interaction histories between
the environment and the agent. An interaction between an agent « and an
environment p is possible if Z, = O, and Z,, = O, (directly, or through an
appropriate interface). Given deterministic agent o and deterministic environ-
ment u, the interaction history H(a, u) is the set of all triplets (¢, x,y) where
teT,2€Iy=0,andy € Z, = O,, such that the input and output of agent
« at time ¢ are  and y respectively (also, the input and output of environment
1 at time ¢ are y and x respectively). From here, since 7 is a strictly ordered

16 For probabilistic environments and agents the notion of emulation (which we will see
next) would be somewhat more challenging, understood as a probabilistic expectation rather
than in terms of exact values.
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set, we denote by Hg.p(c, 1) the triplets (¢, x,y) € H(a,p) where a <t < b.
Environments can modify  and agents can modify y so generally only one of
them will change for two consecutive triplets (which do not need to alternate
since agents and environments are decoupled) except for the case where both
agent and environment act at the very same time. We cannot have two triplets
with the same value t. We assume that both the agent and the environment are
time-bounded, so for every a and b, H,.; is a finite set, whose size is bounded
by (b —a)B + 1, with 8 being a fixed (usually large) constant (typically 3
will be chosen as 1/q where ¢ is a time quantum which sets the minimal time
resolution for the interaction). Finally, given an agent o we denote the agent
that results from « after interacting with p during a time t as afu, t] (starting
from tp). Actually, this is @ with a different initial state.

Universality is easily understood in this setting as the property of an agent
behaving like any other agent from a given time ¢, after an interaction history
in the appropriate environment. Environments are then seen as programs (the
notation «fu,t] makes this explicit), although this is not the usual way of
programming an agent in the field of artificial intelligence (but it may become
a more common option in the future, as we will discuss at the end of the
paper).

We can give a more formal definition of interactive emulation as follows:

Definition 14 An agent «; after interacting (or being ‘raised up’) in an en-
vironment p emulates as during a period [a,b], a,b € T, (a < b), if V'
HO:(bfa) (061 [M7 a]a ,u/) = HO:(bfa) (042, ,u/)

If b = oo we say that agent a; becomes ag after time a. The first difference
with section 3 appears because we consider time (and possibly other resources),
so there is no universal agent!”. Secondly, it also becomes more visible that
exact emulation is perhaps an idealistic view.

While the concept of universality is elusive when considering computa-
tional resources, the notion of potential can be easily adapted from the version
(namely, definition 8) for non-interactive T'Ms.

Since the distribution of interaction histories depends on both the agent
and the environment, it is easier to work with environment distributions. Let
us consider M as the set all computable environments (defined as interactive
systems), or any other subset (or class) of environments we would like to con-
sider. Over this set, we can define a distribution, p(x). This has been done,
e.g., in [33,32], by using a universal distribution p(u) = 2~ 5 (with proba-
bilistic environments and a more classical alternating interaction scheme), but
many other possibilities exist. From here:

Definition 15 The point potential of property ¢ for agent a for time ¢, € T
under an environment distribution p over a class M, denoted by II(a, ¢, t, p),

17 The same seems to apply to environments. While the notion of universal environment
is appealing, the inclusion of time makes this notion more general (but also infeasible).
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is the expected value of ¢ for o at time ¢ for all the environments in class M
weighted by p. Formally:

(a6, t,0) 2 Y dlalit]) - plu)

peM

The period potential IT(«, ¢, a, b, p) can be defined from point potential as we
did in definition 9.

4.2 Environments and kinds of potential

The use of a class or distribution of environments emphasises that potential
abilities represent expected values over an astronomical range of possibilities.
In the case of interactive environments considering that interaction is asyn-
chronous and may take time, we may have a huge amount of environments
which are either too slow or too fast. For the classical, alternating discrete
time, they may still be repetitive or apparently random, so they will have al-
most no effect on a potential ability. Actually, in many cases, the ability will
develop (or not) if the agent’s program tells it to do (or not do) so within (or
at the end of) a given period.

The notion of speed, seen in the previous section (definition 11) as the
time that an agent takes to acquire a minimum value ¢ for an ability ¢ and
distribution w, suffers the same concerns. Any definition of potential which
considers a broad sample of environments might be unrealistic. This would be
like considering that a baby is not potentially intelligent, because we calculate
the expectation of letting her grow in a random place in the universe, where,
if she survives [57, p335, sec.3], would have no interesting stimuli. As a result,
the expectation should be calculated with an appropriate (presumably much
concentrated) distribution or class, which accounts for those ‘lives’ we are
interested in or we expect the agent to face. One solution for this is the so-
called Darwin-Wallace distribution for environments, as introduced in [20].
This distribution is conceived for measuring (social) intelligence, but other
distributions could be used for other abilities. These distributions could then
be properly adapted for the calculation of potential or acquisition speed, as
we did for definition 11.

Alternatively, we can define the notion of optimistic speed as follows:

Definition 16 The optimistic speed of an agent « for showing a thresh-
old level ¢ for property ¢ during some time span s is given by: min{t :
Jp H(a, ¢, t,t+ s,p) > c}. If this minimum value does not exist, the opti-
mistic speed is infinite.

The idea behind the above definition has many possible alternative formu-
lations, meaning different things, such as argmaa:pﬁ (o, ¢, t, p) which is the
distribution of environments which gets the highest value for the property in
a given time t.



22 José Herndndez-Orallo, David L. Dowe

All this is again related to the perfect training sequence problem originally
introduced by Solomonoff [48] (and touched upon by Wallace [6, sec. 0.2.5,
p542, col.1]), but in the more realistic setting of interactive agents considering
time. In the end, definition 16 can be seen as an optimisation problem of what
environment (i.e., education) should be given to « to get a degree ¢ in ability
¢ as fast as possible. Interestingly, those agents which are easily ‘programmed’
by the environment would be able to acquire the property faster than other
agents which are less malleable. However, and much more interestingly, for
some abilities, an agent which is able to learn would possibly require fewer
bits of information to construct the program it needs to run to get the ability
than if given the program itself. In other words, some agents could learn (be
programmed) by example rather than by direct programming, and this may
be more efficient in many cases. This is in fact the approach taken by machine
learning and, most especially, by general reinforcement learning settings such
as AIXI [27,53]. This supports the study of perfect training sequences for
machines using Levin’s optimal search [35] (or any other learning machine,
e.g., AIXI), as Solomonoff did [48], rather than for UTMs.

It is also enlightening (and perhaps necessary) to consider that environ-
ments can also include some other agents, and these agents may have some
properties. The use of environments which are able to host some other agents
is seen as a requirement for many cognitive abilities which are characterised
by interacting with other agents. Recently, it has been argued that in order
to measure intelligence we require environments full of other agents of simi-
lar degrees of intelligence, and that only under a distribution of environments
that takes this into account, such as the already mentioned Darwin-Wallace
distribution [20], does it make sense to measure intelligence as an average
performance over a distribution of environments.

The existence of other agents in an environment which may have many dif-
ferent kinds of abilities opens up many possibilities for the notion of potential.
For instance, the potential of an agent can increase if we just consider environ-
ments where other agents having the property abound, since the ability can be
acquired, i.e., learnt, from other agents, by imitation. Other levels of interac-
tion can boost potential, such as having some agents transmitting knowledge
or acting as teachers. Also, some agents can acquire an ability by controlling
(or taking advantage of) other agents, such as a person with a calculator or
with an advisor.

Finally, as we will further mention in section 7, we may consider several
agents as a group and think about some members of the group having a prop-
erty or the whole group having a property. In fact, we could think of properties
of environments (instead of agents), and ask questions such as, “would this
environment develop life?”, “would this environment develop intelligence?” [6,
sec. 0.2.7, p545, col. 1]. A proper formalisation of these questions is much more
difficult than the notion of individual potential seen in this paper.
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5 Measuring potential abilities

A definition of potential ability and its adaptation to a classical and an in-
teractive setting are useful to have a precise account of the concept, and to
discuss the relations between a property and its potential. It is also useful
to better analyse conceptually some properties such as universality or intelli-
gence, which are usually associated with their potential counterpart. By mak-
ing explicit that some issues have to be considered for an appropriate notion
of potential, such as the distribution of environments and the (future) period
that the potential refers to, we have also understood that some other simplistic
views have flaws or are simply counter-intuitive.

In section 2.3, we introduced the term ‘decidable’ for those properties for
which we can find a procedure (by introspection or observation) to calcu-
late the exact value of that property for any possible machine. Clearly, most
properties will be undecidable in general. Nonetheless, even for undecidable
properties, it may be possible to approximate the value for all (or a great
proportion of) machines. In fact, decidability does not even suggest the diffi-
culty of measurement, since some decidable properties (e.g., machines always
outputting a 0 after 21990 years) might be difficult to measure.

In the end, the usefulness of the very concept of potential abilities makes
full sense if we are able to measure them. And, by measuring them, we mean
the observation of their behaviour, using tests or related mechanisms, and not
by analysing the code (or the DNA) of the system.

Apparently, the evaluation of potential abilities will be generally more dif-
ficult than the evaluation of actual abilities. The evaluation of actual abilities
is already a difficult issue, as shown by disciplines like psychometrics and
comparative psychology, and the efforts already made to develop tests for ma-
chines.

The specific problems of measuring potential abilities are not (but certainly
add up to) the problems of cognitive tests, where the result is usually a lower
bound of the actual ability of the subject, because of inappropriate rewards,
insubordination [46, sec. 6], bad interfaces, etc. It is not then the problem
referred to by (other uses of) the term potential in psychology [39,51,37], as
discussed in section 2. Instead, there are two specific problems for measuring
potential cognitive abilities. First, we are trying to measure something that has
not happened yet. So we need to infer future results. This means that we need
an accurate model (or a very good estimator) of the individual and also of the
environments which are considered for the expected value. Second, we do not
have repeatability for the same individual. Inferring the potential at a given
development stage of an individual can only be done once, so we cannot have
enough evidence to properly extrapolate. In fact, this second problem suggests
that when we talk about potential of an individual (e.g., a 3-month old baby),
we use that individual as a prototype of a bigger population (e.g., all 3-month
old babies). This is an interesting concept, because we can define the potential
of a population of individuals. For instance, if we consider a set of possible
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agents'® (2, we can define a distribution over them, £ (so Y k() = 1),
and extend the notion of potential as follows:

Definition 17 The period potential of a distribution of agents & is:

HO<¢7aab7 Ps K) £ Z H(a,¢,a,b, P) : K}(O{)
aef?

This means that we can infer potential abilities by considering populations

of agents which are similar. This is what psychometrics does. We can infer,
for instance, how intelligent a particular 6-year old child will be by the age
of 20, by taking some variables and comparing them with the evolution of
other humans for similar periods and conditions. For machines this seems to
be easier, because we can replicate agents and environments. All this suggests
three general approaches for measuring potential intelligence:

1.

An analysis of the evolution of an ability, i.e., its curve, can give informa-
tion about saturation points and when they will be reached (and how long
they can be expected to be sustained for). On some occasions, this is pos-
sible by looking at a single individual and a single environment, especially
when the curve is expected to have a particular shape, and we can infer
a plateau. For instance, negatively-accelerated curves or S-shaped learning
curves are frequently observed for many different tasks and abilities for an-
imals and AT algorithms [12,50,58,1], and can be approximated by logistic
or (cumulative) Weibull functions. This is more powerful if we can extrap-
olate the potential for a similar individual for a similar class or distribution
of environments. This is exactly what the growth chart in Figure 1 does
for stature. Also, from plots such as the one on the right of Figure 2 (or
even from a partial view of the plot) we can infer the potential ability for
similar agents (or the same agent). Of course, this estimation is easier if
we only want to calculate the potential ability for a few environments. In
the general case of an infinite class of environments, sampling is necessary.
Another way of estimating potential relies on the actual ability of a similar
subject. This does not rely on the curves of one or the other but on point
measurements. For animals, including humans, this can be done with ‘rel-
atives’, i.e., other subjects which share part of the genotype. For instance,
we can give a rough estimate of the intelligence that a child might have
as an adult by evaluating the actual intelligence of her parents. Obviously,
this use of the genotype as a predictor will only be eventually used for ma-
chines (algorithm instead of genotype) when we have that the subject to
be evaluated is a small variation (or evolution) of another machine whose
properties we know well. The knowledge about one machine can be used
to infer estimations for the related machine.

18 Extending this for all possible computable agents would depend on whether they are
probabilistic or deterministic, and resource-bounded or not. We can just consider a distri-
bution over all computable agents as defined in section 4.
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3. A third approach is to determine whether a specific actual property cor-
relates with the potential of another property, i.e. ﬁ(a, o, t,w) = ¢ (a). If
we have effective tests for ¢, then the problem is solved. Obviously, in or-
der to establish this correlation we need a thorough experimental analysis
of the evolution of ¢ for similar agents (or replications of the agent) and
the class (or distribution) of environments of interest. For some abilities,
we could even establish some relations theoretically, such as some actual
learning abilities being related to the potential of acquiring some other cog-
nitive abilities. In fact, for some abilities, we may even develop theoretical
bounds, very much in the same way that some error bounds are given for
some learning algorithms or paradigms (see, e.g., [47,30]).

In the case of machines, it will be more common (at least in the following
years) to be interested in the potential abilities of algorithms rather than
actual agents with a given state. The goal will be to analyse whether a given
algorithm will develop a property. The previous discussion (and the bulk of
this paper) has excluded the analysis of the code (for observable properties),
but it is obviously a possibility to combine some experimental measurement
with some estimations given by theoretical results about the algorithm itself
(when possible, since many properties cannot be determined theoretically even
for simple algorithms). Although the analysis of algorithms is independent of
the underlying physical machine, there are of course algorithms for which the
notion of speed (as per definition 16) and the computational cost of each step
are issues.

Finally, we have to pay attention to the notion of reward, since many
cognitive abilities, e.g., intelligence, require a way to persuade an individual
to do a task. For human adults, this is usually taken for granted, since we can
give orders and make the subject complete the test (although this does not
mean that the subject is always motivated and does her best). For children and
animals in general, the choice of appropriate rewards and interfaces is crucial.
The notion of potential and its estimation must be linked to environments
which include rewards. Also, the interface (or the range of interfaces) should
be the same for all, because otherwise the results would not be extrapolable
(for a related discussion see, e.g., [46, sec. 6][21]). The notion of universality is
also partially at odds with the idea of interface. For instance, redundant Turing
machines are machines that work with a special coding of the input (such as
00 for 0 and 11 for 1, and are null for inputs not following the code) [6, sec.
0.2.7][18, p1514, footnote 6]. Some non-universal redundant machines could
essentially become universal (redundant) machines with a proper interface —
with the redundant machine carrying out the redundantly coded version of
the original (non-redundant) calculation!®.

19 For example, if we redundantly code 0 and 1 as 01 and 10 respectively, if M is a machine
and Mg is its redundant counter-part, and (say) M (100) = 0110, then Mg (100101) =
01101001.
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6 Related notions

The concept of potential suggests possible relations with other notions, es-
pecially in the context of cognitive abilities that can be learned. Actually,
since potential deals with the development of an ability, there have been many
studies about how cognitive abilities develop in humans, with age. For in-
stance, some verbal abilities grow quickly during infanthood and then more
slowly during adulthood, while other cognitive abilities or traits that cannot
be learned (e.g., reaction time) start a small decrease at the age of 20. Some
more specific abilities, e.g., playing chess, usually reach their peak in their
thirties (or thereabouts) for professional players, although the exact point and
the development curve depends on many factors. Some abilities increase with
time because they depend on knowledge and skills that are learned over the
years.

This is not to be confused with the distinction between fluid and crys-
tallised intelligence [26], where fluid intelligence can be said to be the ability
of creating knowledge by identifying patterns, while crystallised intelligence is
defined as the ability of using previously-acquired skills or knowledge. Fluid
intelligence is usually constant from the age of 20 (or with a small decline),
while crystallised intelligence still increases slightly in adulthood. Since both
are components of usual IQ tests, general intelligence is said to be relatively
constant for most adulthood. Note that, despite their names, crystallised in-
telligence is not the “crystallised” form of fluid intelligence, so crystallised
intelligence does not represent the knowledge a subject has of a specific do-
main. Also, even though fluid and crystallised intelligence are correlated, it is
debatable whether fluid intelligence can be seen as a predictor for future crys-
tallised intelligence or, more precisely, for the future increase in crystallised
intelligence. So, it is not clear whether one can be seen, even roughly, as the
potential of the other. In fact, for example, both the fluid and crystallised
intelligence of a small baby are 0. Nevertheless, fluid intelligence can be seen
as a measure of the flexibility of a mind in terms of the use of basic deductive
and, especially, inductive abilities. As a result, high degrees of fluid intelli-
gence correlate with the potential of many other specific cognitive abilities.
However, this is also true, perhaps to a lesser extent, for crystallised intelli-
gence. For instance, we can estimate the potential ability of playing chess well
for an adult person who has never played chess by performing a test of fluid
and crystallised intelligence, since both fluid and crystallised intelligence are
necessary for learning and playing a game such as chess well.

Related to the above distinction between fluid and crystallised intelligence
we find the exploration vs. exploitation dilemma. Many systems behave more
exploratively in unknown environments where risks and needs are low, while
they exploit what they have learned during previous explorative stages when-
ever they need to achieve a goal. During exploration, systems typically ac-
quire knowledge while, during exploitation, systems apply this knowledge.
This seems to relate fluid intelligence with exploration, and crystallised intel-
ligence with exploitation. This relation means that fluid intelligence would be
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more beneficial during exploration stages and crystallised intelligence should
be more beneficial during exploitation stages. For instance, a system with high
fluid intelligence but low crystallised intelligence may be able to find complex
patterns and construct elaborate concepts (good at exploration) but it then
may fail to apply them on practical problems (bad at exploitation). This does
not mean, however, that a system that is very explorative must have high
fluid intelligence or vice versa. Similarly, a system which tries to exploit the
environment from the very beginning is not necessarily a system with high
crystallised intelligence, or vice versa. Actually, the relation becomes more
subtle when we think about measuring an ability. Typically, if a subject is
more explorative, i.e., more playful (such as children or some animals), it is
very difficult to measure some abilities (including fluid intelligence), and the
scores would be an under-estimation, because the subject does not focus on
the task. This is related to the notion of potential of a test in psychometrics,
as we described in section 2.2 but not directly to the notion of potential in
this paper. In the case of machines, we can, for some abilities, hard-wire or
condition the system to be in ‘exploitation mode’, whenever an evaluation is
to be made.

The connection of our notion of potential with the exploration vs. exploita-
tion dilemma appears when the abilities are related to learning. In reinforce-
ment learning, e.g., we usually employ a discount rate parameter. In order to
solve a task, we can distinguish between learning from the environment (pos-
sibly moving randomly or using the actions that get more information) and
exploiting the knowledge (using the actions which get higher expected reward).
Many experimental settings in reinforcement learning distinguish these stages.
However, when evaluating a learning ability, we cannot split these two stages,
since we want to evaluate how quickly the system is able to learn and exploit
a given environment. Systems that take too much time exploring would score
poorly but systems that try to exploit from the very beginning can be stuck
in local optima or never reach some important information about the environ-
ment. Loosely, we could say that if a system is too biased towards exploitation
then it will never reach its full potential. This interpretation is misleading,
because it is the technique (e.g., Q-learning) which is below its full potential
for that problem, but not the system. The system has a fixed, evolving or
adaptable discount rate and, according to that configuration, the system must
be evaluated. The potential of a subject is actually related to considering a
future time after a variety of environments, but not considering variations of
the subject. Finally, and quite differently, we could define the cognitive ability
of ‘being explorative’ or abilities for which the result in the limit (or in the long
term) is more important than having a good result quickly. In that case, the
testing device could be tuned to give more value to late rewards than to initial
rewards and to be mild with mistakes. In tests using RL-like environments
and rewards (such as [33,18]), this could be done by modifying the discount
rate of the test or the way rewards are averaged [17,28,29,34].

In general, it is important to consider the notion of potential as an expected
value. The definition depends on the individual, the ability, the environment
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and the period, but the measurement may introduce some new issues, since po-
tential abilities cannot be measured directly and must be indirectly estimated
from other (similar) individuals, other (related) abilities, other (distributions
of) environments and other (equivalent) time periods, as has been examined
in section 5.

7 Discussion

In this paper we have focussed on the potential of individuals that acquire or
lose a given ability (or increase or decrease its score). Along the way, we have
also seen that the notion of potential could also be applied at many levels. For
instance, we discussed that an environment could contain agents which may
have some abilities. While it is clear that, in this case, the environment (as
a closed system) does not have any of these abilities, it hosts agents having
them. In the literature, this view of potential (usually referred to as ‘emer-
gence’) has been used for three particular properties (arguably the three most
important properties of all): universality, life and intelligence, which are also
deeply related.

For instance, given a real or artificial world, we may be interested in de-
termining whether the world can contain universal computers (possibly with
resource limitations). It is clear that the universe, as we know it, holds resource-
bounded universal computers. So, the universe, at the Big Bang (or however
it might have begun), was a potential universality-holder?’. The universe has
developed life (at least on Earth), and DNA is another example of a Turing-
complete machine. Some programs ‘written’ with this DNA (i.e., some genome)
‘generate’ humans, who are able to reason and think. Humans are able to em-
ulate and hold models of the world. Natural language is a powerful Turing-
complete language [54, sec. 9.3]. So universality emerges once again. Finally,
humans have created computers, yet again sources of local universality. This
trip across levels also occurs for life and intelligence, and will be more and
more frequent in the future, with the growth and development of artificial
life, the technological singularity and other self-replicating and self-improving
systems.

All this can be studied in terms of being possible, being probable or just es-
timating when it will take place. For instance, Solomonoff [49] studied several
stages in the process towards the technological singularity, and gave predic-
tions of when these stages could come, and not their probability. It is clearly
more difficult to estimate when a property will appear than just estimating
its probability. Also, it is important to estimate whether it will endure. For
instance, current DNA ensures universality and self-replication, but it seems
that self-replication came much before.

20 Tn fact, Conway’s game of life [13] is a very simple ‘universe’ and can contain universal
computers. Given an appropriate ‘big bang’ (i.e., a start-up configuration of the cells), it
has been shown that Conway’s game of life can contain a universal Turing machine.
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There is also a strong parallelism between an artificial life system running
on a computer and a fantastic world running on a human’s mind, such as fig-
uring out a different fictional world by imagination or after reading a novel [7,
sec. 7.7, p968]. Intelligence, especially with natural language, is able to host
other worlds (thoughts, situations, memories, etc.) which can have or host
some other properties. In fact, a natural language and many Turing-complete
computer languages share the property of being able to describe any effectively
computable function. Minds and machines are just the substrate to execute
them. Since natural language can be considered a universal programming lan-
guage, the ability of learning a language may be seen as the ability of becoming
universal (Wallace makes this point as well in [54, sec. 9.3]), in the restricted
sense above.

While all of this has been left out from the analysis in this paper, it is rele-
vant for the concept of potential, and most especially for the properties of uni-
versality and intelligence. Some recent works have also explored related ideas
in the context of intelligence, such as ‘self-modification’, ‘mortality’, ‘delusion’
and ‘survival’ [41,42].

Back to the mainstream view of potential in this paper, i.e., the capac-
ity of individuals, we have seen that two important properties, universality
and intelligence, are intertwined. Absolute universality (i.e., becoming univer-
sal) is incompatible with preserving intelligence for all inputs. Also, it implies
that the machine can halt (i.e., die). However, other more restrictive views
of the universality property are more compatible with (or even intrinsic to)
intelligence, such as m-universality (temporal emulation), resource-bounded
universality, etc.

The notion of potential ability is not only useful to clarify the relation
between some properties. Having a clear definition of the concept is crucial
for the characterisation of individuals, since humans, non-human animals and
other machines are usually classified by their potential abilities rather than by
their abilities. For instance, a baby is classified as a human being, even though
it has none of the cognitive abilities an adult human being has. In fact, the
very concept of ‘person’ is, in part, potential, and this and other concepts
should be very clear before we want to extend them to Al artefacts. Actually,
these notions lead to highly controversial ethical issues, such as the set and
degree of potential properties required to make the processes of replication,
abortion and/or euthanasia ethically unacceptable for machines.

The notion of potential intelligence, in particular, and any procedure that
could be used to estimate it can be crucial for the field of artificial intelligence.
It is quite unlikely that we can construct an algorithm such that it makes a ma-
chine intelligent the first day. Surely, the machine will require an appropriate
environment (such as a playschool [14]) and some training (optimal training
sequences [44])?1. How long the training is (and how difficult finding a good
training sequence is) will of course be related to potential abilities. In fact,
in the worst case, training a machine to be intelligent would be like taking a

21 Recall the related quotations from Turing (1950) [52, sec. 7] in our footnote 7.
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UTM and finding the program that makes it intelligent. It looks like a trade-
off between these two extremes (a very intelligent machine from scratch or a
UTM to be given a good training sequence) needs to be found. This is the
direction of the field of artificial general intelligence, which tries to split from
the task-specific view of mainstream artificial intelligence. More orientated,
the roadmap for machine intelligence may lie on the gestation of potentially
intelligent systems and the construction of optimal training environments for
intelligence.
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