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Abstract. Distances and similarity functions between structured data-
types, such as graphs, have been widely employed in machine learning
since they are able to identify similar cases or prototypes from which
decisions can be made. In these distance-based methods the justification
of the labelling of a new case a is usually based on expressions such as
“label(a)=label(b) because case a is similar to case b”. However, a more
meaningful pattern, such as “because case a and b have properties x and
y” is usually more difficult to find since the connection of this pattern
with the distance-based method might be inconsistent [4]. In this paper
we study possible consistent generalisation operators for the particular
case of graphs embedded in metric spaces.
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1 Introduction

While in some learning problems the data can be described by a single-fixed row
of nomimal or numerical attributes, in most others, such as biomedicine or web
mining, a structured representation language is needed.

In general, for structured-data domains (e.g. graph-based instances), those
properties inherent to the sort of data (e.g. common subgraphs, trees, cycles,
etc.), might be important to achieve a competitive solution. This circumstance
has motivated that some learning techniques which directly deal with struc-
tured data have been developed (multi-relational data mining [3]). Among them,
distance-based methods are really popular for this purpose because several dis-
tance functions can be found for different sorts of data. However, unlike the ILP
approaches, these methods do not give an explanation of their predictions. It
is due to the fact that matches between two objects (e.g. two molecules) are
encoded by a number (their distance). Unfortunately, model comprehensibility
would be useful in some contexts. Imagine, for instance, in molecule classifica-
tion, how interesting it would be to describe a cluster of molecules by saying
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what chemical structures these molecules have in common instead of saying that
they are closed according to a certain distance measure used in the clustering
process.

Providing the possibility of this kind of descriptions for a distance-based
algorithm would imply to incorporate a pattern language and generalisation
operators [7]. But in this case, the model (expressed in a hopeful comprehensible
pattern language) which generalises a set of elements could be inconsistent with
the distance employed. The idea was initially considered in [4] by introducing the
notion of distance-based binary generalisations. In [5], a more general framework
in order to handle n-ary generalisation operators and to introduce the notion of
minimal distance-based generalisations is presented.

In this paper, we use some of the concepts introduced in [5], to study gen-
eralisation operators and pattern languages for graph-based representations em-
bedded in metric spaces. For this purpose, we consider two graph distance func-
tions: the first one is described in [2, 8], and then we propose a second distance
which is a bit more general. Next, a pattern language for graphs is introduced.
This language is utilised to represent, in a comprehensible way, the generalisa-
tion computed by the generalisation operator. Next, for each metric space, a
distance-based generalisation operator is defined according to our framework.
Studying these generalisation operators will let us know how difficult extracting
consistent patterns can be in each metric space.

2 Preliminaries

In this section we briefly review some basic concepts about graphs and graph
distances. For any concept not explicitly included we refer the reader to [2].

A graph is a 4-tuple G = (V,E, µ, ν) where V is a finite set of vertices, E is
a set of edges (each one denoted as a pair of vertices belonging to V × V ), and
µ and ν are functions which assign labels to vertices and edges respectively. The
number of nodes of a graph G = (V,E, µ, ν) is given by |V | and it is denoted as
|VG|. The number of edges of a graph G is given by |E| and is denoted as |EG|.
Given a graph G = (V,R, µ, ν), a subgraph of G is a graph S = (VS , ES , µS , νS)
such that VS ⊆ V , ES ⊆ E ∩ (VS × VS), and µS and νS are the restrictions of
µ and ν to VS and ES respectively, that is µS(v) = µ(v) (res. νS(e) = ν(e)) if
v ∈ VS (res. e ∈ ES) and undefined in otherwise.

A graph G1 is isomorphic to a graph G2 if there is an edge (and label)
preserving bijection between all vertices in G1 and G2. Let G, G1 and G2 be
graphs. G is a common subgraph of G1 and G2 if it is a subgraph of G1 and
G2. A common subgraph G of G1 and G2 is maximal, denoted as mcs(G1, G2),
if there exists no other common subgraph G′ such that G is a subgraph of G′.
A subgraph G1 of a graph G = (V,E, µ, ν) is said to be induced by a set of
vertices W ⊆ V if for any pair of vertices w1 and w2 of W , (w1, w2) is an edge
of G1 if and only if (w1, w2) ∈ E, that is, G1 is isomorphic to G. The concepts
of common subgraph and maximal common subgraph are trivially extended to
subgraphs induced by a set of vertices. We denote a maximal common subgraph



of G1 and G2 induced by a set of vertices as vimcs(G1, G2). That is, vimcs looks
for a common set of vertices W in G1 and G2 such that W induces the maximal
common subgraph and returns this common graph. Figure 1 illustrates with an
example the above concepts. Note that, in general, there can be more than one
maximal common subgraph induced by a set of vertices.
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Fig. 1. G1 is the maximal common subgraph of G1 and G2 whereas the subgraphs
marked with dashed points and lines are the two maximal common subgraphs of G1

and G2 induced by a set of vertices.

We denote as d1 and d2 the distances we are working with. The first one is defined
in terms of the minimal cost mapping transforming one graph into other. It is
shown that d1 can be expressed as d1(G1, G2) = |VG1 |+ |VG2 | − 2|Vvimcs(G1,G2)|
(see [2]). By modifying the definition of cost mapping employed in [2] we have
derived a more general distance d2 which can be calculated as d2(G1, G2) =
|VG1 |+ |VG2 | − 2|Vmcs(G1,G2)|+ |EG1 |+ |EG2 | − 2|Emcs(G1,G2)|.

Regarding the graphs G1 and G2 in Figure 1, we have |VG1 | = |VG2 | = 5,
|EG1 | = 5, |EG2 | = 6, Vmcs(G1,G2) = 5, Emcs(G1,G2) = 5 and Vvimcs(G1,G2) = 4.
Hence, d1(G1, G2) = 2 and d2(G1, G2) = 1.

The computation of both distances in a feasible time might be a difficult task
because the computation of mcs is needed and it is NP -complete. However, we
are not interested in its calculus but we will use them to illustrate that extracting
meaningful patterns in the metric space of graphs (G, d2) is easier than in (G, d1).
The reason is that, as we will see, unlike mcs, the vicms of two graphs is not
unique, and we would have to take all of them into account in order to define a
distance-based generalisation operator in (G, d1).

3 Distance-based generalisation operators

In this section we present the main concepts related to our proposal of a gener-
alisation framework based on distances. For more details see [5].

Our approach aims to define generalisation operators for data embedded in a
metric space (X, d). These operators are denoted as ∆(E), where E is a finite set
of elements (|E| > 2) of X to be generalised. In principle, a generalisation of E
will be a particular set in 2X containing E. But, for the sake of comprehensibility,
the generalisation computed by ∆(E) will be expressed by a pattern p belonging
to a pattern language L. In fact, every pattern p represents a set of elements of



X and it is denoted by Set(p). In this way, we can say that an element x ∈ X is
covered by a pattern p, if x ∈ Set(p).

Additionally, if for every E, ∆(E) computes a generalisation of E “explain-
ing” the distances among the elements of E, we will say that ∆ is a distance-based
generalisation operator. Then, the objective will be to find possible distance-
based generalisation operators for the metric space (X, d).

For this purpose, we will focus on a particular kind of metric spaces, the con-
nected ones. Informally speaking, this property means that given two elements
in the metric space, we can always go from one to the other through elements
belonging to the space such that these elements are at a minimal distance. In
order to formally define what a connected space is, we need to introduce the
notion of δ-path and the length of a δ-path.

Given a metric space (X, d), I(X) = inf{d(x, y) : ∀x, y ∈ X, x 6= y} denotes
the infimum distance of X. Let δ be a real positive number such that δ = I(X).
Then, if I(X) > 0, a δ − path is a sequence of elements P = {xi}n>0

i=0 ,∀xi ∈ X,
if d(xi, xi+1) ≤ δ for all 0 ≤ i ≤ n− 1. Informally, if (I(X) = 0), a δ − path is a
continuous finite curve belonging to X. We also need the concept of the length of
a δ-path P which is denoted by L(P ). If P = {xi}n>0

i=0 , L(P ) =
∑n−1

i=0 d(xi, xi+1).
If P is a curve, L(P ) is just the length of the curve.

Let (X, d) be a metric space, two elements x, y ∈ X are connected by a δ-path
or equivalently, are δ-path connected, if there exists a δ-path P = {xi}n>0

i=0 such
that x0 = x and xn = y. Next, we will say that X is a connected metric space,
if for every pair of elements x and y belonging to X, they are δ-path connected
with δ ≥ I(X). From this definition, we can say that a set S ⊆ X is connected,
if for every pair of elements in S they are δ-path connected, being δ = I(X). In
what follows, we will use the term of x-connected space meaning that the metric
space is connected and its I(·) = x.

The notion of connected spaces and sets plays a key role in our approach
since much too specific generalisations can be rejected (see Example 1).

Example 1. Let us suppose we are clustering graphs with the distance d1 defined
in Section 2. Imagine that each graph represents an organic compound and we
would be interested in extracting some patterns saying which kind of molecules
can be found in a cluster. One of the obtained clusters consists of two molecules
m1 and m2 which are depicted in Figure 2.

CH2CH2

CH2

X1

pattern p

CH2CH2

CH2

CH2CH2

CH2

Br

CH2

Cl

CH2

CH2

Bromine−cyclopropane        CyclopropaneChlorine−cyclopropane

Fig. 2. The pattern p does not cover the cyclopropane molecule.

Let us obtain a pattern explaining the data distribution in this cluster. For
this purpose, one could think of the pattern p (see Figure 2) saying “all the



molecules with a cyclopropane structure and an extra atom”. But this pattern
might be much too specific. Considering that the molecules are really graphs
in the space (G, d1), we could think that the pattern p overfits the data since
the cyclopropane molecule, which would be placed “between” 1 m1 and m2,
that is, d1(m1, cyclopropane) = d1(cyclopropane,m2) = 1, is not covered by
this pattern. Perhaps, a more natural pattern would be that one saying “all the
molecules built from cyclopropane”.

The last reasoning can be modelled in terms of connections. We know that
(G, d1) is a 1-connected space [6], and clearly, the set given by Set(p) is not
connected because the elements m1 and m2 are not connected by means of a
1-path included in Set(p). That is, m1 and m2 are, at least, 2-path connected
since d1(m1,m2) = 2. However, Set(“all the molecules built
from cyclopropane”) would be connected.

Finally, in order to define distance-based generalisation operators, the con-
cept of “nerve” of a set of elements E is needed. A nerve of E, denoted by N(E),
is simply a connected2 graph whose nodes are the elements belonging to E. Now,

Definition 1. (Distance-based generalisation operator) Let (X, d) be a
connected metric space and let L be a pattern language. Given a mapping ∆ :
E → p ∈ L, we will say that ∆ is a (proper or hard) distance-based generalisation
operator if, for every E ⊆ X, E ⊂ Set(p), Set(p) is a connected set and there
exists a nerve N(E) such that,

– (proper) For every pair of elements x, y in E such that they are directly
linked in N(E), ∆(E) includes some I(X)-path P connecting x and y such
that d(x, y) = L(P ).

– (hard) For every pair of elements x, y in E such that they are directly
linked in N(E), ∆(E) includes all I(X)-path P connecting x and y such
that d(x, y) = L(P ).

Definition 1 can be difficult to understand. Let us see an example with a
binary sets of elements E = {x, y}. In this case a proper distance-based operator
will be that one computing a generalisation of E which includes some of the paths
built from the elements placed “between” x and y. The generalisation is hard,
if it includes all the paths built from the elements placed “between” of x and y.
In what follows, we will refer to them as proper or hard operators. On the other
hand, independently to the operator, we can say that a pattern generalises E
in a proper or a hard way if Set(p) satisfies the conditions above (for further
details see [5]).

The distinction between proper and hard is due to the fact that hard gener-
alisations explains the distance among the elements better than the proper ones
because it takes into account all the elements “between” two given elements
and not only some of them as proper generalisations do. In fact, in some cases,
1 Formally, given three elements x, y and z belonging to a metric space (X, d), we say

that z is in “between” of x and y if d(x, y) = d(x, z) + d(z, y).
2 Here, the term connected refers to the well-known property for graphs.



proper generalisations do not always have an intuitive interpretation in terms of
the distance involved [5].

4 Generalising set of graphs

In this section, we study some distance-based generalisation operators for graphs
embedded in the metric spaces (G, d1) and (G, d2). First, for each metric space
and using the pattern language L that will be defined below, we try to charac-
terise the hard operators. From these hard operators, we will see how complicated
the metric space is in order to compute distance-based patterns.

The pattern language L we are working with is composed of two types of
patterns: the first-kind (L1) and the second-kind (L2) patterns. The so-called
first-kind patterns will be a set of graphs built from an alphabet of labels contain-
ing constant and variable symbols. Regarding the second-kind patterns, these are
expressed in terms of the first ones and they are specially introduced to improve
the expressiveness of (L1).

Definition 2. (First-kind patterns (L1)) Given G the set of all the graphs
over an alphabet of constant symbols A. If X is a set of variable symbols such
that for all Xi ∈ X, Xi represents any constant symbol in A, then the language
of first-kind patterns (L1) is defined as the set of all the graphs over the alphabet
A ∪X.

Roughly speaking, the first-kind pattern is the intensional representation of a
set of graphs sharing a particular topological structure, just as we show in the
following example.

Example 2. Given the first-kind pattern language (L1) defined from the set of
constant symbols A = {a, b} and the set of variable symbols X = {X1, . . . , Xn, . . .},
consider the patterns p1 in Figure 3.

P1 a
X1

2X=

Fig. 3. An example of first-kind pattern.

This pattern represents only those graphs g in G made up of one edge and
two vertices such that one of the vertices is labelled by the symbol a.

Although L1 permits quite interesting patterns, it still possesses some limita-
tions. That is, imagine that we want to denote all the graphs in G having a
subgraph in common. Despite the fact that this request seems usual, there is no
pattern in L1 expressing it. For this reason, the class of the second-kind patterns
is introduced.

Definition 3. (Second-kind patterns L2) Given the language of the the first-
kind patterns L1, the language of the second-kind patterns L2 is defined as, L2 =
{[p] : ∀p ∈ L1} ∪ {>}, where [p] denotes all the graphs g in G having a subgraph
covered by p and > denotes the whole space G.



Example 3. The second-kind pattern p depicted in Figure 4 represents the set
of all the graphs in G containing the path3 a− a− b.
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Fig. 4. An example of second-kind pattern using the notation [·].

Next, let us define distance-based generalisation operators for (G, d1) and (G, d2).

4.1 Generalisation operators for (G, d1)

Before defining a generalisation operator, we have proved that the metric space
(G, d1) is a 1-connected metric space [6]). Now, let us characterise hard gener-
alisation operators in (G, d1) using L. Note that, for every finite set of graphs
{gi}n>2

i=1 in G, an operator ∆({gi}n>2
i=1 ) will return a pattern belonging either to

L1 or to L2. It can be shown that first-kind patterns do not represent connected
sets (see [6]) and therefore, according to Definition 1 they cannot represent a
set computed by a generalisation operator. Then, the only possibility is that ∆
computes a second-kind pattern. Thus, a hard operator is given by (see [6]):

∆({gi}n>2
i=1 ) =

{
[p] if conditions (1) and (2) hold
> otherwise.

where conditions (1) and (2) are:
(1) p is a subgraph of the mcs({ri}n

i=1), where mcs({ri}n
i=1) 6= ∅ and each

ri denotes one of the possible vimcs({gi}n
i=1).

(2) there exists a nerve N({gi}n
i=1) such that for every pair of graphs, gi and

gj , directly linked in the nerve N , all the possible vimcs(gi, gj) are included in
{ri}n

i=1.
As we can appreciate, the above conditions are extremely restrictive. For

instance, regarding the two graphs depicted in the Figure 1, the pattern [a− b]
generalises G1 and G2 since they have the edge a − b in common. However,
this pattern is not hard because the common squared subgraph is an element
“between” G1 and G2 but it is not covered by the pattern. In fact, p does not
satisfy condition (1) since [a−b] is not a common subgraph of the vicms(G1, G2).
This fact gives us an idea about how difficult is computing hard operators in
this space. Imaging an algorithm implementing ∆, this would have to check if
a subgraph of a set of graphs G is in its turn a subgraph of the vicms(G).
According to this observation, the algorithms in the literature approaching the
maximum common subgraph among a set of graphs [1] cannot be used as an
implementation of ∆ because it can not be ensured that the returned subgraph
belongs to the intersection of the vicms.
3 The concept of path referred here, is the well-known concept of path of a graph.



4.2 Generalisation operators for (G, d2)

The metric space (G, d2) is 1-connected as well [6]. One of the advantages of
working with this metric space is that hard generalisation operators can be
characterised in a more natural way using L. Doing a similar analysis that in
the previous subsection, hard operators can be defined in (G, d2) as (see [6]):

∆({gi}n>2
i=1 ) =

{
[p] if p is a subgraph of the mcs({gi}n≥2

i=1 )
> otherwise.

Unlike the space (G, d1), the hard operators can be defined easier and imple-
mented by using one of the several algorithms in the literature for searching
common subgraphs among a set of graphs since now ∆ directly uses the mcs of
the set of graphs instead of the vicms of the set of graphs. Any subgraph returned
by these algorithms can be perfectly used to define a hard generalisation.

5 Conclusions

Graph based learning is a challenging field due to the growing interest shown by
several disciplines in mining data represented by means of graphs. However, most
of the algorithms dealing with graphs, specially distance-based, do not return a
model using graph features (e.x. common paths, walks, etc.) explaining why a
sample has been labelled or grouped in one way. Although this kind of models
is useful from a comprehensibility point of view, obtaining them could lead to
inconsistency problems with the distance employed. In this work, we use some
of the concepts of [5] to analyse which consistent models can be obtained when
graphs are embedded in metric spaces.
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