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Abstract— We reconsider validation and maintenance characteristics of software 

systems under the analogy between software science and philosophy of science or, 

more precisely, between software construction and machine learning (ML). From this 

outset, many classical techniques from ML can be used. In particular, we adapt a 

constructive extension of reinforcement learning to address the question in a formal 

way. We define a measure of software ‘predictiveness’, which is identified with soft-

ware validation, to represent the stability of a system. An inversely related measure, 

the probability of modification, is also obtained for each component and for the 

whole system. The application in practice of these measurements is discussed. From 

here, we present some models of maintenance cost based on a detailed combination of 

predictiveness and modifiability. We study different software arrangement topologies 

theoretically. Hierarchised topologies, especially downward confluent ones such as 

trees and lattices involve less maintenance costs. Moreover, some intuitive rationales 

are confirmed, namely that compressed systems and coherent models (without 

patches or exceptions) are manifestly more maintainable. 
 

Index Terms— Software Validation, Software Maintenance Models, Machine 
Learning, Induction, Software Redundancy, Software Components Topology. 
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I. INTRODUCTION 

T HE analogy between programs and scientific theories outlined in (Fetzer 

1991) and characterised in (Hernández-Orallo 2000b), and the modern view 

of software as an experimental science (Basili et al. 1986) (Basili 1993) has 

left behind the previous unsuccessful analogue between software entities such as 

specification, program and verification, and mathematical entities such as problem, 

theorem and proof (see a thorough discussion in Hernández & Quintana 2000a) . 

Philosophy of science provides a much more enlightening paradigm for software 

construction, by explicitly recognising that software engineering is an experimental 

science but also that the development of an actual software system requires more 

inductive techniques (Partridge 1997) than deductive ones. 

More concretely, machine learning (ML) is a more precise and practical frame-

work for this new paradigm for software engineering. A software system is re-

garded as a learning system. Traditional software systems are viewed as eager 

learning systems, where the system is an intensional and operative expression of 

the requirements, which behaves correctly in a certain environment. By using the 

ML terminology, requirements can be identified with the training data, the software 

system is just a working hypothesis and correction is more properly viewed as pre-

dictive accuracy.  

The new wave of software paradigms, under very different banners such as in-

telligent software (Maes 1995), smart software and software agents (Genesereth & 

Katchpel 1994)(Nwana 1996), interactive software (Wegner 1996) or adaptive 

software (Lieberherr 1996) rounds off the analogy with ML, because they can be 

seen as more reactive or interactive learning systems, and many results and tech-

niques, especially from lazy methods (Aha 1997), can be applied to them from the 
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sub-fields of query learning, case-based reasoning, knowledge acquisition and revi-

sion, etc. 

In our opinion, it is somehow short-sighted to try to develop intelligent, smart, 

interactive or adaptive software from scratch, without regarding more than thirty 

years of theoretical and experimental results from ML. Even in the case of ‘tradi-

tional’ software, it is worth adapting some constructions, techniques, methods and 

theoretical results to better understand the development and nature of software sys-

tems. 

In this way, this paper ‘reuses’ for software development a theory initially de-

vised to account for constructive reinforcement learning. The following theory is 

adapted from (Hernandez-Orallo 2000). The idea is based on the fact that, whatever 

the approach to knowledge construction, the validation must come from a rein-

forcement with respect to the evidence. Moreover, the revision or modification of 

knowledge must come from a partial or total weakness of the theory or, in other 

words, a loss of reinforcement. 

Thus, the use of reinforcement as a tool for the study of the validation and revi-

sion of an inductive theory is translated into its use for the validation and main-

tainability issues of software systems. 

The paper is organised as follows. Section 2 adapts the ML paradigm for soft-

ware, highlighting some assumptions and technical preliminaries to work on with. 

Section 3 applies a theory of reinforcement to software components and Section 4 

defines some measures of system predictiveness, stability and probability of modi-

fication, by using an upward propagation of reinforcement. Section 5 introduces 

several models to account for the propagation of modifications, usually top-down. 

Finally, section 6 merges these two ‘propagations’ in order to study the mainte-

nance cost of different software topologies. The most technical work is described 
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in the appendix. Section 7 comments on different extensions and refinements of the 

previous study and Section 8 concludes the paper. 

II. ML PARADIGM FOR SOFTWARE 

We have just described how the analogy between software and learning can in-

spire and justify the use of several frameworks and techniques from ML, and it 

even forces a re-understanding of software quality factors and life-cycles (see 

Hernández & Quintana 2000a). However, the adaptation for validation and mainte-

nance issues has some technical difficulties. 

A. Adapting the ML framework  

First, the sample data for constructing a software system is composed of experi-

ence from other software systems, software repositories and requirements informa-

tion. The experience and software repositories can be well formalised under the 

usual “background knowledge” in ML, which can be expressed in an intensional 

way and is supposed to be validated. However, the information that is usually gath-

ered up for requirement elicitation is not composed mostly of extensional data such 

as input-output pairs or positive and negative examples. On the contrary, this in-

formation provided for the construction of a software system is composed of base 

cases, scenarios, interviews and a great amount of intensional knowledge. 

Secondly, once the system is in operation or in the implantation stage, the vali-

dation cannot come exclusively from its use, it necessarily must be combined with 

the user’s satisfaction about the product, by extending reinforcement with rewards 

and penalties. 

Thirdly, to study maintainability, we must study two different things: the predic-

tiveness of software, i.e., the expectancy of future modifications, which directly 
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depends on the reinforcement which has been distributed upwards, and the conse-

quences that each change may have in other components, which determines a 

downward flow. However, the first topology is dynamic while the second one is 

usually static. 

Sample data. Training set 

It is essential to discern what will constitute the examples or sample data from 

which reinforcement originates. In ML, these cases are usually facts, correspon-

dences, pairs of input-outputs, etc. Classically, it is said that the behaviour of any 

system can be described in terms of input-output pairs, i.e. a function, expressed 

under a proper codification. However, theoretically, it has been proved that most 

complex systems cannot be identified by a finite data set of input-outputs (Gold 

1967). Intuitively, part of the data must be given in an intensional way. Finally, 

even if this important fact is ignored, in practice, the effort to convert a software 

system in terms of binary input-output is not sensible nowadays. 

Contrarily, it is more practical to extend the notion of example. Apart from in-

put-output pairs, we can identify many sorts of examples in the training phase (or 

requirements elicitation). They may be extensional, such as a use case, a scenario, a 

row in a correspondence table, a query and answer, etc., or an intensional concept. 

Even each sentence from the specification in natural language can be used as an 

example. 

As we will see, any of these sorts of examples can be used for reckoning rein-

forcement. The only requirement is the definition of a proper notion of ‘accor-

dance’, i.e., that a system is in accordance with some example. For instance, in the 

case of input-output pairs, the idea of accordance is extremely simple; if the system 

receives the input and returns the output as a result, the system is in accordance 

 



 J. Hernandez-Orallo / Software As Learning: Validation and Maintenance Issues 6 

with the example. However, it may be more difficult to define ‘accordance’ for 

other kind of examples. In any case, it is important not to measure the different ex-

amples with the same value, because some of them are incomparable. Hence, the 

idea is to study reinforcement in a separate way for each sort and then try to put all 

that information together. 

Granularity of propagation 

One of the objectives of our study is the detection of which parts are being more 

reinforced than others, in order to know which are more predictive to future situa-

tions, or in other words, are less expectable to be modified in the future. 

The first thing to do is to recognise the entities or components where we are go-

ing to centre the measurement. Although in the following we will focus on soft-

ware components, our idea of component will always be broader than “component 

software” (Szyperski 1998) and easily extensible to any other system component, 

either physical (hardware) or logical (software). 

The most minute choices, such as an instruction, show that reinforcement must 

not be distributed by the execution trace. For instance, some instruction can appear 

in a loop, being unfairly reinforced. On the other hand, the choice of large compo-

nents provides wider views of how the software is being used. However, this 

higher level presents some other problems. For example, a module A can make use 

of another module B for just one functionality whereas it can use a module C for 

many functionalities. In some way, C should be more reinforced than B, but this 

granularity does not allow this appreciation. Although some of these problems are 

solved in section 3, once again, the idea is to measure reinforcement for the greater 

number of granularities as possible and then try to understand all the information 

jointly. 
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Validation data. User’s accordance 

The idea of accordance for the training set is clear. All the examples are usually 

labelled with positive and negative tags such as “the system should behave as the 

following scenario describes” or “the following situation should not happen”. 

However, when the system is in use, most of the situations are not like the train-

ing set, so they must be accompanied by the tag “this behaviour has been correct” 

or “this has been a system error”. This feedback can be given by the environment, 

an external system or, more consciously, the user. In the case the behaviour is ‘cor-

rect’, the system is reinforced, as when a new example is predicted by a theory. On 

the other hand, when the behaviour is detected as ‘incorrect’, we have a prediction 

error of the system. A simpler assumption could be that things are going well until 

some feedback states the contrary. In this way, software is being reinforced as time 

passes by and no modification has been necessary. However, it has been shown in 

most ML paradigms that learning from positive data only is much harder. 

For semantic-based representational languages, there is usually a notion of proof 

or positive covering, i.e., a theory covers an example iff the example can be de-

rived from the theory. This results in a Boolean notion of accordance. Examples of 

these languages are propositional languages, Horn theories, full logical theories, 

functional languages, some kind of grammars, and even higher-order languages. 

However, with our generalisation of example and with general software systems, 

one cannot assign a true or false label to the behaviour of a system wrt. some case. 

It is more accurate to talk about a degree of correctness, from absolute correctness 

to full malfunctioning. 

Definition 2.1. We denote the accordance of a given example e wrt. a system S 

by S ⊃α e. 
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For convenience, −1 ≤ α ≤ 1. In the following, we will refer to e as a positive ex-

ample of S when α is l and a negative example if α is −l. 

In the simplest case, when a system can be specified by a function F ⊂ I × O, a 

positive example is just any element of e ∈ F. If we define Fneg = { (i,o) ∈ I × O 

such that ∃e' = (i,o') ∈ F and e' ≠ e } then we have that a negative example is just 

any element from Fneg. If F is complete, we have only three situations: positive 

hits, not covered cases and errors. Hence, α ∈ {1, 0, −1}. Positive and negative 

samples are just subsets of F and Fneg. respectively. In concept learning or ILP (see 

e.g. Muggleton & De Raedt 1994), we have that O= { false, true } and it is said that 

the theory or system S covers the examples iff F⊂S. In more complex cases, the 

user or other client systems are responsible for providing the value of α for each 

example. 

III. SOFTWARE AND REINFORCEMENT 

In some areas, like artificial neural networks or decision trees, there has been 

extensive work on how to distribute (or propagate) the apportionment of credit (or 

reinforcement), initially inspired in intuitive or neurobiological considerations and 

more recently based on Bayesian frameworks. 

The motivation of (Hernandez-Orallo 2000) is to extend the idea of reinforce-

ment to constructive languages, or languages with the ability of re-description, 

where the dependencies (connections) among the parts are completely flexible in 

kind and with a dynamical variable topology. 

This flexibility allows the study of reinforcement at almost any granularity. For 

instance, a component can be a rule, a procedure or a function, a class, a method, a 

variable, a module or any other higher division. A system will be just a set of com-

ponents. 
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For a correct apportionment of credit, we need to discern which parts are justi-

fiably responsible for the system to behave correctly for a particular example. In 

other words, if a component can be removed without affecting the functionality of 

the system wrt. some example, it is clear that this example should not be rein-

forced. The following definitions try to formalise and extend this idea: 

Definition 3.1. A component ri is said to be β-necessary wrt. S for an example e 

iff 

S ⊃α e    and  S − {ri} ⊃α' e    and   β = α−α' 

In general, if β = 0 we say that ri is not necessary. On the contrary, if β = 1 we sim-

ply say that ri is necessary. For instance, if we consider a system S composed of 

modules, we can have that the system covers an example e and without a module 

mi, the system does not cover the example, so S ⊃1 e, S−{mi} ⊃0 e and β=1.  

Definition 3.2. A system S is reduced for an example e iff 

S ⊃α e   and  ¬∃ ri ∈ S  such that ri is not necessary for e 

Definition 3.3. Reduced Set: RS(e, S) = { Si ⊂ S, Si is reduced for e },  

This excludes subsystems with components which are not useful for increasing the 

accordance of the system wrt. the example. 

However, it is not clear how to assign a credit to each rule, as the following ex-

ample shows:  

Example  3.1 

Suppose a system S with four components { r1, r2, r3, r4 } with S = { r1, r2, r3, r4 

} ⊃1 e, S1= { r1, r2, r3 } ⊃1 e, S2= { r1, r2 } ⊃0.5 e, S3= { r2, r3 } ⊃0.9 e and for any 

other subset of S we have α = 0. 

We have that RS(e, S) = { S1, S2, S3 }. 

We can particularise a different set for each rule. 

Definition 3.4. RSr(e,S) = { Si : Si ⊂ RS(e,S) and r ∈ Si } 
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And from here we compute the credit of each rule in the following way:  

Definition 3.5. credit (r, e) = { ΣS' ∈ RSr(e, S) α  | S' ⊃α e } / card(RS(e, S)) 

For the previous example, definition 3.5 gives these reasonable values: credit(r1, e) 

= 0.5, credit(r2, e) = 0.8, credit(r3, e) = 0.63, and credit(r4, e) = 0. 

However, in the case of software, the influence of the different components is 

not additive. Very important modules, classes or functions do not perform anything 

valuable on their own, whereas interface components are much more visible to the 

user. Hence, we will only consider the ‘saturated’ subsystems:  

Definition 3.6. A subsystem S' of S is saturated for an example e iff ¬∃ ri ∈ S 

such that  

S' ⊃α e    and  S' ∪ {ri} ⊃α' e    and  α'−α > 0 

Theorem 3.7. A subsystem S' of S is saturated for an example e iff ¬∃ ri ∈ S 

such that S'' = S' ∪ {ri} and ri is β-necessary wrt. S'' for an example e with β > 

0. 

Proof. If ri is β-necessary wrt. S'' for an example e, we have by definition 3.1 

that S'' ⊃α'' e  and  S'' − {ri} ⊃α''' e    and   β = α''−α'''.  Since S'' = S' ∪ {ri} then 

α''=α' and α=α'''. Since β > 0,  we have that α''−α''' > 0 and α' − α > 0.   

Definition 3.8. SS(e,S) = { Si ⊂ S, Si is both reduced and saturated wrt S for e },  

We will refer to the elements of SS as alternative subsystems. For the previous ex-

ample we have that SS(e, S) = { S1 }. Finally, we can define the set of alternative 

subsystems which contain r as, 

Definition 3.9. SSr(e,S) = { Si : Si ⊂ SS(e,S) and r ∈ Si } 

One of the first results of these definitions is that a subsystem is a set of compo-

nents. That is to say, it is independent of the trace, of how many times a component 

is used for a given example. This ultimately allows the following definitions. 
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Definition 3.10. The pure reinforcement ρρ(r) of a component r from a system 

S wrt. some example e is defined as: 

ρρ(r, e) = ΣS' ∈ SSr(e, S) {α : S' ⊃α e } 

In other words, ρρ(r) is computed as the sum of ‘accordances’ from the alternative 

subsystems for e where r is used. If there are more than one alternative subsystem 

for a given e, all of them are reckoned, but, as we have said, for the same subsys-

tem, a component is computed only once. 

The proportion of examples from a given evidence E where r is used, can be 

computed as  

Definition 3.11. The probability of r being used for a given example from evi-

dence E= {e1, e2, …, en} can be approximated by: 

Puse(r) =Σe ∈ E {if ρρ(r, e) > 0 then 1 else 0 } / card(E) 

For a set of examples, i.e., an evidence E, we extend definition 3.10 in the obvious 

way: 

Definition 3.12. The pure reinforcement ρρ(r, E) of a component r from a sys-

tem S wrt. some given evidence E = {e1, e2, …, en} is defined as: 

ρρ(r, E) = Σi=1..n ρρ(r, ei) 

Definition 3.13. The (normalised) reinforcement is defined as: 

ρ(r, E) = 1 − 2−ρρ(r, E) 

In the following, we will omit E when there is no possible confusion. Def. 3.13 is 

justified by the convenience of maintaining reinforcement between 0 and 1, while 

rendering easy the computation of reinforcement because each time a new example 

is covered by a system, the reinforcement of the components that have been used 

are incremented by ρ'(r) = (ρ(r) + 1) /2.  

Definition 3.14. The mean reinforced ratio mρ(S) of a system S with m compo-

nents is defined as: 
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mρ(S) = Σr∈S ρ(r)/m 

Finally, we measure the validation wrt. the evidence. 

Definition 3.15. The course χS( e ) of a given example e wrt. a system S is de-

fined as: 

χS(e) = max S'⊂SS(e, S) { Πr∈S' ρ(r) } 

More constructively, χS(e) is computed as the product of all the reinforcements ρ(r) 

of all the components r of S used in an alternative subsystem of e. If a component 

is used more than once, it is computed once. If f has more than one alternative sub-

system, we select the greatest course. 

Before using definition 3.15 throughout the paper we must verify that it is ro-

bust to the introduction of fantastic (unreal) concepts. A fantastic concept can be 

easily constructed by making it necessary for the rest of components, and the mean 

reinforcement ratio mρ(S) is increased unfairly. Fortunately, the following theorem 

shows that this is not possible with course: 

Theorem 3.16. The course of any example cannot be increased with fantastic 

components. 

Proof. Since the fantastic component rf is necessary for the rest of components 

it must now appear in all the alternative components for all the evidence, with 

l(E)=n. Thus, and the reinforcement of rf is exactly 1 − 2−n and the reinforce-

ments of all the ri remain the same. Hence, the course of all the n examples is 

modified to χ’(ej) = χ(ej) · rf = χ(ej) − χ(ej) · 2−n. Since n is finite, for all ej ∈ E, 

χ’(ej) can never be greater than χ(ej) .  

IV. VALIDATION PROPAGATION BY REINFORCEMENT 

In the ML and philosophy of Science literature, there is a variety of evaluation 

criteria to select the most plausible hypothesis, i.e., the one with less prediction er-

 



 J. Hernandez-Orallo / Software As Learning: Validation and Maintenance Issues 13 

rors (Merhav and Feder 1998). From this variety, the MDL (Minimum Description 

Length) principle (Rissanen 1978, 1996) (Barron et al. 1998) and the MLE (Maxi-

mum Likelihood Estimator) method have been thoroughly studied and inter-related 

(Kearns et al. 1999). Associated with them are some popular validation methods 

such as cross-validation, which is also connected with different notions of hypothe-

sis stability and reinforcement. 

A. Definitions of predictiveness and stability 

Intuitively, a theory that has been reinforced by the past evidence is more likely 

to behave properly for the future evidence. Differently from other evaluation crite-

ria, we have given measures of reinforcement for each component, and not a 

unique value for the whole system. In order to estimate the predictive accuracy (or 

predictiveness) of a system, we must give a single value. The most natural idea is 

the mean of all the courses of all the examples in the evidence: 

Definition 4.1. The mean course mχ(S, E) of a system S wrt. an evidence E, 

with n = card(E), is defined as: mχ(S, E) = Σe∈E χS(e)/n. 

In (Hernandez-Orallo 2000), the maximisation of mχ(S, E) and the MDL principle 

have been theoretically related. Logically, the shorter the theory the more probabil-

ity that reinforcement would be more concentrated. In the same paper there are 

some examples that show that mχ(S, E) is a more compensated criterion than the 

MDL principle. Finally, it is possible to formalise the concept of intensionality by 

using reinforcement. A system is intensional if there are not examples covered by 

some component with low reinforcement value. Intensionality is shown to be 

closely related to cross-validation. In other words, systems with components added 

to the system to cover some exceptional examples, i.e. patches, have less stability. 
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These extensional parts are not validated and it is highly unlikely that new exam-

ples would be covered by these parts, so the system will probably be revised. 

In the same way, we can translate these rationales to software systems. Hy-

pothesis stability in ML is converted into system stability, i.e., the system endur-

ance to requirement changes. 

Predictiveness is thus distinguished as an actual software quality factor, in-

versely related to the number of modifications for evolving requirements in the 

same context (Hernández & Ramírez 2000b). Reinforcement can be used as a very 

appropriate measure to estimate the probability of modification. More concretely, 

the probability of modification of a component can be directly specified from the 

reinforcement value. 

Definition 4.2. The isolated probability of modification is: 

Pmod(r) = 1 − ρ(r) = 2−ρρ(r). 

It is obvious that this defines a probability, since 0 ≤ Pmod(r) ≤ 1. The term 'isolated' 

is motivated by the aim that definition 4.2 should only measure the probability of 

modification that originates from each component r, not that other components 

could occasion the modification of r. 

From here, it is straightforward to obtain the probability of modification of the 

whole system: 

Theorem 4.3. If we consider independent the isolated modification of each rule 

of a system S, the isolated probability of modification of a system S is: Pmod(S) = 

1 − Πr ∈ S ρ(r) 

Proof. Since the modification of each component is an independent fact, and S 

is defined as the set of rules, the probability of modification of one or more ele-

ment of this set is obtained in the classical way: Pmod(S) = 1 − Πr ∈ S ( −Pmod(r) ) = 

1 − Πr ∈ S (1 − Pmod(r)) = 1 − Πr ∈ S ρ(r).  
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The absolute stability of a system can be defined as σ(S) = 1 − Pmod(S) = Πr ∈ S ρ(r), 

i.e., the probability that a system is not modified at all. This stability of the whole 

theory is a very strict requirement, so we will define another notion of stability 

later. 

We have been given probabilities of modification throughout the whole life cy-

cle of the system. However, it would be interesting to measure the probability of 

modification just for the following k examples. Given the probability of use of one 

component for one example Puse(r), given by definition 3.11, we can approximate, 

by a simple combinatorial analysis, that the probability that one or more of the fol-

lowing k examples would use r is 1 − (−Puse(r))k. Then 

Definition 4.4. The isolated probability of modification of component r before 

example k is: 

Pmod(r, k) = Pmod(r) · { 1 − (−Puse(r))k } 

Theorem 4.5. Given a component r from system S and an evidence E= {e1, e2, 

…, en}, such that ∃e∈E ρρ(r, e) > 0 (i.e., it is a useful component), then, as k 

grows, we have that Pmod(r, k) approximates Pmod(r). 

Proof. From definition 4.4, we have that limk→∞ { Pmod(r, k) } = limk→∞ { Pmod(r) 

· { 1 − (−Puse(r))k }} = Pmod(r) · { 1 − limk→∞ (−Puse(r))k }. Since there exists an ex-

ample e such that ρρ(r, e) > 0, then, by definition 3.11, we have that Puse(r) > 0, 

or consequently −Puse(r) < 1. Hence, limk→∞ (−Puse(r))k = 0, and this yields: limk→∞ 

{ Pmod(r, k) } = Pmod(r) · { 1 − 0 } = Pmod(r).  

In the following, we will suppose there are no useless components, and we will use 

definition 4.2 and theorem 4.3 to work with long-term life cycles. However, defini-

tion 4.4 would be useful to compute short-term modification probabilities and 

maintenance costs. It even can be modified to consider the last n' examples instead 
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of the whole evidence. For instance, if a module has not been used in the last 4 

months, it is not likely that a modification would affect this module. 

B. Measurement in practice 

Definition 4.2 and theorem 4.3 provide a means to evaluate the predictiveness of 

a system or, in some way, how much validated it is. However, as we said, there are 

still some details to resolve in order to make these measurements applicable for 

software systems: (1) one cannot measure the different examples with the same 

value, and (2) reinforcement can be measured for different granularities of compo-

nents. 

Weighting the evidence  

In ML, examples are usually regularised to the same significance. However, in 

software, it is difficult to balance some kinds of examples, such as an input-output 

pair with a scenario. In addition, some examples are used to describe exceptional 

behaviours, with low frequency of use whereas other examples are introduced to 

represent the main part of a system or frequent operation. The following extension 

is useful if one can assign a significance degree de to the examples which conform 

the evidence E.  

Definition 4.6. The 'grounded' course χ'(e) of a given example e wrt. a system 

is computed as the normal course χ(e) multiplied by the significance degree of 

e. More formally, χ'(e) = χ(e) · de. 

Another approach is the repetition of the examples which are more significant. This 

is exactly equivalent to the use of the previous definition, by repeating each exam-

ple e in the evidence de. times.  
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Weighting components 

The same approach is not valid with components. We cannot compare the rein-

forcement of a module with the reinforcement of a function. However, if one uses 

modules as components for obtaining a mean course mχ(S,E) and an absolute sta-

bility 1−Pmod(S), it is possible to make the same thing for another granularity, e.g. 

functions, to obtain a different mean course mχ'(S, E) and absolute stability 

1−P'mod(S). If one wants to combine both measurements, a major problem arises. In 

general, the grosser the granularity the greater the mean course and absolute stabil-

ity. The reason is quite simple. For the same system, the finer the granularity the 

greater the number of components and reinforcement must be scattered. In the ex-

treme case, if we consider only a component, the system itself, we have the maxi-

mum value for mχ(S, E) = Σe∈E χS(e)/n = Σe∈E ρ(S)/n = Σe∈E (1 − 2−n) /n, which 

converges quickly to 1 if n = card(E) increases. 

To equilibrate the matter there are two options: (1) the introduction of a factor 

directly related to the number of components, and (2) the introduction of a factor 

inversely related to the size of each component. The first one may propitiate the 

pseudo-repetition of components, i.e., components that are always needed in con-

junction. Hence, we will choose this second option. 

With size(r) we will denote the size of a component r, with the only restriction 

for size that for all r, size(r) ≥ 1. We extend the definitions in the following way: 

Definition 4.7. The extended pure reinforcement is defined as: ρρ*(r) = ρρ(r) / 

size(r). 

Likewise we could define the extended normalised reinforcement ρ*(r) and the ex-

tended course χ*(r). 

Finally, with this modification, reinforcement can be associated with the idea of 

reusability. Inside a single system, a module or component is reinforced if it is used 
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for many cases or examples. Moreover, the last modification favours granularity 

which also eases reusability. At the level of different applications, and by consider-

ing the evidence as the set of all the examples for these different applications, a 

highly reinforced module is reused to cover many groups of examples. 

V. MODIFICATION PROPAGATION 

We have talked about predictiveness, as the ability of a system to behave correctly 

for evolving requirements. This gives an isolated probability of modification 

Pmod(S) whatever the part of the system is considered. However, to estimate main-

tenance costs it is important to know the consequence of each change, i.e., how 

many components are to be modified and how difficult these modifications are. 

The following figure shows the two main factors that affect maintenance: the 

probability of modification which is inversely related to the validation or predic-

tiveness characteristic, and the modifiability of the components which are more 

likely to be revised. 

However, in the literature of software modifiability, there is usually no detailed 

relationship between the probability of modification of each component and the 

modifiability of each component. In general, the relation is between the validation 

of the whole system and the modifiability of the whole system. Figure 5.1. shows 

the difference of accuracy between the classical approach and ours. 

 

Plou & Neus
4.2. VALIDATION GRAPH

reinforcement traces a validation graph..

(((r, e) = (S' ( SSr(e, S) {( : S' (( e }

Let us denote with Gval the graph which is determined by validation reinforcement. That is to say, not only which components are used for an example but their dynamic dependencies...if :-
These dynamic dependencies can be established by the execution order
For instance, if example e1 uses r1 and then r2
Example  4.1
Suppose a system S with four components { r1, r2, r3, r4 }. Imagine the evidence E = { e1, e2, e3, e4, e5, e6 } and that they are covered in the following way:
SSr(e1,S) = {{ r1, r2, r3 }}   where r1 has used r2
SSr(e2,S) = {{ r3 }, { r4 }} 
SSr(e3,S) = {{ r1, r4 }}       where r1 has used r4
SSr(e4,S) = {{ r3 }} 
SSr(e5,S) = {{ r2, r3, r4 }}  where r2 has used r4
SSr(e6,S) = {{ r1, r2, r3 },{ r2, r3, r4}}   where r1 has used r2 and r1 has used r3 . In the second r3 has used r4
S is structured in the following way:
  cases uses
 r1--r2 .  . .
 r1--r3 .  . 
         r1--r4  .  .
         r2--r1 .  .
         r2--r3  . ...     
         r2--r4   . .   .
         r3--r1 .  .
         r3--r2  . ...
 r3--r4   . .
 r4--r1  .
 r4--r2   . .
 r4--r3   . .
             \r3 /
We also suppose that all the accordances ( = 1.


Directing the graph...
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Classical
 Approach

Our
 Approach

Costmaint(S)

Costmod(S)

S

Pmod(S)

r1

r2
r3 rm Pmod(r1) Costmod(r1)

Pmod(r2) Costmod(r2)

Pmod(rm) Costmod(rm)

Costmaint(S)

. . .

. . .

. . .

 

Fig 5.1. Two different ways to estimate the Maintenance Cost 

In this section, we present the necessary framework to introduce different particu-

larised models for approximating this maintenance cost, denoted by Costmaint(S). 

Model 0 

The easiest (but less realistic) model for modifiability is the assumption that every 

component modification is independent to the rest of components. In this case, it is 

only necessary to know that each component has a modification cost, a real number 

that we denote by Costmod(r):  

Definition 5.1. The isolated cost of maintenance is defined as: 

Cost0
maint(S) = Σr ∈ S Pmod(r) · Costmod(r) 

Although more detailed than the classical Pmod(S) · Costmod(S), this last definition 

has been computed according to the isolated probability of modification. 
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S Pmod = 0.5
Costmod = 4

r2

r1

r4

r3

r5

Pmod = 0.7
Costmod = 5

Pmod = 0.4
Costmod = 2

Pmod = 0.5
Costmod = 4

Pmod = 0.2
Costmod = 6

Pmod = 0.3
Costmod = 7

Model  0:

Cost0
maint(S) = 9.6

 

Fig 5.2. Example of estimation using Model 0 

For instance, given the system illustrated in figure 5.2, the classical approach takes 

Pmod(S) = 0.95 to obtain Costmaint(S). For instance, if it is estimated that each modi-

fication would affect 1.5 components on the average, Costmod(S) can be computed 

as Costmod(S) = 1.5 · Σr∈S Costmod(r)/card(S) = 7.2. Finally, Costmaint(S) = Pmod(S) · 

Costmod(S) = 6.84. 

In this example, both values, Costmaint(S) and Cost0
maint(S) are not too despair, 

but, in general, they can differ a great deal. Despite the fact that model 0 is more 

detailed that the classical one, it is still very simple because it ignores the relation-

ships between components where modification propagation flows. 

5.1. Modification dependencies 

Given a representation language, there are different notions of dependency. 

There are functional dependencies, where execution (and semantics) propagates 

(usually bottom-up) and static dependencies, where modification propagates (usu-

ally top-down). 

It is difficult to establish exactly which are the modification dependencies of a 

given system. It depends on the degree of encapsulation of the components, their 

coupling and other semantic or syntactical considerations. Moreover, these factors 

are highly reliant on the granularity of components. For instance, if a module or 

 

José Hernández-Orallo
1.5 · 24 / 5 =

José Hernández-Orallo
0.95 · 7.2=
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class is modified in its declaration it is easier to detect the modules or classes 

which are expected to be modified than if a single line of a program is modified.  

Once these questions are resolved for a particular system, the modification de-

pendencies can be formalised by the term “r depends on ti” that we write r ↵ ti. For 

all the dependencies of a single component we will also use the following notation 

r ↵ t1, t2, .. tn. This dependency relation does not need to be reflexive or transitive. 

Definition 5.2. The direct ascendant set of a component r is defined as: DAsc(r) 

= { r' / r ↵ r' } 

Definition 5.3. The direct descendant set of a component r is: DDes(r) = { r' / r' 

↵ r } 

We define the relation ↵* as the transitive and reflexive closure of the dependency 

relation ↵. Formally, 

Definition 5.4. For any two components ra , rb, we have that ra ↵* rb holds iff ra 

= rb or ra ↵ rb or there exists another rc such that ra ↵* rc and rc ↵* rb. 

Definition 5.5. The ascendant set of a component r is defined as: Asc(r) = { r' / 

r ↵* r' } 

Definition 5.6. The descendant set of a component r is: Des(r) = { r' / r' ↵* r } 

These dependencies are more or less difficult to establish depending on the granu-

larity chosen for the examples. For instance, in a procedural language, suppose that 

a function f uses functions g and h in its definition, h uses function i in its defini-

tion, and function i uses g. The resulting components and dependencies are: f ↵ g, f 

↵ h, h ↵ i, and i ↵ g. By the transitivity closure, ↵* extends ↵ to h ↵* g, f ↵* i , f 

↵* g and all the reflexive relations. 

In the same way, one can extend dependencies to sets of functions, or modules. 

In this case, the ‘uses’ or ‘includes’ directives are a good overestimation to modifi-
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cation dependencies. How much these dependencies overestimate modification de-

pendencies relies on the kind of modification (in behaviour or declaration) and the 

encapsulation of each module.  

Finally, to give a much more present and realistic view, in some modelling 

stages or languages, dependencies are very heterogeneous, as the following simple 

object model illustrates: 

Practice
Subject

Theory
Subject

Subject

Examination

Professor

prepares
teaches

tutors

attends

Course

Student

makes

1+

1+
 

Fig 5.3. Example of heterogeneous dependencies 

If we identify classes with components, in many cases we could identify modelling 

relationships (associations, aggregations and inheritance) in one or both ways, ac-

cording to external information to the model (or design model information). In any 

case, the dependencies that can be extracted are barely representative of the modi-

fication dependencies between classes. A better approximation can be made by 

studying the methods and other relationships between classes. 

In short, it is possible to define ↵ for any granularity and any representational 

language, but the accuracy to which ↵ represents modification dependencies is 

heavily contingent on this granularity and any other experience or information 

which may be used to refine the estimate. 
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Besides, not any relation ↵ can be used. There is an important property that this 

relation must hold, acyclicness, i.e., ↵* must be a partial order relation. This limita-

tion is not very restrictive because, although static functional dependencies are fre-

quently cyclic and static modelling dependencies are sometimes cyclic (like figure 

5.3), the instantiated dependencies of an effective program are acyclic. 

This hierarchisation was advocated long ago by (Dijkstra 1968) and (Parnas 

1972): “We have a hierarchical structure if a certain relation may be defined be-

tween the modules or programs and that relation is a partial ordering. The relation 

we are concerned is “uses” or “depends upon””. 

However, if the dependency relation is cyclic, with two components r1 and r2 

such that r1↵*r2 and r2↵*r1, then a fictitious component rf must be inserted to make 

r1↵*rf and r2↵*rf and the cycle is removed. Obviously, the costs and probabilities 

of modification should be readjusted among r1, r2, rf and other components in-

volved. 

Model 1 

Once relation ↵ is approximated, we can remake the effective probability of 

modification introduced in the previous section. We can define a new measure 

which weights the isolated probability of modification and the scope of each modi-

fication (its propagation), assuming Pmod(r) independent. 

Definition 5.7. Given the acyclic relation ↵ for modification dependencies, the 

related probability of modification P*mod of a single component is defined as: 

P*mod(r) = 1 − −Pmod(r) · Π ai ∈ Dasc(r) ( −P*mod(ai) ) 

where Π is defined to be 1 if it has no factors. 

Finally, model 1 can be introduced accordingly: 

Definition 5.8. Cost1
maint(S) = Σr ∈ S P*mod(r) · Costmod(r) 
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Let us extend the example of figure 5.2 with some dependencies. The new model 

applied in fig. 5.4 shows that the cost of maintenance increases, due to the consid-

eration of these modification propagation that were not taken into account in model 

0. 

S Pmod = 0.5
Costmod = 4r1

r5

Pmod = 0.7
Costmod = 5

Pmod = 0.4
Costmod = 2

Pmod = 0.5
Costmod = 4

Pmod = 0.2
Costmod = 6

Pmod = 0.3
Costmod = 7

Model 1:

Cost1
maint(S) = 18.63

P*mod(r1)= 0.5

P*mod(r2)=

P*mod(r3)= 0.65

P*mod(r4)= 0.955

P*mod(r2)= 0.85

P*mod(r5)= 0.9874

× Costmod(ri)

r2

r4

r3

 

Fig 5.4. Example of Estimation using Model 1 

However, this model presents some problems. It over-propagates modification, be-

cause it modifies the probabilities through all the paths that dependencies draw. For 

instance, in Fig. 5.4, we can observe that P*mod(r4) takes into account P*mod(r1) 

twice: from the path r1→ r2 → r4 and from the path r1→ r4 directly. The same hap-

pens with P*mod(r5). 

Model 1b 

The correction must only consider each dependency once by using the set of as-

cendants instead of a recursive reckoning of the dependencies. 

Definition 5.9. Given the acyclic relation ↵ for modification dependencies, the 

corrected related probability of modification P*b
mod of a single component is de-

fined:  

P*b
mod(r) = 1 − Π a ∈Asc(r) ( −Pmod(a)) 

and we redefine the cost of maintenance 

Definition 5.10. Cost1b
maint(S) = Σr ∈ S P*b

mod(r) · Costmod(r) 

 

Plou & Neus
This definition of probability of modification of each component can be used to define a better probability of modification than the one given in the previous section:
Definition 5.8.
P*bmod(S) = 1 ( (r ( S (P*bmod(r) = 1 ( (r ( S ( a (Asc(r) ( (Pmod(a))
However, this value is not representative because the P*bmod(r) are not independent.
And the corresponding notion of whole system stability:
Definition 5.9.
The whole system related stability is defined as:
((S) = 1 ( P*bmod(S)
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The previous example is corrected to P*b(r1)=0.5, P*b(r2)=0.85, P*b(r3)=0.65, 

P*b(r4)=0.91, P*b(r5)=0.9496, which gives Cost1b
maint(S) = 18.32. 

Finally, we could use this model to define the detailed stability of a system. 

Definition 5.11. The stability of a system S is defined as σ(S) = 1 − Π r ∈ S 

P*b
mod(r) 

Model 2 

Although model 1b is useful to define stability, it does not proceed in an addi-

tive way with the modification costs. For instance, it is more intuitive to proceed 

bottom-up as follows: if we have a modification at component r, we have to add 

the cost of all the components which depend on it, as follows: 

Definition 5.12. The accumulate cost of a component r is defined as:  

AcCostmod(r) = Σ a ∈ Desc(r ) Costmod(a) 

And once again, the cost of maintenance of a system S could be defined as: 

Definition 5.13. Cost2
maint(S) = Σr ∈ S Pmod(r) · AcCostmod(r) 

And the results are quite different in this case: AcCostmod(r1)=24, 

AcCostmod(r2)=13, AcCostmod(r3)=13, AcCostmod(r4)=8, AcCostmod(r5)=6, that gives 

Cost2
maint(S) = 29.4. 

VI. SYSTEM TOPOLOGIES AND MAINTENANCE COST 

Section 4 presented a method to obtain a validation (or predictiveness) measure 

for a software system, using reinforcement propagation. This measure is inversely 

related to the modification probability. Section 5 have introduced a dependency 

relation where modification propagates. As we said, the major problem of this de-

pendency relation is that it is difficult to obtain. In general, when a component r is 

modified, the set of components which are to be modified depends mostly on the 
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utilisation rate from the other components. This use rate is precisely what deter-

mines reinforcement. This insight motivates the following assignment:  

Assumption 6.1. The modification dependency graph, determined by relation ↵, 

usually top-down, matches reversely with the validation reinforcement graph, 

usually bottom-up. 

Although this assumption is controvertible, it has many advantages as a working 

approximation, 

• modification dependencies can be determined by the course of reinforcement. 

• conversely, the course of reinforcement, which is extremely variable and uncer-

tain for static models, can be approximated by the graph of modification de-

pendencies.  

On the other hand, this approximation has also some inconveniences. Not all 

granularities admit this matching. Moreover if one tries to mix up different granu-

larity in both ways, for instance, using a procedural granularity to assign rein-

forcement and using an object-oriented granularity for modification dependencies, 

the results may be useless. 

The final justification of this assignment is that it allows a theoretical study of 

the trade-off between validation (or predictiveness) and modifiability. More con-

cretely, in order to obtain a validated (reinforced) system, a component should be 

used in the greater number of cases (and other modules) as possible. However, this 

would compromise modifiability, because any simple modification would propa-

gate to an enormous number of other components. 

There is a long debate about the convenience of high fan-in and low fan-out and 

vice-versa. The slogan of reusability is keep fan-out high and keep fan-in low. The 

slogan of modification in inheritance is to avoid a great number of children. This 

discussion is somehow paradoxical because for every dependency which goes out 
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from a component, there is another component where it arrives to. In other words, 

mean fan-in is always equal to mean fan-out. So, it is more sensible to talk about 

high or low connectivity or, more meaningfully, to talk about topologies.  

Intuitively, a hierarchical arrangement of dependencies eases the modification 

of the leaves situated at the bottom without the modification of the leaves at the 

top. This was recognised by (Parnas 1972) long ago: “The partial ordering gives us 

two additional benefits. First, parts of the system are benefited (simplified) because 

they use the service of [upper] levels. Second, we are able to cut off the [lower] 

levels and still have a usable and useful product. [...]. The existence of the hierar-

chical structure assures us that we can "prune" off the [lower] levels of the tree 

and start a new [reversed] tree on the old trunk. If we had designed a system in 

with the "[high] level" modules made some use of the "[low] level" modules, we 

would not have the hierarchy, we would find it much harder to remove portions of 

the systems.”. However, one can wonder if the shape of this graph should be tree-

like or root-like, the latter implicitly advocated by Parnas. This motivates a more 

detailed analysis of configurations of a given program P. 

Definition 6.2. The Bottom or Minimal Set of a program P, denoted BotP, is 

composed of every component b ∈ P such that ¬∃c ∈ P, c ≠ b, such that c ↵ b. 

In other words, BotP = { b : Des(b) = { b }}. 

Definition 6.3. The Top or Maximal Set of a program P, denoted TopP, is com-

posed of every component t ∈ P such that ¬∃c ∈ P, c ≠ t, such that t ↵ c. In 

other words, TopP = { t :  Asc(t) = { t }}. 

According to the previous characteristics, we are going to study five different to-

pologies: 

• Topology 1: “Horizontal”: No dependencies at all. Obviously, P = BotP = TopP. 

We will consider the following extreme cases: 
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 a) Compensated. ∀i ρρ(ci) = n / m. 

 b) With exceptions. ∃j ρρ(cj) = n−m+1 and the rest are exceptions (or 

patches) ρρ(ci) = 1, i ≠ j. 

• Topology 2: “Vertical”: The dependency relation ↵ obeys a full order relation <, 

∀ c1, c2 ∈ P, c1 ≠ c2, then ¬(c2 < c1) ↔ c1 < c2. There is a unique top component 

t ∈ TopP, i.e., card(TopP) = 1. There is a unique bottom component b ∈ BotP, 

i.e., card(BotP) = 1. From here, the following properties hold, ∀ c ∈ P, c ≠ t, 

then c < t and ∀ c ∈ P, c ≠ b, then b < c.  

• Topology 3: Lattice: The dependency relation ↵ obeys a partial order relation <. 

There is a unique top component t such that ∀ c ∈ P, c ≠ t, then c < t and a 

unique bottom component b such that ∀ c ∈ P, c ≠ b, then b < c. We will con-

sider three extreme cases: 

 a) A unary lattice which corresponds to topology 2. 

 b) Wide lattice with depth = 3, where the middle level has m−2 compo-

nents. 

 c) Binary lattice. We assume m = 2k − 1 + 2k−1 − 1 = 3 · (2k−1) − 2, with k 

being a natural number. 

• Topology 4:  Tree: The dependency relation obeys a partial order relation < with 

no unique top element (card(TopP) ≥ 1). There is a unique bottom component b 

such that ∀ c ∈ P, c ≠ b, then b < c. We will consider three prototypical cases: 

 a) One vertical branch (i.e. card(TopP) = 1). Equivalent to topology 2. 

 b) Wide tree with depth = 2, where the top level has m−1 components. 

 c) Binary tree. We assume m = 2k − 1, with k being a natural number. 

• Topology 5:  Root (inverse tree): The dependency relation obeys a partial order 

relation < with no unique bottom component (card(BotP) ≥ 1). There is a top 
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component t such that ∀ c ∈ P, c ≠ t, then c < t. We will consider three proto-

typical cases: 

 a) One vertical branch (i.e. card(BotP) = 1). Equivalent to topology 2. 

b) Wide root with depth = 2, where the bottom level has m−1 components.. 

c) Inverse binary tree. We assume m = 2k − 1, with k being a natural num-

ber. 

Cases b) and c) will be studied in two ways: compensated and with exceptions. 

We will assume that all components have the same size and that all examples have 

the same significance. From here, 

Theorem 6.5. Given n examples e1, e2, ..., en, a program of m components ar-

ranged under topologies 2, 3 or 4 has the following properties: 

• For every component c from P, the pure reinforcement ρρ(c) is n, and the 

normalised reinforcement ρ(c) = 1 − 2−n. 

• For every example ei the course χ(ei) = (1−2−n)m. Hence, the mean course is 

mχ(E) = (1−2−n)m
. 

• For every component c, the isolated probability of modification Pmod(c) is 2−n 

and Pmod(P) = 1 − (1−2−n)m = 1 − mχ(E). 

Proof. Topologies 2, 3 and 4 have a unique bottom b, and obviously, all the ex-

amples are covered by this bottom component b. Hence, ρρ(b) = n, and ρ(b) = 1. 

Since we consider static dependencies, and all the components are required by 

b, because ∀c∈P, c ≠ b, then b ↵ c, they all have the same pure reinforcement 

ρρ(c) = n. The rest of properties follow from here by applying previous defini-

tions.  

Topologies 1 and 5 may have an overlap in the coverings of the bottom set, i.e., ∀ 

bi ∈ BotP, Σρρ(bi) > n. This kind of redundancy is usually eliminated in software 
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systems (except when a voting method is used to increase reliability), so we will 

consider ∀ bi ∈ BotP,Σ ρρ(bi) = n. 

Given n examples, it is shown that a program P of m components with n >> m 

such that ∀r∈P, Costmod(r)= Ucost, it is shown in the appendix that model 2 brings 

forward the following maintenance costs: 
 

Topology Maintenance cost 

1a) Horizontal compensated O(2−n/m · m) 

1b) Horizontal with Exceptions O(m) 

2) Vertical O(2−n · m2) 

3b) Lattice with depth = 3 O(2−n · m) 

3c) Binary Lattice O(2−n · m · log2m) 

4b) Tree with depth = 2 O(2−n · m) 

4c) Binary Tree O(2−n · m · log2m) 

5b-i) Inverse Tree with depth = 2 and compensated O(2−n/m · m) 

5c-i) Binary Inverse Tree  and compensated O(2−n/m · m · log2m) 

5b-ii) Inverse Tree with depth = 2 with exceptions O(m) 

5c-ii) Binary Inverse Tree with exceptions O(m · log2m) 

Fig 6.1. Results of Maintenance Costs for Different Topologies 
n= no. of examples / tests cases, m= no. of components 

 

Having in mind the assumptions and approximations that have led us to use 

Cost2
maint(S) for approximating the maintainability of a software system, we can 

extract some conclusions: 

First of all, when the software system has exceptions or patches, which are used 

for few examples (topologies 1b, 5b-ii and 5c-ii), which have not been validated,  
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the maintenance cost depends almost exclusively on them, in the way that the cost 

is asymptotically independent from n, the factor that reduces the cost.  

From all the rest of compensated topologies, where reinforcement is distributed 

uniformly, the results are not so despair. However there is a great asymptotic dif-

ference between a wide tree or a lattice and a binary inverse tree. This remarks that 

topologies should be confluent or ‘conciliated’ at the bottom, much more like a tree 

than like a root. In other words, components at the bottom should behave in a broad 

way and not in a specialised way, something that may be interpreted very differ-

ently depending on what one could think of a component. Finally, other more intui-

tive consequence is that wide topologies are better than thin ones, because of modi-

fication propagation. 

The strongest result derivable from figure 6.1 is that compression, i.e. increasing 

n over m, is an excellent way to reduce maintenance cost. In relation to the same 

sample, simple systems are more reinforced because the ratio of examples by piece 

of software is greater, so validation is higher. In the other way, modification is 

much easier. Although this is well known since long ago, recently, however, there 

have been claims about considering software engineering as compression [Wolff 

1994], supported by the idea of learning as compression. However, a very com-

pressed model can be spoilt by some patches, something that it is plainly seen in 

topologies 1b, 5b-ii and 5c-ii. 

Finally, as we have said, more things can be inferred from this study if the com-

ponents are particularised to real objects: classes, functions, modules, etc. For in-

stance, if the components are classes, one can identify these results with four OO 

software quality metrics such as “lack of cohesion of methods” (increase granular-

ity when possible) , “coupling between objects” (decrease granularity when possi-

ble), “depth of inheritance tree” and “number of children”. Other interpretations are 
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at first sight less intuitive or even contradictory. Inheritance, which is widely ac-

cepted, determines a topology of type 5c-i). However, the dependency relation is 

not only conditioned by inheritance relationship but also by associations, aggrega-

tions, etc. Moreover, multiple inheritance helps to change the topology to types 3c) 

or 4c). Ultimately, polymorphism represents the previous idea of confluence or 

avoidance of specialisation at the bottom. In some way, polymorphism tries to 

‘pump up’ reinforcement. 

VII. REFINEMENTS 

After the interpretation of the results of the previous section, it is still possible to 

make some considerations and extensions to make the models more realistic. As 

usual, this increased accuracy entails less manageability, and hence, less general 

results can be obtained if the following refinements are considered. In particular, 

we will briefly assess three important issues in a topology with propagation: how 

large the components are, how the propagation can be parameterised bottom-up 

and how the propagation can be parameterised top-down. 

A.  Modelling granularity 

The idea of increasing n over m may suggest gross granularities over finer ones. 

This was avoided in section 4.2.2, by including in the reinforcement measures a 

factor inversely related to the size of the components. However, the cost of modify-

ing one component is not usually linearly related to its size. In the previous section 

we used the assumption on ∀r∈S, Costmod(r) = Ucost. In general, it would be inter-

esting to introduce another variable in addition to n and m, namely s = size(S). In 

this way, we can use the following more accurate approximation for Costmod(r): 
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Definition 7.1. The cost of modification of a component can be related to its 

size in an exponential way: Costmod(r) = amod · bmod
size(r) where amod and bmod 

should be experimentally or theoretically adjusted. 

Consequently, the incidence of granularity in the previous topologies could be 

studied assuming that all components are of the same size, giving: Costmod(r) = 

amod · bmod
size(S) / m. 

Finally, if granularity is considered, reusability could be studied too. Assertions 

such as keep methods small (Rumbaugh et al. 1991) are more related with granular-

ity than with total length of the program.  

B.  Bottom-up use rate 

In the previous section we made the assignment between the bottom-up and top-

down topologies. However, both of them were saturated, i.e., all the ‘links’ had to-

tal capacity. 

In this subsection we extend the propagation bottom-up; any dependency link r1 

↵ r2 is assigned a real value 0 ≤ s ≤ 1 known as saturation or mean use rate, and 

represents the percentage of examples that use r1 that still require the use of r2. We 

denote this extension by r1 ↵s r2.  

Definition 7.2. The total saturation of a component r, denoted by Sat(r) can be 

defined as  

Sat(r) = Σri∈DAsc(r) {si : r ↵s
i ri} 

A more realistic study of reinforcement propagation can be done by using the mean 

total saturation of a component and the deviations as parameters. In practice, and if 

the topology structure is given by modification dependencies, the values of satura-

tion could be acquired (or learned). Learning techniques can be inspired in neural 
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networks where the ‘wiring’ is given and the weights are learned using the training 

sample. 

The study of the saturation parameter could reveal that there can be two kinds of 

‘losses’ of reinforcement (which are compatible with each other). A simple de-

pendency can be weakened because a component is able to make do for some ex-

amples without some of its dependencies. The other loss is more natural, and it 

happens when a component has more than one direct ascendant (i.e, DAsc(r) > 1), 

then the reinforcement is usually shared among the dependencies. This clearly re-

stricts high fan-ins and fan-outs. 

Finally, this extension allows the appearance of exceptions at higher levels (with 

components that are scarcely used). In this way, the results of topologies 3 and 4 

can vary a great deal by changing the mean saturation of the dependencies, because 

exceptions are much worse on the top. This explains why inheritance, which is a 

kind of specialisation, tries to place exceptions (i.e. subclasses) on the bottom, each 

time that there is an impossibility (or inability) to ‘conciliate’ an anomaly. Under 

this view it seems that multiple inheritance presents some advantages over single 

inheritance, because multiple inheritance improves saturation (whereas single in-

heritance uses other dynamic dependencies to solve the same problem). 

C. Top-down information hiding 

As we have seen, there are two ways to decrease maintenance cost. We have 

centred our measurement in the first way, the reduction of the probability of modi-

fication. The other way is to reduce the consequence of each modification. 

Throughout this paper, we have presented modification propagation as a snowball. 

This means that a modification at the top propagates to the bottom, without fric-

tion. 
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In other words, we have not parameterised the effect of each modification or, 

more properly, the modification factor of software. Almost three decades ago, 

(Parnas 1971) introduced “information hiding” precisely for this. Modules are 

generated to encapsulate “the design decisions which are questionable and likely to 

change under many circumstances”. This is obtained in two steps: 

1)  One must evaluate the “design decisions which are likely to change”. 

2)  “Each module is then designed to hide such a decision from the others”. 

This is done by generalising the prototype, hiding these decisions or weak 

parts of the model from the interface. 

If this is made judiciously, most of the changes (the more likely) will not propagate 

outside the component. Precisely, objects or concepts (in the modern conceptual 

modelling fashion), from a cognitive point of view are used to model those sets of 

features from reality that are coherent and represented by some properties which 

are not likely to change. The drift from procedural, modular, to object-oriented 

programming and beyond has centred on moving the interface into more stable 

components. 

We have different possibilities for defining a hiding (or friction) factor h: for 

each link, for each component or for the whole system. If we use the second possi-

bility, each component ai must be assigned a different value hi: 

Definition 7.3. The probability of modification of a component denoted as 

Phmod, can be extended as: Phmod(r) = 1 − Pmod(r) · { ∏ai ∈DAsc(r) hi · −P−hmod(ai) } 

In general, it may be difficult to estimate these hi, because it depends on the ability 

to distinguish the lasting parts from the ephemeral ones (or more likely to change). 

A good solution to this would be the study of the resulting topologies from finer 

topologies to grosser ones. 
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VIII. CONCLUSIONS 

This paper has shown that a great number of characteristics of software can be 

theoretically studied using ML analogies and techniques. In our case, reinforce-

ment is used to obtain a probability of modification, where many other measures 

are derived from, such as system stability and maintainability measures for differ-

ent topologies. The goodness of different topologies can be theoretically estab-

lished as it has been done and empirically refined by implementing automated 

measuring tools in each component. 

In order to apply these measurements, it is required the establishment of the no-

tions of accordance, component granularity and example for a particular system. A 

proper choice of these parameters will surely depend on experience.  

APPENDIX 

This appendix includes the results of maintainability for the different topologies 

presented in section VI. 

Topology 1. card(BotP) = card(P). So Σi=1..m ρρ(ci) = n. 

• For the case a) we have that ρ(c) = 1 − 2−n/m and for every example ei the course χ(ei) 

= (1−2−n/m). The isolated and related probabilities of modification are the same, ex-

actly, Pmod(c) = P*b
mod(c) = 2−n/m. From here, Pmod(P) = 1 − (1 − 2−n/m)m. 

 ∀i AcCostmod(ci) = Σ a ∈ Des(r ) Costmod(a) = Costmod(a) = Umod and Cost2
maint(P) = Σr ∈ S 

Pmod(r) · AcCostmod(r) = m · 2−n/m · Umod ∈ O(m · 2−n/m). 

• For the case b) we have that ρ(cj) = 1 − 2−(n−m+1) and ρ(ci) = 0.5 iff i ≠ j. We have the 

course χ(ej) = (1−2−(n−m+1)) and χ(ei) = 0.5 iff i ≠ j. The mean course is [(m − 1)/2 + 

(n−m+1) · (1−2−(n−m+1)) ] / n=  [(1−m)/2 + n + (m−n−1) · (2−(n−m+1)) ] / n. If n >> m 

this is approximately  (1−2−n). The isolated probability of modification is, Pmod(cj) = 

2−(n−m+1) and Pmod(ci) = 0.5 iff i ≠ j. From here, Pmod(P) = 1 − (1 − 2−(n−m+1)) n−m+1 · 

 

José Hernández-Orallo
In any case, we think that our approach is much more realistic than classical approaches from the eighties, where the specification was supposed to be correct, supplied and formal, as if it had always been there to be converted into a program by deductive methods.
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(1/2)m−1 = 1 − (1 − 2−(n−m+1)) n−m+1 · 2 1−m. Again, since n >> m and n is great then 

Pmod(P) ≅ 1 − 2 1−m
. 

 ∀i AcCostmod(ci) = Σ a ∈ Desc(r ) Costmod(a) = Costmod(a) = Umod and Cost2
maint(P) = Σr ∈ S 

Pmod(r) · AcCostmod(r) = ((n−m+1) ·  2−(n−m+1) +  (m−1) · 1/2 ) · Umod. Since the first 

term (n−m+1) ·  2−(n−m+1) is always ≤ 1 if n > m, then Cost2
maint(P) ∈ O(m) 

Topology 2. From theorem 6.5, ρρ(c) = n, and ρ(c) = 1 − 2−n , the course χ( ei) = (1−2−n)m 

for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2−n and Pmod(P) = 1 − 

(1 − 2−n)m
. 

• Without loss of generality in this topology, c1 = b and cm = t, with ci < ci+1 ∀i 1 ≤ i < 

m.  

∀i AcCostmod(ci) = Σ a ∈ Des (ci ) Costmod(a) = i · Umod and Cost2
maint(P) = Σr ∈ S Pmod(r) · 

AcCostmod(r) = 2−n · Σi = 1 .. m i · Umod = 2−n · m · (m+1)/2 · Umod ∈ O(2−n · m2) 

Topology 3. From theorem 6.5, ρρ(c) = n, and ρ(c) = 1 − 2−n , the course χ( ei) = (1−2−n)m 

for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2−n and Pmod(P) = 1 − 

(1 − 2−n)m. 

• For the case b) AcCostmod(b) = Umod and AcCostmod(t) = m·Umod and AcCostmod(r) = 

2·Umod iff r ≠ t and r ≠ b. So, Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2−n · (1 + 

m + (m−2)·2 ) ·Umod ≅ 2−n · 3m · Umod ∈ O(2−n · m) 

• For the case c) it is obvious that AcCostmod(t) = m·Umod. Since m = 2k − 1 + 2k−1 − 1, 

we have 2k−1 levels: k levels with increasing width and k−1 levels with decreasing 

width. For the first k levels, j-numbered top-down from 1 to k, we have 2j−1 compo-

nents on each level, and AcCostmod(r j) = (2k−j+1 − 1 + 2k−1−j+1 − 1 + (j−1)) ·Umod  = (3 

· 2k−1−j+1 − 3 + j) ·Umod 

For the next k−1 levels, i-numbered top-down from k−1 to 1, we have 2i−1 compo-

nents on each level, and AcCostmod(ri) = i ·Umod 
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Finally, Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2−n · (Σj=1..k 2j−1·[3 · 2k−1−j+1 − 3 + 

j] + Σi=1..k−1 2i−1 · i ) ·Umod = 2−n · (Σj=1..k [3·2k−1 − 3· 2j−1 + j·2j−1)] + Σi=1..k−1 2i−1 · i ) 

·Umod = 2−n · ([k·3·2k−1 − 3· 2k + 2 +  Σi=1..k−1 j·2j−1)] + Σi=1..k−1 2i−1 · i ) ·Umod   

By using the approximation Σl=1..p 2l-1 · l ≅ p · 2p., we have: Cost2
maint(P) ≅ 2−n · 

([k·3·2k−1 − 6· 2k−1 + 2 + (k−1) ·2k−1)] + (k−1) ·2k−1 ) ·Umod = 2−n · ((k·3 + 2k − 2 − 

6)·2k−1 + 2) ·Umod= 2−n · ((5k − 8)·2k−1 + 2) ·Umod 

Since m = 2k − 1 + 2k−1 − 1, then 2k−1=(m+2)/3 and k = log2 [(m+2)/3 + 1] then, 

Cost2
maint(P) ≅ 2−n · ((5 log2 [(m+2)/3 + 1] − 8) · (m+2)/3 + 2) ·Umod ≅ 2−n · 5/3 · m · 

log2 (m/3) ·Umod ∈ O(2−n · m · log2 m) 

Topology 4. From theorem 6.5, ρρ(c) = n, and ρ(c) = 1 − 2−n , the course χ( ei) = (1−2−n)m 

for all ei. For all ci, the isolated probability of modification Pmod(ci) is 2−n and Pmod(P) = 1 − 

(1 − 2−n)m. 

• For the case b) AcCostmod(b) = Umod and AcCostmod(t) = 2·Umod for all t ∈ TopP. So, 

Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2−n · (1 + (m−1) · 2) ·Umod ≅ 2−n · 2m · 

Umod ∈ O(2−n · m). 

• For the case c) we directly have that AcCostmod(t) = k·Umod. Since m=2k −1, there are 

k levels with decreasing width, i-numbered top-down from k to 1, and 2i−1 compo-

nents on each level, so AcCostmod(ri) = i ·Umod 

Finally, Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = 2−n · (Σi=1..k 2i−1 · i ) ·Umod  

By using again the approximation Σl=1..p 2l-1 · l ≅ p · 2p., we have: Cost2
maint(P) ≅ 2−n · 

(k ·2k ) ·Umod  

Since m = 2k − 1, then 2k=m+1 and k= log2 [m+1] then, 

Cost2
maint(P) ≅ 2−n · log2 [m+1] · (m+1) ·Umod ∈ O(2−n · m · log2m)  

Topology 5. Cases b) and c) will be studied with these two extreme conditions: 

 i) Compensated:∀ci∈BotP then ρρ(ci) = n / Card(BotP). 

 ii) With exceptions: ∃j ∈BotP ρρ(cj) = n − Card(BotP) + 1 and the rest ci∈BotP 

have ρρ(ci) = 1, i ≠ j. 
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• For the case b)-i) we have that Card(BotP) = m-1, so ρ(t) = 1 − 2−n for t and ρ(r) = 1 

− 2−n/(m−1) iff r ≠ t. For every example ei the course χ(ei) = (1−2−n/(m−1)) · (1 − 2−n). 

The isolated probabilities are Pmod(t) = 2−n and Pmod(r) = 2−n/(m−1)  iff r ≠ t. Pmod(P) = 1 

− (1 − 2−n)m−1 · (1 − 2−n/(m−1)). 

 On the other hand, AcCostmod(t) = 2·Umod and AcCostmod(b) = Umod iff r ≠ t 

 So, Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = (2−n · 2 + (m−2)· 2−n/(m−1) ) ·Umod ∈ 

O(m· 2−n/m)  

• For the case c)-i) we have that Card(BotP) = (m + 1) / 2. We have ρ(t) = 1 − 2−n for t 

and for the k levels of the inverse tree, numbered top-down from 1 to k, we have 

ρ(rj) = 1 − 2−n/(2^(j−1)). For every example ei the course χ(ei) = Πj=1..k (1 − 2−n/(2^(j−1))) ≤ 

1 − 2−n/(2^(k−1)) = 1 − 2−2n/(m−1). 

We have that the probabilities of modification are Pmod(t) = 2−n. Since m = 2k − 1, we 

have k levels with increasing width, numbered top-down from 1 to k, we have 2j−1 

components on each level, and Pmod(rj) = 2−n/(2^(j−1)). We have Pmod(P) = (1 − Πj=1..k · 

(1 − 2−n/(2^(j−1))) 2^(j−1) ). 

It is obvious that AcCostmod(t) = m·Umod. Since m = 2k − 1, we have 2k−1 levels: k 

levels with increasing width, j-numbered top-down from 1 to k, we have 2j−1 compo-

nents on each level, and AcCostmod(r j) = (2k−j+1 − 1 + 2k−1−j+1 − 1 + (j−1)) ·Umod  = (3 

· 2k−1−j+1 − 3 + j) ·Umod 

Finally, Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = Σj=1..k 2j−1 · 2−n/(2^(j−1)) ·[3 · 2k−1−j+1 

− 3 + j] ·Umod = Σj=1..k 2−n/(2^(j−1)) ·[3·2k−1 − 3· 2j−1 + j·2j−1] ·Umod  

Since both factors increase very quickly with j, and using the approximation Σl=1..p 2l-

1 · l ≅ p · 2p, we have that we can roughly approximate to: Cost2
maint(P) ≅ 2−n/(2^k) ·k·2k 

·Umod 

Since m=2k−1, then 2k=m+1 and k=log2(m+1), so Cost2
maint(P) ≅ 2−n/m · m·log2m · 

Umod∈O(2−n/m ·m · log2m) 
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• For the case b)-ii) we have that Card(BotP) = m−1, so ρ(t) = 1−2−n for t and ∃j∈BotP 

ρρ(cj) = n−Card(BotP)+1 = n−m+2 and the rest m−2 components ci∈BotP have 

ρρ(ci)=1, i≠j. There are m−2 examples with course χ(e) = (1−2−1)·(1 − 2−n). The rest 

n−m+2 examples have χ(e) = (1−2−(n−m+2)) · (1−2−n). 

 The isolated probabilities are Pmod(t) = 2−n and ∃j ∈BotP Pmod(r) = 2−(n − m + 2) and the 

rest m − 2 components ci∈BotP have Pmod(r) = 0.5. We have Pmod(P) = (1 − (1−2−n) · 

(1−2−(n − m + 2) ) · (1−0.5) (m−2)). 

 On the other hand, AcCostmod(t) = 2·Umod and AcCostmod(b) = Umod iff r ≠ t 

 So, Cost2
maint(P) = Σr ∈ S Pmod(r) · AcCostmod(r) = (2−n · 2 + 2−(n − m + 2)+ (m−2)· 0.5 · 2) 

·Umod. Since the first two terms are always ≤ 1 if n > m and n great, then Cost2
maint(P) 

∈ O(m).  

• Case c)-ii) would be lengthy to study directly. However, the results are very similar 

to the case of considering a vertical propagation like topology 2 on one side and the 

biggest subtree of topology c)- i) on the other side. This latter part, composed of 

((m+1) / 2) −1 nodes, will dominate the whole result because it is reinforced by 

(m+1)/4 examples only, one for each component of BotP. (The former part is O(2−n · 

m2)). 

Using the results of topology c)- i) and changing n by (m+1)/4 we have: 

Cost2
maint(P) ≅ 2− (m+1)/4m ·m · log2m ·Umod∈ O(m · log2m). 
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