
Minimal distance-based generalisation operators

for first-order objects ⋆

V. Estruch C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, Univ. Politècnica de València , Camı́ de Vera s/n, 46020 València, Spain.
{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. Distance-based methods have been a successful family of
machine learning techniques since the inception of the discipline. Ba-
sically, the classification or clustering of a new individual is determined
by the distance to one or more prototypes. From a comprehensibility
point of view, this is not especially problematic in propositional learn-
ing where prototypes can be regarded as a good generalisation (pattern)
of a group of elements. However, for scenarios with structured data,
this is no longer the case. In recent work, we developed a framework to
determine whether a pattern computed by a generalisation operator is
consistent w.r.t. a distance. In this way, we can determine which patterns
can provide a good representation of a group of individuals belonging to
a metric space. In this work, we apply this framework to analyse and
define minimal distance-based generalisation operators (mg operators)
for first-order data. We show that Plotkin’s lgg is a mg operator for
atoms under the distance introduced by J. Ramon, M. Bruynooghe and
W. Van Laer. We also show that this is not the case for clauses with the
distance introduced by J. Ramon and M. Bruynooghe. Consequently, we
introduce a new mg operator for clauses, which could be used as a base
to adapt existing bottom-up methods in ILP.

1 Introduction

Learning from complex data is one of the main challenges in machine learning
(e.g. distance-based and kernel-based methods for structured data [4]). Never-
theless, learning from complex data while preserving comprehensibility is even
more challenging and has mainly been addressed in the area of ILP [7]. Despite
the fact that distance-based methods are quite intuitive and have successfully
been tested in several domains, a model that explains why a new example be-
longs to one class or another does not exist. This is due to the fact that the
information about the matches between two objects (e.g. two molecules) is lost
when these matches are encoded by a number (their distance). Unfortunately,
this lack of explanatory patterns is incompatible for many application contexts.

⋆ This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN 2004-7943-C04-02, ICT for EU-India Cross-Cultural Dissemination
Project under grant ALA/95/23/2003/077-054, Generalitat Valenciana under grant
GV06/301 and UPV under grant TAMAT.

For example, in molecule classification it would be very interesting to describe
a cluster of molecules by saying what chemical structures these molecules have
in common instead of saying that they are close to one given prototype. We ad-
dressed the possibility of descriptions of this kind for distance-based algorithms
in [2], where the concept of distance-based binary generalisation operator was
introduced. Basically, the term ‘distance-based’ means that the operator com-
putes patterns that are “consistent” with the distance employed. For instance,
let (Σ∗, d) be the word space defined over the alphabet Σ = {a, b, c}, and let d be
the edit distance. Given the words w1 = cabab and w2 = ababc a distance-based
generalisation operator could compute ∗abab∗, that is, all the words having the
subsequence abab. This pattern somehow shows why d(w1, w2) = 2 because the
subsequence abab has been taken into account in the best match to obtain the
distance. However, this is not the case for another operator computing ∗c∗ (all
the words having the symbol c) since the common sequence c is not considered
to compute the distance.

Unfortunately, to use these generalisation operators in a real context, we need
to be able to generalise more than two elements. In [1], we introduced this idea
for n-ary operators and we also studied the idea of minimality. Minimality is im-
portant to prevent underfitting in the search of patterns that are consistent with
the underlying distance. For instance, the pattern ∗ab∗ obtained by generalising
the words w1 and w2 looks excessively general w.r.t. another “consistent” pattern
such as ∗abab∗ . Although the idea of generality has been studied in depth when
data is represented by means of first-order logic [11], the same does not happen
for other kinds of data, and especially when data is in a metric space. Therefore,
in [1] we proposed a general way to define minimal distance-based generalisation
operators (mg operators). We have applied this framework to several data sorts:
sets, lists, graphs,... (see [3, 1]).

In this paper, we focus on first-order objects (atoms and Horn clauses), which
are embedded in a metric space. We show that Plotkin’s lgg [11] is a mg operator
for atoms using the metric defined in [13]. This means that the mg patterns
computed by lgg can be used as a consistent explanation for data which has
been clustered employing this distance. Then, we try to extend this result to
Horn clauses (more precisely, sets of literals), and we show that the direct use of
the lgg for clauses does not yield a distance-based generalisation operator using
the metric defined in [12]. Consequently, we introduce a new mg for clauses. This
sets out a scenario where some (but not all) generalisation operators and some
(but not all) metric spaces used in ILP work well together. This suggests the
applicability of other generalisation operators in ILP (such as the one introduced
in this paper).

The paper is organised as follows. Section 2 introduces the framework for
distance-based generalisation operators and the notion of mg. Section 3 analyses
Plotkin’s lgg as a mg for atoms. Section 4 extends the result to sets of literals
(i.e. clauses), through the definition of a new mg which cannot be the lgg for
clauses, since the latter is not distance-based. Finally, the last section presents

our conclusions, possibilities for applications, some open problems, and future
work.

2 Distance-based generalisation framework

We present the main notions related to our framework for defining a concept of
generalisation based on distances. For more details see [1].

Our approach aims to define generalisation operators for data embedded in
a metric space (X, d). These operators are denoted as ∆(E), where E is a finite
set of elements (|E| ≥ 2) of X to be generalised. A generalisation computed
by ∆(E) will be expressed by a pattern p belonging to a pattern language L.
In fact, every pattern p represents a set of elements of X and is denoted by
Set(p). Thus, we can say that an element x ∈ X is covered by a pattern p,
if x ∈ Set(p). In the same way, p is a generalisation of E iff E ⊂ Set(p).
For instance, given the strings abb and abc, and the regular pattern ab∗, then
Set(ab∗) = {ab, abc, aba, abb, abaa, ...}, and we say that ab∗ covers the elements
abb ∈ Set(ab∗) and abc ∈ Set(ab∗).

The following definition establishes the relationship between a generalisation
operator defined in a metric space and the underlying distance.

Definition 1. (Distance-based generalisation operator) Let (X, d) be a
metric space and let L be a pattern language. We say that ∆ : 2X → L is a
distance-based generalisation operator, if for every finite set E ⊂ X, p ∈ L,
∆(E) = p, there exists a nerve N(E)1 such that, for every pair of elements x, y
in E which are directly linked in N(E), Set(∆(E)) includes all the elements z
such that d(x, z) + d(z, y) = d(x, y).

Given a metric space (X, d), we say that, for every x, y, z ∈ X , z is between x
and y if d(x, y) = d(x, z) + d(z, y).

Another issue related to the generalisation operator is to determine when it
performs the least general generalisation (lgg, in short). This is an important
issue if we want the generalisations to “fit” a group of elements as closely as
possible. Although the lgg is a widely studied concept in the field of ILP [8], it
has not been studied when data is not described by means of atoms. Thus, the
following constructions are an alternative and a more general notion of minimal
(least general) generalisation for different sorts of data, when data is in a metric
space.

First, we establish a criterion to determine which pattern is less general, given
two patterns computed by two distance-based generalisation operators ∆(E) and
∆′(E), respectively. The least general generalisation operator ∆ might not be
unique, so we call it minimal. Then, the minimal distance-based generalisation
operator ∆ (mg operator, in short) is the one where for every set E and for
every distance-based operator ∆′, the pattern ∆(E) is less general than ∆′(E).

1 Given a metric space (X, d) and a set of undirected connected graphs SG, a nerve
function N : 2X → SG maps every finite set E ⊂ X into a graph G ∈ SG, such that
each element e in E is unequivocally represented by a vertex in G and vice versa.

In order to formalise our proposal, we could use the inclusion operation be-
tween sets (⊂) as a “mechanism” to compare how general two generalisations
are. In other words, a generalisation ∆(E) is less general than a generalisation
∆′(E), if Set(∆(E)) ⊂ Set(∆′(E)). However, this leads to several problems (see
[1] for details):

1. Most generalisations are not comparable, since neither Set(∆(E)) ⊂ Set(∆′(E))
nor vice versa.

2. The inclusion operator between sets (⊂) ignores the underlying distance.
3. The minimal generalisation may not exist for some pattern languages.

Therefore, these drawbacks lead us to introduce a more abstract generality cri-
terion. It is more interesting to find some kind of ‘function’ that assigns a gener-
ality (cost or optimality) value to every pattern, making every pair of patterns
comparable. For this purpose, we introduce a special function, called the cost
function.

Definition 2. (cost function) Let (X, d) and L be a metric space and a pattern
language, respectively. We say that the mapping k : 2X × L → R is a cost
function, if for every pattern p ∈ L and E ⊂ X, such that E ⊂ Set(p) ⊂ X and
Set(p) 6= X, then k(E, p) <∞.

Logically, this definition gives almost complete freedom for how to choose k. For
the metric spaces considered in this paper, if we are looking for minimal patterns,
the idea is that the cost function must depend on the fit (i.e. minimality). For this
reason, we define the cost function as k(E, p) = c(E|p), where c(E|p) measures
how well the pattern p fits the data E. However, for other metric spaces (sets,
graphs, lists, . . .), more complex cost functions can be defined by also considering
how complicated the pattern is [1], following the MDL/MML principle.

Definition 3. (inclusion-preserving cost function) Let (X, d) and L be a
metric space and a pattern language, respectively. We say that the cost function
c(E|p) is inclusion-preserving if for every E ⊂ X and pair of patterns p and p′

such that Set(p) ⊂ Set(p′) then c(E|p) ≤ c(E|p′).

One interesting point in our approach is that c(E|p) is expressed in terms of
the distance employed. One possible way of defining some instances for c(E|p)
is by using the well-known concept of border of a set2. Intuitively, if a pattern
p1 fits E better than a pattern p2, ∂Set(p1) will somehow be closer to E than
∂Set(p2).

As the border of a set exists in every metric space, several definitions of
c(E|p) can be employed for different sorts of data, as we show in Table 1. It is
easy to show that all of them are inclusion-preserving.

Now, we can introduce the definition of mg operator.

2 We will say that an element e belonging to set A ⊆ X is a border point, if for every
ǫ > 0, B(e, ǫ) (where B(e, r) is the closed ball with centre on e and radius r) is not
totally included in A. In the standard notation, the border of a set A will be denoted
by ∂A.

Sort of data L c(E|p)

Any Any
P

∀e∈E
infr∈RB(e, re) 6⊂ Set(p)

Any Any
P

∀e∈E
supr∈RB(e, re)

Any Any
P

∀e∈E
mine′∈∂Set(p)d(e, e′)

Any Set(p) represents a
P

∀e∈E
(mine′∈∂Set(p)d(e, e′)

bound set +maxe′′∈∂Set(p)d(e, e′′))

Table 1. Some definitions of the function c(E|p).

Definition 4. (Minimal distance-based generalisation operator) Let (X, d)
be a metric space, and let ∆ be a distance-based generalisation operator defined
in X using the pattern language L. Given a cost function k(·, ·), we say that ∆ is
a mg operator for k(·, ·) in L, if for every distance-based generalisation operator
∆′, then k(E, ∆(E)) ≤ k(E, ∆′(E)), for every finite set E ⊂ X.

In general, deriving the mg operator is complicated because of the high variety
of nerve functions N(·) that can be defined. In some problems, it does not make
sense to explore all the nerve functions (e.g. in clustering), and we might be
interested in computing mg operators relative to one specific nerve function,
namely:

k(E, ∆N(E)(E)) ≤ k(E, ∆′

N(E)(E)), for every finite set E ⊂ X .

Next, we analyse and/or derive mg operators for the specific case of first-order
logic data (atoms and clauses) embedded in a metric space.

3 Minimal distance-based generalisations for atoms

The goal of this section is to compute mg operators for atoms embedded in a
particular metric space. To do this, a distance function, a pattern language and
a cost function are defined. In what follows, L, denotes a first-order language
defined over the signature 〈C,F , Π,X〉, where C is a set of constants, F (and
respectively Π) is a family that is indexed on N (non negative integers) with Fn

(Πn) being a set of n−adic function (predicate) symbols and X is a (infinite)
denumerable set of variable symbols. In the case of no ambiguity, both predi-
cate and function symbols are referred to as symbols, and variable symbols are
referred to as variables. f/n (and respectively p/n) denotes a function symbol
f ∈ Fn (and respectively p ∈ Πn). Finally, the reader may refer to [5, 6] for any
concept about logic programming and inductive logic programming which is not
explicitly defined.

3.1 The metric space

The distance function d we are going to employ is defined in [13]. Basically,
this distance returns an ordered pair of integer values (i, j). This pair expresses
how different two atoms are in terms of function symbols and variable symbols,

respectively. An auxiliary function, the so-called size(e) = (F, V), is required
to compute d. This function encodes the structure of one atom e. That is, F
is a function that counts the number of function symbols occurring in e, and
V returns the sum of the squared number of occurrences of each variable in
e. Finally, given atoms e1 and e2, d(e1, e2) = [size(e1) − size(lgg(e1, e2))] +
[size(e2)− size(lgg(e1, e2))].

For instance, if e1 = q(a, f(a)) and e2 = q(b, f(X)) and knowing that
lgg(e1, e2) = q(Y, f(Z)), size(e1) = (3, 0), size(e2) = (2, 1), size(lgg(e1, e2)) =
(1, 2), the distance between e1 and e2 is given by the expression: d(e1, e2) =
[(3, 0)− (1, 2)] + [(2, 1)− (1, 2)] = (2,−2) + (1,−1) = (3,−3).

For non-unifiable atoms, the distance is defined by means of introducing an
artificial second-order symbol ⊤, which is considered the most general 3 element,
such that size(⊤) = (0, 1). Note that a total order relation (lexicographic order),
defined over the set of ordered pairs, is needed to express how far two atoms are
from each other. Given two ordered pairs A = (F1, V1) and B = (F2, V2), A < B
iff F1 < F2 or F1 = F2 and V1 < V2. As the set of tuples are ordered, it permits
us to handle these objects as if they were real numbers. For this reason, all the
definitions of our framework can be automatically extended for this special case.

In what follows, (Xa, da) denotes the metric space where Xa is the Herbrand
Base with variables induced by the signature, and da denotes the distance de-
scribed above.

3.2 The pattern language and the cost function

The pattern language is the Herbrand base with variables induced by the sig-
nature, that is, L coincides with Xa. For example, let C = {a, b} be a set of
constants, F = {f/1} a set of function symbols, X = {X1, X2, . . .} a denu-
merable set of variables and Π = {p/1, q/1} a set of predicate symbols. Then,
L1 = {p(a, X1), p(X1, a), p(X1, X2), p(f(a), b), . . . q(a, X1), q(X1, a), . . .}. Given
a pattern p, Set(p) denotes all the atoms in Xa which are instances of p. For
example, p(a) ∈ Set(p(X)).

Regarding the cost function, c(E|p) is the first function in Table 1. Clearly,
it is a cost function for (Xa, da) and L since, for a finite set of elements E ⊂ Xa

and a pattern p covering E, c(E|p) =∞ iff Set(p) = Xa.

3.3 Defining a mg operator

We proved in [2] that the lgg for two atoms is a binary distance-based gener-
alisation operator for (Xa, da). Taking this previous result into account, we can
demonstrate that, where E is a finite set of two or more atoms, lgg(E) is the
mg for this metric space and this cost function.

Proposition 1. Given the metric space (Xa, da). If L is the Herbrand base
with variables induced by the signature and c(E|p) =

∑
∀e∈E re (being re =

3 By general we mean the well-known concept from logic programming.

infr∈RB(e, r) 6⊂ Set(p)), then ∆(E) = lgg(E) is a mg operator for da, L and
c(E|p).

Proof. First, let us show that lgg(E) performs minimal patterns according to
the cost function. For every generalisation p of E, p ∈ L, such that E ⊂ Set(p),
by definition of lgg, Set(lgg(E)) ⊂ Set(p), and by Definition 3, c(E|lgg(E)) ≤
c(E|p).

Secondly, note that lgg(E) is distance-based. Clearly, for every two elements
ei, ej ∈ E, Set(lgg(ei, ej)) ⊂ Set(lgg(E)). According to Proposition 6 in [2],
lgg(ei, ej) is distance-based in (Xa, da) and so Set(E) contains all the elements
between ei and ej, for every ei and ej . Then, simply defining, for instance, N(E)
as a complete graph, lgg(E) is distance-based.

This result does not necessarily hold when the cost function or even the
pattern language is changed. In [1], we explore the combination of different cost
functions and pattern languages in further detail.

4 Minimal distance-based generalisations for clauses

From a practical point of view, finite sets of literals (interpreted as clauses) allow
us to express real-world objects more accurately than single literals do. A set
of literals can represent not only the different parts of an object but also the
relationships among them. A clause interprets these literals as a disjunction,
which is usually expressed as a logic implication with a disjunction of all the
positive literals in the consequent (head) and a conjunction of all the negative
literals in the antecedent (body). For instance,

C = {class(X, c1),¬molec(X),¬atom(X, h)}

can be interpreted and represented as: class(X, c1) : −molec(X)∧ atom(X, h)4.
In order to determine mg operators for clauses, we need to establish a distance

function, a pattern language, and a cost function for this sort of data.

4.1 The metric space

The distance we are going to use is defined in [12]. This distance is based on
minimal matchings5 over sets and requires the elements of the sets to be em-
bedded in a metric space as well. Given two sets A and B and the elements
a ∈ A and b ∈ B, we say that the ordered pair (a, b) belongs to the matching
αA,B between A and B (a subset of A × B), if αA,B(a) = b. By D(αA,B), we
denote the domain of the matching, that is, D(αA,B) = {a ∈ A : ∃(a, b) ∈ αA,B}.
By αA,B(A) = {b ∈ B|(a, b) ∈ αA,B ∧ a ∈ A}, we denote the codomain of the
matching.

4 As in Prolog notation, the symbol : − denotes the logic implication symbol ←.
5 A matching from set A to set B is an injective mapping which is not necessarily

defined over all the elements in A.

Thus, given two sets A and B and a matching αA,B, a similarity measure
d(αA,B, A, B) can be defined by summing the distances between the elements
from the ordered pairs belonging to αA,B and adding a penalty M/2 for each
element in A and B that is not included in the matching. More formally,

d(αA,B, A, B) =
∑

∀(ai,bj)∈αA,B

d(ai, bj)+
M

2
(|B−αA,B(A)|+ |A−D(αA,B)|) (1)

Finally, the distance between A and B is given by the optimal (minimal) match-
ing among all the possible ones:

dm(A, B) = min∀αA,B
d(αA,B , A, B) (2)

Unless we say otherwise, (2X , dm) denotes the metric space of sets, and (X, d)
denotes the metric space of the elements of the sets. In our case, the metric space
(X, d) to be considered, which is denoted as (Xl, dl), is obtained by extending
the space Xa and the distance da (defined for atoms in the previous section)
to both positive and negative atoms, i.e. literals. This extension is trivial, since
p(. . .) and ¬p(. . .) are considered incompatible literals. Hence it is like treating
them as being built by different predicates6. According to [12], the constant M
must be greater or equal to the maximal distance between two elements in X
in order to dm(·, ·) satisfies all the axioms of a metric. This restriction forces
us to bound (restrict) the space X . Then, the restriction over Xl will consist of
setting a threshold for the number of symbols in an atom, namely R/2. Only
atoms with less than R/2 symbols will be permitted. These are called bounded
literals. Thus, let X̄l and M = (R, R) be the bounded space and the penalty,
respectively.

Example 1. Given the sets A = {a1 ≡ p(g(a), e), a2 ≡ p(f(a), f(b)), a3 ≡ p(a, a)}
and B = {b1 ≡ p(f(b), f(a)), b2 ≡ p(f(a), e))} and according to the distances
among all the atoms, the optimal matching αA,B is {(a1, b2), (a2, b1)}. Then, the
distance between the sets is given by dm(A, B) = d(a1, b2)+d(a2, b1)+

1
2 (R, R) =

(8,−6) + (R
2 , R

2).

The above restriction is finally neither a real nor theoretical problem. A
representation of a real-life object always requires a finite number of symbols and
all the results concerning (Xl, dl) hold for (X̄l, dl), as the following Proposition
2 shows.

Proposition 2. Proposition 1 (i.e. lgg for bounded literals is a mg) holds for the
metric space (X̄l, dl), where X̄l = {x ∈ Xl : number of non-variable symbols in
x ≤ k}with k being a constant.

Proof. Trivially, for every ei, ej ∈ E ⊂ X̄1, if ek is an element between ei and ej

in X̄l, it is also between them in the space Xl since the distance function is the

6 The lgg of two incompatible literals is undefined [5].

same; thus, ek ∈ Set(lgg(E)) and lgg(E) is distance-based in X̄l. Also, for every
generalisation p of E, such that E ⊂ Set(p) we have that Set(lgg(E)) ⊂ Set(p)
by definition of lgg and c(E|lgg(E)) ≤ c(E|p) by Definition 3. Thus, lgg for
literals is a mg operator.

Therefore, the metric space for clauses is (2X̄l , dm).

4.2 The pattern language and the cost function

Thus, we define L as the set of all the logic programs we can define given a
signature. Some examples of patterns could be,

p1 ≡ class(X, c1) : −molec(X), atom(X, Y, h)
class(X, c1) : −molec(X), atom(X, Y, o)

p2 ≡ class(X, c2) : −molec(Y), atom(Y, Z, c)

The pattern p1 says that a molecule belongs to the class/cluster c1 if it has an
atom of hydrogen or oxygen. Of course, a pattern can also be viewed as a set
of clauses. For example, p1 = {C11 ≡ {class(X, c1),¬molec(X),¬atom(X,, h)},
C12 ≡ {class(X, c1),¬molec(X),¬atom(X,, o)}} and p2 = {C21 ≡ {class(X, c2),
¬molec(Y),¬atom(Y,, c))}}. From this point of view, patterns can be com-
bined by means of the union operator (∪). Thus, the pattern p3 = p1 ∪ p2 is
p3 = {C11, C12, C21}. Moreover, each clause C in p is a pattern as well, which is
denoted as {C}.

Finally, given a pattern p ∈ L, Set(p) represents all those clauses in the metric
space 2X̄l which are θ-subsumed by p. Thus, the clause {class(m1, c1),¬molec(m1),
¬atom(m1, h)} belongs to Set(p1).

As for the cost function, c(E|p) is the first function in Table 1. Clearly, it
is a cost function for (2X̄l , dm) and L since for a finite set of elements E and a
pattern p covering E, c(E|p) =∞ iff Set(p) = 2X̄l .

4.3 Defining mg operators

Unlike (Xa, da), let us first see that ∆(E) = lgg(E) (where lgg is the least general
generalisation for clauses [11]) is not a mg operator in (2X̄l , dm). Although it
can easily be shown that lgg(E) is a minimal pattern in our framework, lgg(E)
is not distance-based for dm(·, ·). That is, given two clauses A and B there exists
a clause C such that d(A, C) + d(C, B) = d(A, B) and C is not covered by
lgg(A, B) (see Example 2).

Example 2. Given the sets A = {¬p(g(a), e),¬p(f(a), f(b))}, B = {¬p(f(b),
f(a)), ¬p(f(a), e)} and C = {¬p(f(b), f(b)),¬p(g(a), e)}. The optimal mappings
from A to C and from C to B, respectively, are depicted below.
We can easily see that dm(A, B) = (8,−8) = dm(A, C) + dm(C, B). However,

lgg(A, B) = {¬p(f(X), f(Y)),¬p(Z, e),¬p(f(a), T),¬p(U, V)} ≡
: −p(f(X), f(Y)), p(Z, e), p(f(a), T), p(U, V)

but C ≡: −p(f(b), f(b)), p(g(a), e) is not θ-subsumed by lgg(A, B).

(0,0)

(2,−2)

p(f(b),f(a))
(2,−2)

(4,−4)

A

p(f(a),f(b))

p(g(a),e))

p(g(a),e))

p(f(b),f(b))
p(f(a),e))

C B

Fig. 1. The arrows and the labels indicate the optimal mappings between the different
pairs of sets and the distance between the matched elements, respectively.

Unfortunately, defining mg operators in this space is not as intuitive as in the
previous section. We tackle the problem in a different way. First, we focus on
determining binary mg operators. Then we study if we can obtain n-ary mg
operators by combining these binary mg operators.

Proposition 3. Let A, B and C be three finite sets of elements. If the equality
dm(A, B) = dm(A, C) + dm(C, B) holds, then there exists an optimal mapping
α′

A,B such that for every pair of elements (ai, bj) in α′
A,B there exists an element

ck ∈ C that satisfies dl(ai, bj) = dl(ai, ck) + dl(ck, bj).

Proof. Let αA,C , αC,B be the optimal matchings used for the computation of
dm(A, C) and dm(C, B), respectively. We can write,

dm(A, C) =
∑

∀(ai,cj)∈αA,C
dl(ai, cj) + M

2 · kαA,C

dm(C, B) =
∑

∀(ci,bj)∈αC,B
dl(ci, bj) + M

2 · kαC,B

where kαA,C
(respectively, kαC,B

) denotes the number of elements of A and C
(respectively, C and B) which do not belong to αA,C (respectively, αC,B).

Next, we define the matching α
′

A,B as the composition of the mappings αA,C

and αC,B. That is, α′
A,B(A) = αC,B(αA,C(A)). Keeping α′

A,B in mind, the sum
dm(A, C) + dm(C, B) can be written as,

dm(A, C) + dm(C, B) =
∑

∀(ai,bj)∈α′

A,B
(dl(ai, αA,C(ai)) + dl(αA,C(ai), bj))

+
∑

∀ai∈D(αA,C)−D(α′

A,B) dl(ai, αA,C(ai))

+
∑

∀ci∈D(αC,B)−αA,C(A) dl(ci, αC,B(ci))

+M
2 · kαA,C

+ M
2 · kαC,B

(3)
The first term on the right-hand side of Equation (3) considers all the ordered
pairs belonging to the matchings that share an element ci ∈ C. The second and
third terms concern those ordered pairs in αA,C and αC,B (respectively), which
were not taken into account by the first term. Finally, the two last terms come
from those unmatched elements.

Next, the chain of inequalities shown in Equation (4) can be derived as fol-
lows. First, we apply the triangle inequality over the first term on the right-hand
side of Expression (3). Second, we remove the second and the third terms. Third,
we apply kαA,C

+ kαC,B
≥ kα′

A,B
. And, finally, the last inequality is a direct con-

sequence of the dm(·, ·) definition (see Equation (2)).

dm(A, C) + dm(C, B) ≥
∑

∀(ai,bj)∈α′

A,B
dl(ai, bj)

+
∑

∀ai∈D(αA,C)−D(α′

A,B
) dl(ai, αA,C(ai))

+
∑

∀ci∈D(αC,B)−αA,C(A) dl(ci, αC,B(ci))

+M
2 · kαA,C

+ M
2 · kαC,B

≥
∑

∀(ai,bj)∈α′

A,B
dl(ai, bj)

+M
2 · (kαA,C

+ kαC,B
)

≥
∑

∀(ai,bj)∈α′

A,B
dl(ai, bj) + M

2 · (kα′

A,B
) = d(α′

A,B, A, B)

≥ dm(A, B)
(4)

The equality d(A, C)+d(C, B) = d(A, B) holds only if all the inequalities (≥) on
the right-hand-side of Equation (4) becomes an equality. Among all these trans-
formations, only the first and the last one are necessary to prove the proposition.
The first inequality turns into an equality if the element ck = αA,C(ai) in the
first term in the right-hand-side of (3) satisfies d(ai, bj) = d(ai, ck) + d(ck, bj),
for every pair (ai, bj) in α′

A,B. The proposition is automatically proved if α′
A,B is

an optimal matching, and if this occurs then the last inequality is transformed
into an equality.

The fact that the lgg(·) for atoms is distance-based suggests a strategy to
define distance-based binary generalisation operators: given two clauses A and
B in 2X̄l , we could initially define ∆(A, B) = {{lgg(ai, bj) : (ai, bj) ∈ αA,B}}
where αA,B is an optimal mapping. A distance-based operator must compute a
pattern covering the elements C between A and B. However, if C is between A
and B, then C contains atoms ck which are also between ai and bj , for every
(ai, bj) in an optimal αA,B. Since the lgg for atoms is distance-based for the
distance dl, if ck is between the atoms ai and bj, then ck ∈ Set(lgg(ai, bj)).
At first glance, this definition of ∆ seems to be distance-based. However, two
drawbacks must be analysed.

1. Variables occurring in the different lgg(ai, bj) must be independent (i.e. never
repeated). Otherwise, the corresponding pattern might not be distance-based
(for further details see [1]). We deal with this crucial issue at the end of this
section.

2. More than one optimal matching can be given for dm(A, B). Of course, if the
matchings lead to different patterns p1 and p2 such as Set(p1) 6= Set(p2),
there will be elements between A and B which do not belong to Set(p1) or
to Set(p2). Hence, all the optimal matchings must be taken into account.
Of course, this has a negative effect on the efficiency of computing distance-
based operators.

Taking both observations above into account, Propositions 4 and 5 characterise
the family of all the distance-based binary generalisation operators. They show
that a binary generalisation operator ∆(A, B) is distance-based if Set(∆∗(A, B)) ⊂
Set(∆(A, B)), where ∆∗(A, B) represents the union of all patterns pi obtained
by taking all the optimal matchings between A and B into account.

Proposition 4. Given two clauses A and B in (2X̄l , dl) and the pattern lan-
guage L consisting of all logic programs defined over a signature. The binary
generalisation operator ∆∗(A, B) = p defined as

p =
⋃

∀ optimal αA,B

{lgg(ai, bj) : ∀(ai, bj) ∈ αA,B},

is distance-based, where the repeated variables occurring in different lgg(ai, bj)
are independent.

Proof. From Proposition 3, if a set D is between A and B (i.e. dm(A, B) =
dm(A, D) + dm(D, B)) then there exists an optimal mapping αA,B such that
for every (ai, bj) ∈ αA,B there exists dk ∈ D with dk being between ai and bj .
As the lgg for literals is distance-based, necessarily dk ∈ Set(lgg(ai, bj)) and
D ∈ Set({lgg(ai, bj) : ∀(ai, bj) ∈ αA,B}). Since all the optimal mappings are
taken into consideration, for every set D between A and B, D ∈ Set(p), and
therefore, ∆∗(A, B) is distance-based.

Proposition 5. Given the metric space (2X̄l , dm) and the pattern language L
consisting of all the logic programs defined over a signature. A mapping ∆ : 2X̄l×
2X̄l → L is distance-based iff for every pair of clauses A and B, Set(∆∗(A, B)) ⊂
Set(∆(A, B)), with ∆∗ being the distance-based operator defined in Proposition
4.

Proof. (→) If ∆(A, B) is distance-based, then it means that for every D between
A and B, D ⊂ Set(∆(A, B)). Then, for every optimal mapping αA,B, we define
DαA,B

as
DαA,B

= {lgg(ai, bj) : ∀(ai, bj) ∈ αA,B}

which is clearly between A and B. Then, for every optimal mapping αA,B ,
DαA,B

∈ Set(∆(A, B)), and therefore ∆∗(A, B) ∈ Set(∆(A, B)) and by defini-
tion of Set(·), Set(∆∗(A, B)) ⊂ Set(∆(A, B)).

(←) Thus, Set(∆∗(A, B)) is a subset of Set(∆(A, B)). Since ∆∗(A, B) is
distance-based, automatically ∆(A, B) is distance-based.

Now, we must determine the mg binary operator. It is direct from Proposition
5 and Definition 3, since, for every distance-based operator ∆(A, B) and for
every pair of elements A and B, we know that Set(∆∗(A, B)) ⊂ Set(∆(A, B))
and therefore, c({A, B}|∆∗(A, B)) ≤ c({A, B}|∆(A, B)). Then, ∆∗(A, B) is the
mg.

Given that the patterns pi can be combined by means of the union operator,
a distance-based operator can be defined for more than two elements by defining
a distance-based binary operator, namely ∆′, and fixing a nerve-function N(·).
Given the set E = {e1, . . . , en}, ∆N(E)(E) =

⋃
∀(ei,ej)∈N(E) ∆′(ei, ej).

The distance-based operator which is minimal can be determined by explor-
ing all the possible nerves N(E) for a set of elements E. On the other hand, we
may only be interested in computing the mg relative to a specific nerve func-
tion. Then, Proposition 6 states that if ∆′ = ∆∗ in the expression above, then
∆N(E)(E) is a mg that is related to a nerve function N(E).

Proposition 6. Let ∆∗(A, B) be the binary generalisation operator introduced
in Proposition 4 and let c(E|p) =

∑
∀e∈E re (with re = infr∈RB(e, r) 6⊂ Set(p))

be the cost function. Then

∆N(E)(E) =
⋃

∀(ei,ej)∈N(E)

∆∗(ei, ej)

is a mg operator that is related to the nerve function N(E).

Proof. We will proceed by contradiction. Let us suppose that ∆N(E) is not mg.
Then there exists a distance-based ∆′

N(E) such that c(E|∆′

N(E)) < c(E|∆N(E)).

We define a binary distance-based operator ∆′′ restricted to all the pairs (ei, ej) ∈
N(E), such that ∆′′(ei, ej) = ∆′

N(E)(E) = p. But according to Proposition 5,

Set(∆∗

N(E)(ei, ej)) ⊆ Set(∆′′(ei, ej)) = Set(∆′

N(E)(E))

As occurs for every (ei, ej) ∈ N(E), Set(∆N(E)(E)) ⊂ Set(∆′

N(E)(E)), and,

consequently, ∆′

N(E) cannot be mg.

Before concluding, note that a pattern computed by a mg cannot contain
repeated variables in the different lgg(ai, bj) from the same clause. On the one
hand, this makes sense since the metric does not capture the semantic of repeated
variables occurring in different atoms. Hence, for the sets A = {p(a), q(a)},
B = {p(b), q(b)}, and C = {p(c), q(d)}, dl(A, B) = dl(A, C) when, intuitively,
B should be more similar to A. This is a strong constraint to express some
real-world properties. However, this concerns only the mg operator. It does not
mean that distance-based operators cannot contain repeated variables in differ-
ent atoms in general. For instance, Proposition 5 suggests that we could adapt
a bottom-up ILP inference algorithm to take the pattern (clauses) computed by
the mg as input. The output of the algorithm is a more general pattern than the
input pattern. It is also distance-based and contains repeated variables among
different atoms. Furthermore, this fact indicates that some adaptations of the
ILP algorithms can be viewed as distance-based operators.

5 Conclusions and future work

This work develops the notion of mg operator for every sort of data that is em-
bedded in a metric space. Here we include a definition of the framework, following
the main ideas explained in [1] in order to address the minimal generalisation
operators for some first-order objects.

We have shown that Plotkin’s lgg can be seen as a particular case of this
setting because the classical lgg for atoms is a mg operator w.r.t. the metric
space defined in [13] and a specific (but simple) cost function. We showed this
result in [2], but only as a binary operator and without the notion of minimality.
The notion of cost function, which is exclusively defined in terms of distances,
completes the connection between the concepts of distance, pattern and gener-
alisation that we established in previous works. Furthermore, in this work, we

have suggested that different mg operators for atoms can be obtained by chang-
ing the cost function, which can be an alternative to lgg for redesigning existing
ILP methods or for deriving new ones. As for clauses, Plotkin’s lgg has been
shown not to be a mg operator for the particular metric space derived from the
distance introduced by [12]. Due to the complexity of this metric space, a new
mg operator relative to one specific nerve function has been introduced. Other
distances, cost functions and pattern languages have also been studied (see [1]).
For instance, Plotkin’s lgg for atoms is not distance-based w.r.t. the distance
introduced in [9]. This is an example that some distances are more appropriate
than others in a logic context.

The applicability of the framework and the new lines of research are numer-
ous. First, we think that the new mg operators (and the new understanding of
the lgg as a distance-based operator) can be useful to redefine, reunderstand,
and cross different methods and ideas within ILP. For instance, some bottom-
up ILP methods (some of which have almost been forgotten since the early
nineties) can be adapted to work with newly derived mg operators, as we out-
lined at the end of the section above. Furthermore, the adapted ILP methods
would be distance-based operators. For instance, some size measures for atoms
and clauses (see Section 14.9 in [10]) could be used for the cost function in a
similar way as they were used in the context of refinement. Second, distance-
based mg would be a good link to extend ILP techniques outside ILP, since
we have defined them for many other data types: lists, trees, graphs, sets (see
[1] [3]). Specifically, bottom-up ILP methods could by adapted to other kinds
of complex objects (not necessarily first-order). For instance, we are currently
investigating the possibility of applying ILP bottom-up methods of this kind to
lists or graphs. Third, we think that provided that we have an adequate mg
operator (as some of the ones studied or derived in this work), we could easily
adapt traditional distance-based techniques to ILP such as clustering techniques
(k-means, minimum-spanning tree, etc.) or classification techniques (k-nn) in a
more sophisticated way than has been done to date. In other words, we can turn
these techniques from instance-based techniques to model-based techniques.

One of the specific issues that must be addressed for any new mg is, logically,
its efficiency. In some cases, if the mg is distance-based, but computationally
expensive to find, we might need to find heuristics or approximations. Some of
these approximations (as we mentioned in the specific case of the mg in Section
4) consist of making one optimal matching instead of all the possible optimal
matchings between two elements. We have explored this possibility for lists (see
[1]) by introducing the notion of pseudo distance-based operator. However, it is
important to highlight that, in our framework, the mg operators are based on a
cost function. This is more flexible than when the mg operator is solely based on
the notion of generalisation or inclusion. If all the distances are pre-computed
between elements, the computation of the mg can be speeded up.

We are currently adapting classical (and, for the moment, simple) machine
learning techniques to our framework, such as a nearest-neighbour classifier
based on mg for several data sorts or a distance-based decision tree.

Acknowledgement

We thank the anonymous reviewers for their valuable and insightful comments.

References

1. V. Estruch. A distance-based generalisation framework for model-based learn-
ing from structured data. PhD thesis, Technical University of Valencia, 2007.
http://www.dsic.upv.es/∼flip/#Papers.

2. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. Distance-
based generalisation. In Proc. of the 15th International Conference on Inductive
Logic Programming, ILP, volume 3625 of LNCS, pages 87–102. Springer, 2005.

3. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. Distance-
based generalisation for graphs. In Proc. of the WS of Mining and Learning with
Graphs, MLG06, 2006.

4. T. Gaertner, J. W. Lloyd, and P. A. Flach. Kernels and distances for structured
data. Machine Learning, 57(3):205–232, 2004.

5. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, New York, 1994.

6. J. W. Lloyd. Foundations of logic programming; (2nd extended ed.). Springer-
Verlag New York, Inc., New York, NY, USA, 1987.

7. S. Muggleton. Inductive Logic Programming. New Generation Computing,
8(4):295–318, 1991.

8. S. H. Muggleton. Inductive logic programming: Issues, results, and the challenge
of learning language in logic. Artificial Intelligence, 114(1–2):283–296, 1999.

9. S-H. Nienhuys-Cheng. Distance between Herbrand interpretations: A measure
for approximations to a target concept. In S. Džeroski and N. Lavrač, editors,
Proceedings of the 7th International Workshop on Inductive Logic Programming,
volume 1297 of LNCS, pages 213–226. Springer-Verlag, 1997.

10. S-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming. Springer-Verlag New York, Inc., 1997.

11. G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,
1970.

12. J. Ramon and M. Bruynooghe. A framework for defining distances between first-
order logic objects. In In Proceed. of International Conference on Inductive Logic
Programming, ILP, volume 1446 of LNCS, pages 271–280, 1998.

13. J. Ramon, M. Bruynooghe, and W. Van Laer. Distance measures between atoms.
In CompulogNet Area Meeting on Computational Logic and Machine Learning,
pages 35–41. University of Manchester, UK, 1998.

