
p ()
URL: http://www.elsevier.nl/locate/entcs/volume86.html 20 pages

Cost-Sensitive Diagnosis of Declarative
Programs

D. Ballis b M. Falaschi b C. Ferri a J. Hernández-Orallo a

M.J. Ramı́rez-Quintana a

a DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. Email: {cferri,jorallo,mramirez}@dsic.upv.es.

b Dip. Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy.
Email: {demis,falaschi}@dimi.uniud.it.

Abstract

Diagnosis methods in debugging aim at detecting bugs of a program, either by
comparing it with a correct specification or by the help of an oracle (typically, the
user herself). Debugging techniques for declarative programs usually exploit the
semantical properties of programs (and specifications) and generally try to detect
one or more “buggy” rules. In this way, rules are split apart in an absolute way:
either they are correct or not. However, in many situations, not every error has the
same consequences, an issue that is ignored by classical debugging frameworks. In
this paper, we generalise debugging by considering a cost function, i.e. a function
that assigns different cost values to each kind of error and different benefit values
to each kind of correct response. The problem is now redefined as assigning a
real-valued probability and cost to each rule, by considering each rule more or less
“guilty” of the overall error and cost of the program. This makes possible to rank
rules rather than only separate them between right and wrong. Our debugging
method is also different from classical approaches in that it is probabilistic, i.e. we
use a set of ground examples to approximate these rankings.

Key words: Declarative Debugging, Cost Matrices, Software
Testing, Cost-sensitive Evaluation.

1 Introduction

Debugging has always been an undesired stage in software development. Much
research in the area of software development has been devoted to avoid errors

1 This work has been partially supported by CICYT under grant TIC2001-2705-C03-01
and Acción Integrada Hispano-Italiana HI2000-0161.

c©2003 Published by Elsevier Science B. V.

85

Ballis et al

but, in the general framework of programming, the errors are still there and,
hence, must be detected and corrected.

The problem of debugging can be presented in several ways. In the worst
case, we only know that the program does not work correctly, and little can
be done automatically. Sometimes we are given several wrong (and optionally
right) computations (e.g. from the profiler). In other situations, we take for
granted that we have an oracle (generally the user) whom we can ask about
the correct computation of any example. In the best case, we have a formal
specification and the program to be corrected.

Even in the best case (we know the specification) the diagnosis of which
parts of the program are wrong is not trivial. Successful techniques in the di-
agnosis of bugs are usually associated with the type of programming language
used. Programming languages based on rules and, especially, declarative lan-
guages allow the use of powerful (formal) techniques to address the problem.
Several approaches have been developed for logic programming [3], functional
programming [8] and logic and functional integrated languages [1,2], in order
to debug programs according to different observable properties, e.g., correct
answers, computed answers, call patterns, finite failure, etc. Furthermore,
some of these methods are also able to diagnose lost answers (the complete-
ness problem).

However, many formal techniques derived so far are based on the idea of
comparing specification and program, also assuming that all the predicates or
functions implemented by the program are also defined by the specification, to
which they can be compared, or assuming that auxiliary functions are correct.

So we would like to cope with large programs, where the specification of
the auxiliary functions is not known, and taking into account the program
usage distribution and the costs of each kind of error.

Let us illustrate the kind of problems we want to address with an example.

Example 1.1 Consider a taxi company that wants to use a program for send-
ing the appropriate vehicle type (car, van, minibus or special service) depend-
ing on the number of people in the group that has made the call. The maxi-
mum capacities of each vehicle are 4 for cars, 8 for vans and 12 for minibusses.
The specification I given by the company is then as follows 2 :

taxi(N) → car ⇐ N ≤ 4

taxi(N) → van ⇐ 4 < N ≤ 8

taxi(N) → minibus ⇐ 8 < N ≤ 12

taxi(N) → special ⇐ 12 < N

A programmer just implements this problem as the following program R1:

2 In the example, < and ≤ are the usual predefined boolean functions modelling inequality
relations among naturals.

86

Ballis et al

r1 : cap(car) → 4

r2 : cap(van) → 9

r3 : cap(minibus) → 12

r4 : interval(X, N, Z) → (X < N ≤ Z)

r5 : taxi(N) → car ⇐ interval(0, N, cap(car))

r6 : taxi(N) → van ⇐ interval(cap(car), N, cap(van))

r7 : taxi(N) → minibus ⇐ interval(cap(van), N, cap(minibus))

r8 : taxi(N) → special ⇐ cap(minibus) < N

As can be seen, the programmer has made a mistake on the capacity of the van.
However, the semantics of the auxiliary function cap measuring the“capacity”
of a vehicle is not in the specification and, consequently, classical approaches
cannot be applied unless assuming that the auxiliary functions are correct,
which in this case it is not true.

Nonetheless, the previous example can also be used to show that even
detecting errors is not sufficient for improving the quality of a program.

Example 1.2 Consider the alternative program R2:

r1 : cap(car) → 3

r2 : cap(van) → 7

r3 : cap(minibus) → 12

r4 : interval(X, N, Z) → (X < N ≤ Z)

r5 : taxi(N) → car ⇐ interval(0, N, cap(car))

r6 : taxi(N) → van ⇐ interval(cap(car), N, cap(van))

r7 : taxi(N) → minibus ⇐ interval(cap(van), N, cap(minibus))

r8 : taxi(N) → special ⇐ N > cap(minibus)

Apparently, this program is more buggy than R1 since rules r1 and r2 seem
to be wrong. However, in the context where this program is going to be used,
it is likely that R2 is better than R1. But why?

The issue here is that in most situations, not every error has the same
consequences. For instance, a wrong medical diagnosis or treatment can have
different costs and dangers depending on which kind of mistake has been done.
Obviously, costs of each error are problem dependent, but it is not common
the case that they are uniform for a single problem. Note that it might even
be cheaper not to correct a limited bug and invest that time in correcting
other costlier bugs.

For the previous example, the cost of each error could be represented as a

87

Ballis et al

“cost matrix” and its values could have been estimated by the company 3 :

I

car van minibus special

car 0 200 200 200

R van 4 0 200 200

minibus 10 6 0 200

special 30 15 5 0

Obviously the cost of sending a car when a van is needed is much higher than
the contrary situation, since in the first case the vehicle is not big enough to
carry all the people. For this particular matrix and a non-biased distribution
of examples, the program R2 is better than the program R1, even though
apparently it has more buggy rules. Nonetheless a different distribution of
examples (e.g. if groups of 4 people are much more common than groups of 9
people) could turn R1 into a better program. Consequently, in order to know
which rules are more problematic or costlier, we need to know:

• The cost of each kind of error given by a cost function.

• The distribution of cases that the program has to work with.

The previous example also shows that if we do not have the specification of
the main function and all the auxiliary functions, it is impossible in general
to talk about correct and incorrect rules. In these cases, it is only sensible to
talk about rules that participate more or less in the program errors or costs,
giving a rate rather than a sharp classification between good and bad rules.
Another common situation is during the development of the software product
when there is not enough time to correct all the errors before the date of the
purchase of the product. In this case, it could be very useful to have a rank
of errors in order to correct the most important ones first.

Taking into account the previous considerations, we are going to devise a
new debugging schema (for decreasing programs) with the following require-
ments:

• It should be able to work with samples of examples, with oracles or with a
correct specification, without the need of correct specifications for auxiliary
functions.

• It should consider a user-defined or predefined cost function in order to
perform cost-sensitive debugging.

• The previously obtained costs will be used to rank the rules from more costly
to less costly rather than strictly separating between buggy or non-buggy

3 This is usually a simplification, since the cost may also depend on the size, the age or
even the extra number of people.

88

Ballis et al

rules.

• It should be possible to use a tunable trade-off between efficiency of the
method and the quality of its ranking.

The paper is organised as follows. In Section 2, we give some notation and
we formally introduce the cost-sensitive diagnosis problem. Section 3 deals
with an estimation of the rule error probability. Section 4 is mainly devoted
to the illustration of the Cost-Sensitive diagnosis framework. Scalability and
applicability of the approach are discussed in Section 5. Section 6 concludes
the paper.

2 Notation and Problem Statement

In this work, we will concentrate on declarative languages, although most
of the ideas introduced are valid for other rule-based languages. First, let
us briefly introduce some notation and next we will state the problem more
formally.

2.1 Notation

Throughout this paper, V will denote a countably infinite set of variables and
Σ is a signature denoting a set of function symbols, each of which has a fixed
associated arity. T (Σ∪V) and T (Σ) denote the non-ground term algebra and
the term algebra built on Σ∪V and Σ, respectively. By V ar(t) we intend the
set of variables occurring in term t. Given an equation e, we will denote the
left-hand side (resp. the right-hand side) of e by lhs(e) (resp. by rhs(e)).

A conditional term rewriting system (CTRS for short) is a pair (Σ, R),
where R is a finite set of rewrite rule schemes of the form (λ → ρ ⇐ C), λ,
ρ ∈ T (Σ ∪ V), λ
∈ V and V ar(ρ) ⊆ V ar(λ). The condition C is a (possibly
empty) sequence e1, . . . , en, n ≥ 0, of equations.

We will often write just R instead of (Σ, R). Given a CTRS (Σ, R), we
assume that the signature Σ is partitioned into two disjoint sets Σ = C � F ,
where F = {f | (f(t1, . . . , tn) → r ⇐ C) ∈ R} and C = Σ \ F . Symbols
in C are called constructors and symbols in F are called defined functions.
Elements in T (C) are called values (or ground constructor terms). In the
remainder of this paper a program is a CTRS. A term t is a normal form
w.r.t. a program R, if there is no term s such that t →R s, where→R denotes
the usual conditional rewrite relation [6]. Let nfR(t) denote the set of normal
forms of the term t w.r.t. R and cnfR(t) = {s|s ∈ nfR(t) and s ∈ T (C)}.
Moreover, let nfR,r(t) = {s|s ∈ nfR(t) and r occurs in t →∗

R s} and cnfR,r(t) =
{s|s ∈ nfR,r(t) and s ∈ T (C)}. A rule (λ → ρ ⇐ t1 = t′1, . . . , tn = t′n)
is decreasing if, for each substitution σ, terms σ(ti), σ(t

′
i), i = 1, . . . , n, are

smaller than σ(λ) w.r.t. a termination ordering [5]. A CTRS R is called
decreasing, whenever all the rules in R are decreasing.

A CTRS R is confluent if, for each term s such that s →∗
R t1 and s →∗

R t2,

89

Ballis et al

there exists a term u such that t1 →∗
R u and t2 →∗

R u. If R is confluent then
the normal form of a term t is unique. A sample S is a set of examples of the
form 〈e, n〉 where e is a ground equation and n ∈ IN is a unique identifier. For
the sake of simplicity, we will often denote the example 〈e, n〉 by en or e.

2.2 A Cost-Sensitive Debugging Schema

A cost-sensitive debugging problem is defined as follows:

• a program R to be debugged;

• one main function definition f , selected from R;

• a correctness reference, either an intensional specification I or a sample S,
or an oracle O;

• a cost function defined from T (C)× T (C) to the set of real numbers;
• a probability distribution function p of ground terms that have f as outer-
most function symbol.

Let us define more precisely some of the previous components. First of all, the
program R is assumed to be decreasing in order to ensure effectiveness of our
debugging framework. However, R could be non-confluent. In that case, we
assume the following worst-case error situation: if one of all the normal forms
computed by R is not correct w.r.t. the correctness reference, we consider
program R incorrect.

Secondly, f is the main function definition to which the cost measures and
errors refer to. In the case that more than one function definition f must be
taken into account, we could debug them separately.

Thirdly, our cost-sensitive diagnosis framework exploits a correctness refer-
ence representation based on a sample S, which could be generated according
to distribution p. Example generation could be done by means of a genera-
tive grammar method, which is able to automatically yield a set of ground
equations satisfying a given probability distribution requirement, as we will
discuss in section 5. However, correctness reference can also be represented
by the following alternative forms: an intensional program I (a specification,
which at least defines function f), an oracle O (an entity that can be queried
about the correct normal form of any well-constructed term whose outermost
symbol is f). Our framework can deal with all these three representations,
since both I and O can be used to randomly generate a sample S, according
to a given distribution p. Hereinfater, we will work with S.

Fourthly, we have a function ECFf : T (C)× T (C)→ IR , called the Error
Cost Function, such that the first argument of this function is intended to be
one of the normal forms computed by the program R for a term f(t1, . . . , tn)
and the second one is intended to be the correct normal form. In the particular
case that the set of computed values is a set of constants (nominal type), the
Error Cost Function can be expressed as a bidimensional matrix, which makes
its understanding easier, as seen in the introduction.

90

Ballis et al

As we will see, in many cases ECFf and p are not known. We will also
discuss reasonable assumptions (symmetric cost function and universal distri-
bution) for these situations later.

2.3 Kinds of Error

First of all, we assume that our sample S fulfils the following properties: (i) for
each l = r ∈ S, r ∈ T (C), (ii) there are not two equations e and e′ such that
lhs(e) = lhs(e′) and rhs(e)
= rhs(e′). The reason why we require (i) concerns
the fact that generally programmers are interested in computing values. So,
we will rank rules w.r.t. values. Besides, (ii) is needed in order to force a good
behaviour of our correctness reference: we do not want that a ground function
call can calculate more than one value. In particular, (ii) implies a confluent
intensional specification I.

For this work we will only consider correctness errors.

Definition 2.1 [Correctness Error] The program R has a correctness error
on example e, denoted by ✷e, when there exists a term t ∈ cnfR(lhs(e)) such
that t
= rhs(e).

For simplicity, the error function ECFf is defined only for values (ground
constructor terms) plus the additional element ⊥ representing all the non-
constructor normal forms. More precisely, the first argument of ECFf has to
be a value or ⊥, while the second argument is constrained to be a value.

3 Estimating the Error Probability

Consider a program R that is not correct w.r.t. some specification. In some
cases there is clearly one rule that can be modified to give a correct program.
In other cases, a program cannot be corrected by changing only one rule and
the possibilities of correction (and hence the number of rules that might be
altered) become huge.

Consequently, we are interested in a rating of rules that assigns higher
values to rules that are more likely to be guilty of program failure. More
precisely, we want to derive the probability that given an error, the cause is
a particular rule. If we enumerate the rules of a program from r1 to rn and,
as we defined in Section 2.3, we denote by ✷ a mismatch between the normal
form computed by R and the correct normal form (correctness error), then we
would like to obtain the probability that given a correctness error, a particular
rule is involved, i.e. P (ri|✷).

This probability could be computed directly or, as will be shown later, it
could be obtained by the help of Bayes theorem, i.e.:

P (ri|✷) =
P (ri) · P (✷|ri)

P (✷)
.

So, we only have to obtain the following probabilities: P (ri), P (✷|ri) and

91

Ballis et al

P (✷). In the sequel, let card(L) be the cardinality of a sample L. The
probability of error P (✷) is easy to be estimated by using the sample S. Let
us denote by E ⊆ S the sample which gives rise to a correctness error using
R. Formally, E = {e ∈ S | ∃ t ∈ cnfR(lhs(e)) and t
= rhs(e)}. As we said,
if R is not confluent it is sufficient that one normal form is different from the
correct value to consider that to be an error. Consequently:

P (✷) ≈ card(E)

card(S)

i.e., the number of cases that are wrongly covered by the program w.r.t. the
size of the sample.

The probability that a rule is used, P (ri), is also easy to be estimated. Let
us denote by Ui ⊆ S the following sample: Ui = {e ∈ S | ∃ t ∈ cnfR,ri

(lhs(e))}.
If an example uses more than once rule ri, ri is only reckoned once. Then we
have:

P (ri) ≈
card(Ui)

card(S)

Finally, we have to approximate the probability that there is an error whenever
a rule ri is used, that is, P (✷|ri). Let us denote by Ei ⊆ Ui the sample from
Ui rising a correctness error w.r.t. R. Then,

P (✷|ri) ≈
card(Ei)

card(Ui)
.

If we take a look at the previous formulae, it is straightforward noting that:

P (ri|✷) ≈
card(Ei)

card(E)

which is consistent with the definition of P (ri|✷) as “probability that given
an error, the cause is a particular rule”. Moreover, since card(E) is the same
for all the rules, we would have that P (ri|✷) only depends on card(Ei).

However, consider the following example:

r1 : f(X, []) → 0

r2 : f(true, [A|B]) → sumlist([A|B])
r3 : f(false, [A|B]) → sizelist([A|B])
r4 : sumlist([A|B]) → A + sumlist[B]

r5 : sumlist([]) → 0

r6 : sizelist([A|B]) → 0 + sizelist[B]

r7 : sizelist([]) → 0

and S = {〈f(true, [3, 2, 5]) = 10, 1〉, 〈f(false, []) = 0, 2〉, 〈f(false, [2]) =
1, 3〉}. With this we would have that P (r6|✷) = 1. This is so easily detected
because f is implemented in a “divide-and-conquer” fashion, and examples
are distributed in such a way that even auxiliary functions not given in the
specification can be debugged. However, this may not be the case for pro-
grams where the recursive clauses are deeply interrelated (we would also need

92

Ballis et al

the definition of the auxiliary functions in these cases).

When there are few examples, it could happen that a faulty rule never
rises a correctness error, because it might not appear in any example rewrite
sequence. Therefore it may not be detected as incorrect. In this situation,
the use of some smoothing techniques, such as Laplace smoothing or the m-
estimate, for correcting error rule probabilities could be helpful.

3.1 Smoothing

Whenever a rule has not been used to derive any example, its probability of
error is 0. Due to this lack of information, we are not able to evaluate whether
that rule is faulty or not. The reason is that the previous probability estimates
are based solely on relative frequencies. The usual solution to this problem is
to employ a frequency correction method called smoothing.

Laplace correction is the simplest form of smoothing of relative frequencies
and is defined as:

P ′ ≈ Nf + 1

NT +M

where Nf is the number of favourable cases, NT is the number of total cases
and M is the number of possibilities. Note that if we have not seen any case,
P ′ = 1/M , which is quite reasonable.

The probability of error P (✷) does not need smoothing, because it is the
same for all the rules, and we can assume it is different from zero (i.e., there
is at least an error). But P (ri) and P (✷|ri) can be redefined as follows.

First, the probability P (ri), that a rule is used to prove some examples,
becomes

P ′(ri) ≈
card(Ui) + 1

card(S) + card(R)

where card(R) represents the number of rules of program R. Note that, with-
out any information, the probability that a rule is used would be 1/card(R).

Finally, the probability that there is an error when a rule is used, P (✷|ri)
is smoothed considering the fact that a rule may be correct or faulty. So, we
obtain

P ′(✷|ri) ≈
card(Ei) + 1

card(Ui) + 2

The new values computed so far allow to provide a smoothed version of P (ri|✷)
as follows:

P ′(ri|✷) =
P ′(ri) · P ′(✷|ri)

P (✷)

and, for a sufficient sample size, we might also consider not to smooth P (✷|ri).

P ′′(ri|✷) =
P ′(ri) · P (✷|ri)

P (✷)

Now consider the following example.

93

Ballis et al

lhs rhsS rhsR r1 r2

even(0) true true 1 0

even(s(0)) false true 1 1

even(s(s(0))) true true 1 1

even(s(s(s(0)))) false true 1 1

P (ri) − − 4/4 3/4

P (✷|ri) − − 2/4 2/3

P ′(ri) − − 5/6 4/6

P ′(✷|ri) − − 3/6 3/5

P (✷) − − 1/2 1/2

P (ri|✷) − − 1 1

P ′(ri|✷) − − 5/6 4/5

P ′′(ri|✷) − − 5/6 8/9

Table 1
Smoothing values for Example 3.1.

Example 3.1 Let R be te following wrong program

r1 : even(0)→ true

r2 : even(s(X))→ even(X)

and S be the sample

S = { 〈even(0) = true, 1〉, 〈even(s(0)) = false, 1〉, 〈even(s(s(0))) = true, 1〉,
〈even(s(s(s(0)))) = false, 1〉}.

Then, we get P (r1|✷) = 1 and P (r2|✷) = 1. Now, let us smooth our
probabilities.

By looking at Table 1, P ′′(ri|✷) gives a good result but just contrary to
P ′(ri|✷). This shows that smoothing can alter the orderings and should be
employed carefully, since could introduce rough probability approximations.

3.2 Advantages and Caveats of using P (ri|✷)
Let us study the kinds of problems where the previous approach works. In
some cases the rating is clearly intuitive, for instance, when we have non-
recursive function definitions with a fine granularity of the rules or recursive

94

Ballis et al

definitions where the error is in the base case. Consider, e.g., the following
wrong program for the function even:

r1 : even(0)→ false

r2 : even(s(s(X)))→ even(X)

Here r1 is clearly given the highest P (ri|✷) whenever the sample contains
“even(0) = true”. r2 must necessarily be lower.

However, there are some cases where there is a tie between the error prob-
abilities of two or more rules. One can imagine to use P (✷|ri) in order to
untie, but this does not always work properly. For instance, let us consider
the following example that computes the product of two natural numbers by
the use of an auxiliary function multaux:

r1 : mult(0, y)→ 0

r2 : mult(s(X), Y)→ s(multaux(X, Y, Y))

r3 : multaux(X, Y, 0)→ mult(X, Y)

r4 : multaux(X, Y, s(Z))→ s(multaux(X, Y, Z))

In this case, if the sample S just contains examples for mult but not for
multaux (probably because we have a specification of mult using add, as
usual) then we will have P (✷|r2) = P (✷|r3) = P (✷|r4) = 1. However, P (r2|✷)
= P (r3|✷) = 1. We cannot in general distinguish between r2 and r3, because
whenever r2 is used r3 is also used and vice versa. If we had examples for
multaux, we would have that P (✷|r2) = 1 > P (✷|r3) = P (✷|r4), clarifying
that since multaux seems to be correct, the error can only be found in r2.

The following result about incorrectness detection can be proven.

Theorem 3.2 Let S be a sample and R be a program not rising correctness
error w.r.t. S. Consider a program R′ which differs from R just by one rule ri.
Then, ∃ e′ ∈ S such that cnfR(lhs(e

′)) ⊂ cnfR′(lhs(e′)). Then, the diagnosis
method assigns the greatest P (ri|✷) to rule ri.

Proof. Since there is (at least) e′ ∈ S such that cnfR(lhs(e
′)) ⊂ cnfR′(lhs(e′)),

we have that there exits (at least) a term t ∈ cnfR′(lhs(e′)) and t
∈ cnfR(lhs(e
′)).

Since R is correct w.r.t. S, then rhs(e′) ∈ cnfR(lhs(e
′)) and t
= rhs(e′). Thus,

R′ rises a correctness error on example e′. Clearly, there may be more than
one e′ ∈ S on which R′ gives rise to a correctness error. So, let E ⊆ S be the
sample of such examples. Since R′ only differs from R by one rule ri and R
does not give rise to any correctness error, we have that Ei = E. Hence,

P (ri|✷) =
card(Ei)

card(E)
= 1.

Consequently, any other rule of R′ must have less or equal probability. And

95

Ballis et al

this proves the claim.

✷

Finally, the previous measure detects faulty rules and it is able to rank
them. However, even though the distribution of examples is taken into account
(the probabilities are estimated from this distribution), sometimes we obtain
rule rankings containing ties. Therefore we are sometimes not allowed to
localise error sources with a sufficient precision degree. In the next section,
we will try to refine the ranking process by considering rule costs.

4 A Cost-Sensitive Diagnosis

In this section, we define a cost-sensitive diagnosis for functional logic pro-
grams. For this purpose we require a cost function ECFf : T (C⊥)×T (C)→ IR
defined for the outputs of function f .

By using this function we could compute the cost per example assigned to
each rule, i.e. which proportion of the overall cost of the program is blamed
to each rule.

Definition 4.1 [Rule Correctness Cost] The rule correctness cost, denoted by
Costri

is computed in the following way:

Costri
=

∑
e∈S Costri

(e)

card(S)

where Costri
(e) is defined as follows:

Costri
(e) =

∑
t∈cnfR,ri

(lhs(e))

ECFf (t, rhs(e))

Example 4.2 Consider the following program R and sample S:

r1 : even(0) → true

r2 : even(s(X)) → even(X)

S = { 〈even(0) = true, 1〉, 〈even(s(0)) = false, 2〉,
〈even(s(s(0))) = true, 3〉, 〈even(s(s(s(0)))) = false, 4〉}.

And consider the ECFeven defined by the following cost matrix.

I

false true

R false −1 1

true 1 −1

Consequently, using this cost matrix, we have that r2 is costlier than r1.

96

Ballis et al

However, there are two important questions to be answered here. What
is the relation between the Cost measure and the error probability? And
secondly, which cost matrix should be used in the case we are not given one?
The first question is answered by the following proposition, which states that
the rule correctness cost method is a “generalisation” of error probability
method.

Proposition 4.3 Let R be a confluent CTRS, ri be a rule belonging to R and
S be a sample. Consider the cost function ECFf (X,Y) = κ if X
= Y and 0
otherwise, where κ ∈ IR, κ > 0. Then, Costri

= κ · P (ri|✷) · P (✷).

Proof. Let e ∈ S. Consider the rule correctness cost per example Costri
(e)

which is defined as

Costri
(e) =

∑
t∈cnfR,ri

(lhs(e))

ECFf (t, rhs(e)).(1)

Since R is confluent, the normal form of a given term (whenever it exists) is
unique. So, Equation 1 becomes

Costri
(e) = ECFf (t, rhs(e)) =

κ if t
= rhs(e), t ∈ T (C), κ ∈ IR, κ > 0

0 otherwise.
(2)

where t is the unique normal form of lhs(e). By summing each rule correctness
cost per example, we get the following relation:

card(Ei) =
1

κ

∑
e∈S

Costri
(e)(3)

As E ⊆ S, card(S) = card(E) + c, where c ≥ 0 is a natural constant. By
exploiting relations above and probability definitions given in Section 3, we
finally get the desired result.

Costri
=

∑
e∈S Costri (e)

card(S)
= κ · card(Ei)

card(S)
= κ · card(Ei)

card(E)
· card(E)

card(S)
= κ · P (ri|✷) · P (✷).

So, our claim is proven. ✷

The interesting thing (and the answer to the second question) comes when
we use cost functions which do not subsume error probabilities.

As we have seen in the previous example, instead of the cost function
that does not take into account hits (i.e. correct constructor normal forms),
we prefer the symmetrical cost function ECFf (X,Y) = 1 if X
= Y and −1
otherwise (we assign 0 when X is not a value). The rationale of this choice
is based on the idea that not only errors have to be taken into account but
also hits. Hence, a very useful part of a program may have participated in an
error but should be less blamed for that than a less useful part of a program
that has also participated in the error. According to all the machinery we set
up, a by-default modus operandi could be as follows.

97

Ballis et al

Modus Operandi

• First of all, discard all the incompleteness errors. The true equations cor-
responding to these errors (lhs is the normal form generated by R and rhs
is the correct normal form) are output on a new set E∆.

• Compute the p(ri|✷) for all the rules and give a first ranking of rules.
• In case of tie use Costri

with the symmetrical cost function to refine the
ranking.

Let us see in the taxi assignment example of Section 1, whether this rule of
thumb works in practice.

Example 4.4 Consider the following program.

r1 : cap(car) → 4

r2 : cap(van) → 9

r3 : cap(minibus) → 12

r4 : interval(X, N, Z) → (X < N ≤ Z)

r5 : taxi(N) → car ⇐ interval(0, N, cap(car))

r6 : taxi(N) → van ⇐ interval(cap(car), N, cap(van))

r7 : taxi(N) → minibus ⇐ interval(cap(van), N, cap(minibus))

r8 : taxi(N) → special ⇐ cap(minibus) < N

and the specification I shown in the introduction. Let us use the following
sample:

S = { 〈taxi(1) = car, 1〉, 〈taxi(1) = car, 2〉, 〈taxi(2) = car, 3〉,
〈taxi(3) = car, 4〉, 〈taxi(5) = van, 5〉, 〈taxi(7) = van, 6〉,
〈taxi(9) = minibus, 7〉, 〈taxi(11) = minibus, 8〉, 〈taxi(20) = special, 9〉}.

Note that repeated examples exist and they should be taken into account.
By applying the probability estimation of Section 3 and the symmetrical cost
function, the following probabilities and costs are computed.

r1 r2 r3 r4 r5 r6 r7 r8

P (ri|✷) 1 1 0 1 0 1 0 0

Costri
−5

9
−2

9
−5

9
−8

9
−4

9
−1

9
−1

9
−1

9

We note there is a tie among the probabilities of rules r1, r2, r4 and r6.
This rule ranking can be refined by taking into account rule correctness costs.
Indeed, we have that r6 is rated first and r2 is rated second.

98

Ballis et al

5 Generation of Examples, Scalability and Applications

In order to approximate in an appropriate way the ratings introduced before,
we need a representative sample of examples. If we are given the sample S we
use it directly. However, if we have a specification I or an oracle O then we
need to obtain random examples from it. A first idea in these latter cases is to
generate terms by using the fix-point of the immediate consequence operator
until iteration k, i.e. TR

k. However, the problem of this approach is that the
number of examples cannot be told in advance with k and, more importantly,
the complexity of the TR

k procedure highly depends on the size and complexity
of the program. Consequently, it seems more reasonable to generate some set
or multiset of terms (as lhs of examples) and use them to obtain (jointly with
I or O) the rhs of the examples. If we are given a probability distribution
over the terms or the examples, this is fairly clear, we only need to generate
them with an appropriate generative grammar. However, which distribution
should we assume if we are not given one? If the main function for which
we want to generate examples is of type or sort U , we have to determine a
distribution on all the ground terms of this type. Since there may be infinite
possible terms, a uniform distribution is not a good solution for this.

A way to obtain a representative sample with less assumptions but still
feasible is the use of a universal distribution over the terms, which is defined as
the distribution that gives more probability to short terms and less probability
to large terms [7]. This is also beneficial for computing normal forms, since the
size of the examples will not be, in general, too large, and for many programs,
this would also mean relatively short rewriting chains.

Definition A.1. The Universal Distribution over a type or sort U is defined
as:

P (s) = b−Inf(s), T ype(s) = U
where Type(s) is the type of term s and Inf(s) is the information needed to
code s using a generative grammar for all the possible values of type U . The
base b must be a positive real number strictly greater than 1. Usually b = 2.

A generative grammar is any context free or context sensitive grammar
with at least one possible rewriting alternative in all the rules. For generating
functional terms we just need a context free grammar. The overall information
needed to choose between the possible rewrites in this grammar is what is
measured by Inf(s). Let us define Inf(s) in a more formal way.

Let us denote first with FU the possible function symbols of type U . Let
us denote with head(s) the outermost function symbol of term s and s|i,
i = 1..n, the n arguments of the outermost function symbol of s, with n =
arity(head(s)).

If we want to build a ground term of type U , i.e. an element of T (ΣU), we
have to tell from all the possible functors the one to choose for the outer posi-
tion and then to generate terms for each argument of the function. According

99

Ballis et al

to this, we can define recursively the information of a term as follows:

Definition A.2. The information of a term s of type U is defined as:

Inf(s) = Inf0(s) + Inf1(s)

Inf0(s) = log2(card(FType(head(s))) + log2(head(s))

Inf1(s) =
∑

t=s|n,n=1..arity(head(s))

Inf(t)

The previous definition takes into account the bits required to select from
all the possible functors, the bits required to select/separate all the possible
arguments and the bits to code all the arguments.

In order to obtain examples under this distribution, we just need to con-
sider the types of the set of functions F and introduce the function symbols
using a specific local distribution. As will be shown below we need a local
distribution that assures the generation is finite. For the generation, we use
empty positions, that will be subsequently filled with terms. In order to en-
sure termination of the generation process, after an empty position has been
filled by a functor, the number of new open empty positions should be prob-
abilistically lower than 1. For instance, it could be equal to 1/2.

Let us consider that for a term s of type U we have k different functors
fi ∈ FU . We have to assign a local probability p′(fi) to each of these functors
in such a way that the following equation holds:

∀fi ∈ FU
∑

i=1..k

p(fi) · arity(fi) = 1/b

which ensures that the number of new open empty positions should be prob-
abilistically equal to 1/b. Let us define k′ = card({arity(fi)
= 0}). The
following assignment of probabilities is designed with this purpose. First we
can define the probabilities for the functors with arity different from 0:

p′(fi) =
1

b · k′ · arity(fi)
if arity(fi)
= 0

and then the probability for the functors with arity equal to 0 (the remainder
of probability uniformly distributed):

p′(fi) = 1−
∑

fi,arity(fi)>0 p
′(fi)

k − k′ if arity(fi) = 0

And from here, we can define the probability of a term as follows:

p(s) = p′(head(s)) ·
∏

t=s|n,n=1..arity(head(s))

p(t)

As a consequence we can state the following theorem:

Theorem 2. A probabilistic generative grammar using probability p(fi) en-
sures termination. More formally, it is a probability distribution for the terms

100

Ballis et al

of type U , i.e.
∀U

∑
t∈T (ΣU)

p(t) ≤ 1 (1)

Proof. The proof is based on the fact that probability of creating gaps is less
than 1. Then,

∑
i=1..k

p′(fi) · arity(fi) =
∑

i=1..k′

1

b · k′ · arity(fi)
arity(fi) =

∑
i=1..k′

1

b · k′ = 1/b

since b > 1. ✷

Finally, the universal distribution can be approximated by the following pro-
cedure to generate the terms. We denote an empty position (a gap still to be
generated) by the symbol ‘ ’.

function GenerateTermFromType(U) : s
Select one function f from FU randomly according to probability p(fi).
Let s = f(, , ...,)
end function

function GenerateTerm(s) : s
for each still empty position π in s do
t= GenerateTermFromType(Type(s|π))
s= s[t]π
end for
end function

Using these procedures, each lhs of an example is just obtained by using a
call to “Generate(f(, , ...,))” where f is the main function. This procedure
can be executed as many times as desired. There is a high probability that
repeated terms may be generated. These can be simply removed or ignored,
depending on whether we want a real distribution (e.g. when costs are taken
into account) or just some detection (without ranking) of bugs.

Finally, the rhs of each term t is computed asking to the oracle or,if we
have a specification I, just by computing nfI(t).

An interesting thing about the previous method of generating terms is that
the base b on p(fi) can be modified in order to be less steep. Values closer (but
still greater) to 1 will give a distribution more similar to a uniform distribution
and large terms will be more likely to be generated. Values greater or equal
than 2 will give a high probability to short terms.

Let us see a final example. Given the type IN , we want to generate terms
for it according to the universal distribution. If we choose b = 2 we have that:

p(0) = 1/2

p(sn(0)) =n>0 p(s) · p(sn−1(0)) =
1

2n+1

Note that half of the probability is given to term 0, since p(0) = 1/2. On the

101

Ballis et al

other hand, if we choose b = 1.1 we would have that:

p(0) = 1− 1

1.1 · 1 · 1 = 0.091

which shows that this distribution is less steep and the probability of bigger
terms is higher.

It may be interesting to discuss whether short examples are more likely
to include extreme or strange values (as it is usually recommended by tech-
niques such as “Extreme Value Analysis”). We believe that long examples
are precisely those which are inside the bulk of “usual” examples, the word
“usual” understood as not peculiar. Note that base cases, cases with extreme
values, exceptional cases, etc. of a single function are precisely those which
can be reached with a few rewriting steps in an overwhelming majority of
applications (of course you can make up a very special program that can only
have a special behaviour after a thousand calls to the same function, but this
is not a good practice or it is not a very common example). In this way we
would have that for many programs, if we generate a sufficiently large sample,
almost all the small peculiar cases would be considered.

Regarding scalability, the generation of a sample of n terms according to
the universal distribution can be considered in O(n). It is the computation
of the rhs of each of these terms that may be the most computationally
expensive part. As we have said, in many situations, short terms will have (in
general) shorter derivations than large terms, and this will affect positively on
the possibility of generating large amounts of examples for many applications.
It is reasonable to think that larger programs will require more examples,
although it is problem-dependent to know if the relation is sublinear, linear or
exponential. The good thing of our method is that we can begin to estimate
probabilities in an incremental way and we can stop when the cardinalities
of each of the rule probabilities and costs are large enough to have good
approximations. In other words, for each particular program, we can tune a
specific compromise between time complexity and precision of the estimation
of probabilities and costs.

With respect to applicability, the first area where our approach is espe-
cially beneficial is in those cases where we have a relevant cost function or
matrix. For instance, diagnosis programs (medical diagnosis, failure detec-
tion, etc.) are clear examples where our approach can take advantage of the
cost information. Just as an example, it is more important to detect an error
that alerts that a system is not working (when it is) than the reverse situa-
tion. A second area of application is the development of programs for which
we are given many use cases as a specification or we can generate many of
these. There is no need of a full specification in these cases. A third area of
application is prototyping, when we want to detect the most evident errors
first in order to show some basic functionality. Additionally to these three
specific areas, we think that our approach could also be beneficial in general,
depending possibly of the kind of program to be debugged.

102

Ballis et al

Finally, an alternative way of generating examples could be to use the
universal distribution for the derivations. This would be similar to assigning
probabilities to a definitional tree. Hence, terms would be more probable the
shorter their program derivation. Nonetheless, we think that this approach
would be less efficient (we have to consider both the lhs and the rhs wrt. the
program) and more difficult to implement than the previous approach.

6 Conclusions

In this paper, we have shown that the analysis of rule use depending on the
distribution of examples can also be used for detecting bugs and, more impor-
tantly, to priorise them. Developing a debugging ranking of rules must also
take into account the context and distribution where the program is being
used. Some cases handled by a program are much more frequent than oth-
ers. This means that errors in frequent cases are corrected first than errors
in less frequent cases or even cases that almost never occur. This information
can be given by a probability distribution and hence used by our diagnosis
framework when constructing the sample (instead of the general, by-default
universal distribution). Moreover, this information can be complemented with
the cost function, because it may also be the case that rare situations may
have more cost than common situations.

These considerations are, to the best of our knowledge, quite new in the
typical discourse of program debugging, but are well-known in what is called
cost-sensitive learning. Other techniques, such as ROC analysis [4] could also
be applied for diagnosis.

The efficiency of our method is proportional to the number of examples
used. The bigger the sample the more precise the estimation of probabilities
and costs but the efficiency decreases (linearly).

Another advantage of this framework, inherited from its simplicity, is that
it can also be applied to other declarative and even non-declarative rule-based
languages, provided the rules have enough granularity.

One way to advance in some complex cases (especially recursive ones)
could be to explore rule dependencies. Another issue to be explored is that
the probabilities and costs could be computed exactly and not approximated,
when we are given the specification. This would turn this method into a
purely semantical one instead of a statistical one. As future work, we also
plan to extend our cost analysis in order to deal with completeness errors and
nonterminating programs.

Finally, in this work we have only considered detection and ranking of bugs,
but not their correction. In many cases, inductive techniques (i.e. learning)
should be used for this. Systems that are able to work with cost functions
would be more coherent and could be coupled with this approach.

103

Ballis et al

Acknowledgements

We would like to thank the WFLP’03 anonymous referees for their helpful
comments which have helped to significantly improve this paper.

References

[1] M. Alpuente, F. J. Correa, and M. Falaschi. Debugging Scheme of Functional
Logic Programs. In M. Hanus, editor, Proc. of International Workshop on
Functional and (Constraint) Logic Programming, WFLP’01, volume 64 of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
2002.

[2] R. Caballero-Roldán, F.J. López-Fraguas, and M. Rodŕıquez Artalejo.
Theoretical Foundations for the Declarative Debugging of Lazy Functional
Logic Programs. In Fifth International Symposium on Functional and Logic
Programming, volume 2024 of LNCS, pages 170–184. Springer-Verlag, 2001.

[3] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of
Logic Programming, 39(1-3):43–93, 1999.

[4] J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143, pages 29–36, 1982.

[5] S. Kaplan. Simplifying Conditional Term Rewriting Systems: Unification,
Termination and Confluence. Journal of Symbolic Computation, 4:295–334, 1987.

[6] J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science,
volume I, pages 1–112. Oxford University Press, 1992.

[7] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications. 2nd Ed. Springer-Verlag, 1997.

[8] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(1):337–370, July 1994.

104

