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Abstract. Z h suwhgwd iudp hz run iruvkh Lggxfwyh | xgfwr qdoOrj If
Sujup plgj sdudgljp iwp srvwyhgdvd dgg iurp grgXglirup fawhvl
Lwh{ vinqgv vkh Ed| lvdg dssur dfk Ig 74; * w frgvighufawhv g vkh gh glO
vrq ri k| srvkhvv j hghuddw/ grz fdahg class unevenness/ z klfk lv xvhg
iruvkh hydocdwr g ri k| srvkhviviWklv ghz p hdvxuh vanhv Iqw df fr xgw
krz vkh glwdexwrqv ri fawhv ri vikh k| srwkhvv dqg vkh vduy hwwkhr y
duhl Wkh vdy hwvkhry faw glwdexwr g v dssu{lp dvhg e| xvgj vkh
faw glwdexwr g ri wkh hylghgfh dgg vkh Igiwdoglwudexwr g1Dg| sureO
dp zIvk gl huhqwfawhv z Ivk dg| sursrudrq ehve hhg 3( dgg 433( fdq
eh dgguwhg e| vklv ghz p hdvxth1 Dv d uwxaw ghj dvyh H{ dp sdw duh
gr aqj hughfhwdy iruddwlagj Errddg ixgfwrqv vigfhvkhl wkrxa eh
frgvghuhg dv vikh srvwyh h{dp sdw z kifk gh gh d vifrqg s@re fawl
I lqda}/ z hglhvxwdq Ip sdp hgvavir g ri vdp sdj hghudw wirud jlyhg ru
xgngrz q suredeldw glwdexwr g ri vhup viWkh xvhixahw ri vikh j hghudO
wuw lv\krz g irudssu {Ip dwgj vkhydohri xghyhgghw ri d k| srvkhvivd
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gxfwyh | xgfwrgdoOrjIf Surjudp plgj #1 OS,/ Fawl fdwrq Suredp v/
K| srvkhvv Hydocdwr g1
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The Inductive Inference framework in general and Inductive Logic Programming
(ILP) in particular usually deal with the learning of a target concept from pos-
itive and negative evidence. Nevertheless, learning from only positive data is
desirable for several applications. These applications have many positive exam-
ples available while few or no negative examples are given (such as the analysis
of DNA and RNA sequences [10], data mining applications, software engineer-
ing, grammatical inference [17] and natural language, to cite some of them).
The main difficulty of inferring from only positive examples is that the learning
mechanism has to avoid overgeneralisation. This is due to the fact that the sim-
plest and most general possible hypothesis for a concept p, i.e. VX p(X), will
always be consistent. However, is it neither an acceptable hypothesis in most of
the applications [17] nor can it be specialised unless negative evidence is pro-
vided. Gold [6] showed that even the class of regular languages is not inferable
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from positive data, and, thus, neither are (the whole class of) Prolog programs.
A lot of work has been done to discover restricted hypothesis languages which
are inferable in this way. In particular, ILP has identified constrained hypothesis
languages for which learning from positive data is possible (]20],1], [14],[19]).
Another approach known as U-learnability, which is independent from the hy-
pothesis representation, has been presented by Muggleton in [17, 18]. Tt is based
on the development of a Bayes function for maximising posterior probability. Un-
der this Bayes framework, a trade-off between size and generality of a hypothesis
is defined which allows for estimating the probability of a hypothesis.

We present a framework for the Inductive Functional Logic Programming
(IFLP) paradigm [8, 9] from positive data and from non-uniform classes following
this proposal. As in ILP, the induction of some IFLP programs from only positive
evidence presents the same problem of overgeneralisation. The following example
demonstrates this fact.

H{dp st 41 Consider the following evidence e; — ejy:

(12) = true,
(2) = wuxh>
(
(

e1: e(d)=true, e: e
es: e(3)=idoh> hy: h

E={hg: h(7)y=idoh> hg: h(7)=idoh>
h : h(20) =vaxh> h : h(0) =wxh>
he:  h(3) =wuxh> hy3: h(2) =idoh

where natural numbers are represented by using the functor v as the symbol for
succesor, e.g. V(V(v(0))) means 3.

If only positive examples are given, the most general theory h([ ) = wuxh
would be optimal and would cover the evidence. As has been shown for ILP, this
problem can be avoided by weighing the generality of the program. Nevertheless,
it is important to note that this problem only occurs in for Boolean problems.
Consider the case of learning the function of addition (vxp @). In this case,
no negative evidence is strictly required, since programs must be confluent and
terminating. vxp ([ ™\ ) =] (the most general program) is not confluent nor
terminating.

In functional programming [2] (and in functional logic programming, FLP
[7]), the evaluation of a functional term w.r.t. a program S is the computation
of its normal form'. The set of all possible different normal forms represents
the meaning of the program. In fact, the ADT defined by the theory S consists
of normal forms. Moreover, from this algebraic semantic point of view, they
represent the elements or congruence classes of the initial algebra W Y@ s
[4]. For this reason, we will refer to them as classes throughout the paper. This
situation is different from that in ILP since the meaning of a logic program is the
set of ground atoms that are proven wixh, i.e. that belong to its Herbrand minimal
model. Hence, using the notation of functional programming, we can say that
vuxh is the unique class defined by a logic program. In this paper, we extend the
Bayesian approach in [18] in order to take classes into consideration within the

! The normal form of a term is unique if the program is confluent and terminating.



definition of the generality of a hypothesis. For the learning of Boolean functions,
if we work with more than one class, negative examples are no longer necessary
since they should be considered as the positive examples which define the i dovh
class. From this point of view, learning a concept from positive examples in ILP
can be seen as the problem of learning a partially gh ghg frgfhsw-igfh vkh
hylghgfhrqd frquadlqv h{ dp sdw iruvkh vaxh f aw, 10hduglgj vkh vdp h Errdidg
vay hwirgfhswig U OS fdg eh vhhg dv vkh suredp ri ddwglgj d tetally gh ghg
frgfhswli srvvyh hylghgfh dor fravdiqv h{dp sdw iru vkh i dosh faw/ dv zh
zlmwkrz Iq vklv sdshulWklv p dnhv vikh suredp p ruhj hghuddQrz / lwlv grwd
txhwirq ri srvviyh@gq dgg srviwyh dgg ghi dwyh h{ dp sdw exwrqg z kdwwvkh
glwdexwvirq ri fawhv IviZ h zdgwd p hdvxih vikdwfrgvighw dg| fdvh ehve hhg
0% dgg 100% iruhyhd fawll gr fruhfwrg v pdgh/ irud j hghudo suredp

4gr wghf wduq Errddg,/ H{ dp sdw ir u deof awhv p xwdsshdu Iq vkh hylghgf h1
Krz hyhd |q vikh fdvh ri dduglgj iwrp vsdwh dqgg grgqlirup hylghgfv djrrg
Ighd frxag ehw suwvhuyh vikh sursrudrg ri h{dp sdw ri hdfk nlqg dffruglgj w

d surusuwedeldy glwdexwrq li dg dght xdvh hylghgfh Iv j hghudvihg1

Rq vkh rvkhu kdgg/ rxudssur dfk Ivdor xvhixoirufawl fdwrg suedpviqg
vkh favh ri prih vkdg wer fawhnv1l luwg/ vkhvh suredp v fdg eh ehwiu dgg
p ruh gdwuwda) irup xaivhg dv ixgfwrgdosu j udp v z kifk gh gh vhyhudof aiwivd
Whfrqgd/ vikhsurj udp vvkdwwr oyvh suredp vri viklvnlqg duh wivdedhw eh ddughg
irp rgq srvviyhh{dp sdvgxhw vkhidf wwkdwghj dwyh hylghgf h gr hv grvwhhp
w dfwda) eh ghffhmdd/ dvzh zlovkrz Iq Vhfwrg 91Ri frxwh/ z khg vikhth
duh gr h{dp sdw Ig vkh hylghgfhirurgh f @w/ vkh dduglgj vevn fdggrweh p dgh
iwp rqd srvivyh gawd hyhg li d fruhfwrq Iv grwlgf o« ghg1lWklv frwhfwrqg lvd
j hghuddvdwvir g iru p ruh vikdg rgh faw ri vikh P xj j dwq j hghuddvavir g ghj uhtY
grz fdahg class unevenness1Rgf h lw vkhr umif dosur shudhv duh vkr z g/ viklv ydoch
p xwveh dssur{Ip dwg e| vkhxvhri dq hylghgfh j hghudw ul Wklv j hghudw u dor
dayz v vkh sudfwfdodssdfavrq ri vikh ghz hydocdvr g p hdwxuh Ig vkh V| winp
| OS? 81

Wkhsdshulvry dglvihg dvir arz vivhfwr g 5 1gf ocghv j hghudogr vawvir g dgg w0
plgraj|1llg Wfwvrqg 6/ zhuylhz vikh Ed| hMdg ity xadvr g ri 4; "1Rxudssur dfk
iru hydocdvigj vkh xghyhgqghw ri d k| srwkhvv ig U OS v gh ghg Ig WWfwrg 71
Dor/Ig Whfvirgq 8/ zhwkrz vkdwEr rddq suredp vduh wdgvihudedw ve r f awhy
[gwklviup hzruinlFawl fawrg suredp vrip rihvkdg ver fawhv duh dgdg vig
g Whfvirg 91Lg Vhfwrq :/ z h glvixw dq Ip sdp hgvevir g gh glgj d j hghudwuri
vdp sdw j lyhg d fhuwdlg suredeldw glwedexwrq ri viwp v zklfk Iv xvhg iru dsO
su{lp dwgj vkhydohri xghyhgghw ri d k| srvwkhvviVrp h h{ shup hgvdouwxawv
duh dor jlyhgll Igda)/ Vifwrq ; frgf ocghv vikh sdshul

> Fawl fdwrq swredp vzkifk gh ghwer fawhv fdg eh frgvghihg dv Errddg sure0
dp vi

® Wkh1 OLS v whp Ivd didughuri ixgfwrgdoaj If surjudp vz klfk Ivedvhg rq qdurz 0
Iqj wkhehwvngrz q rshudwr gdovhp dgwf irul OS,1
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OhwV eh d frxgudeq Iq glvh viwri ydddedw dgg dw  eh d vlwri function
symbols wuixgfwuw, wjhvkhuz vk vikhlu duvw/ z khthi @ ghgrviv vkh ixgf vr g
viperoi riddw glWkhg 7( >V) ghgrvwwv vkh viwri terms exlaviup dgg
VI dgg 7( ) ghgrww vikh viwri ground terms exlaviwp  1Z h frgvghu vkdw
vkh vij gdwih v sduirghg dv. - = ClJ F/ zkhuh C Iv vkh viwri lwhgxfled
V| perosrdgg F Ivvkh viwri gh ghg ixgfwrg v p eradWkh dgj vk ri d viup ¢/
I+,/ lvgh ghg dv

I+, @ 4 li ¢ lvd frgwdgwrud yduded
’ 4. Yatilitivrivkhirwp fia, ... t,,

Dg htxdwrq Iv dg h{suwirq ri vkhirwp [ @ r zkhuh [ dgg » duh vingp V1|
Iv fdahg vkh diwkdqg vgh +&kv, ri vkh ht xawrq dgg = Iv vkh uj kwkdqg vigh
Hkv,1E| card+A, zhghgrvihvkhfduglgddw ri d viwA1J lyhg d vhwri ht xdwr qv
A dgg jlyhg d faiw ¢ vkh fduglgddw ri A ryhuc v gh ghg dv card.+4, @
cardH{l @c € A},1Dq ht xdvr gdovkhry & +z kifk z h fd® program, lvd qlvh
vhwri ht xavr gdofaxviv ri vkhirup [ @r < e4,...,e,. ZIVk n > 3 zKkhih e;
Ilvdg htxdwrg/ 4 < ¢ < n1lWkh vkhry +dgg vkh faixvhv, duh fdahg conditional
li » > 3 dqg unconditional li n @ 31Dq ht xdwr qdovkhry fdg dor eh ylhz hg
dv d #rqggivrqdg Whyp Uhz uwgj V] whp WUV, vigfh vkh ht xawrq Iq vkh
khdg Iv Ip sdflwwd ruhgwhg iurp diww dj kwdgg vkh dvindo e; I vkh erg|

duh ruglgdy grqQ uhguig ht xdwrqvlJd lyhg d +, WUV R/ t —y s Ivd thz uvh
whs i vikhuh h{Iwv dq rfxuhgfh o ri ¢/ d wd! @ r € R dgg d wewlvwr g
0 zIk t, @ 64, dgg s @ t"9+,7, 1D vhup ¢ v vdlg w eh Iq normal form
ZAMW R li vkhth Ivgr viwp 2 zIvk ¢ —y t31LR Ivvdig w eh canonical li vkh
elqdy rghOwhs uhz uwgj uhavirq —y Ivvigp Igdvigj wkhuh v gr 1g glvi fkdlg
S4 —U 85 —U S6 —U - dqg frq XI’K‘]W‘W S4,85,86 € T+, X, wxfk vkdw
s4 —y 85 0dqQ sa —y se,Is € T+, X, wfk vkdwss —, s dgg se — s,1
Qduwrzlgj Ivdwxqg dgg frp sdwhp hvkrg iruw glgj ht xawr qv z 1wl f dgr glf do
sujuwpviJlyhg d sujudp P/ d vwwp ¢ narrows lqgw d vip 2 Hg V| peros

1@ o - . .
¢ pt3)iff u € O(t), I = r is a new variant of a rule from P, § = mgu(tm,!)

and 3= 0(t[r],). We write t—"¢3if ¢ narrows into 3 in n narrowing steps.
The Inductive Functional Logic Programming, IFLP, has been defined as
the functional extension to ILP [15]. The goal is the inference of a functional
logic program P from a set of positive and optionally negative equations F
using a background knowledge theory B (another functional logic program).
The evidence is composed of positive ET and negative £ equations such that
their lhs are ground terms of the form f(¢1,...,t,) where f € F and t; € T(C)
and their rhs are normalized w.r.t. the background theory B and the theory P
which is meant to be discovered (hypothesis), with B U P being canonical.

. I e 0 . .
1 Or simply ¢ S pt ort —pt if the occurrence or the rule is clear from the context.
Also, the subscript P will usually be dropped when clear from the context.



~

We use the following notation to denote a vector @ of n components: "
Given a vector T, its qr up ddvdvir q is

F)TLOTWYL @ n4 . 7
D i1 Vi

Obviously, after normalisation, > . v; @4. Two vectors ¥ and @ of n com-

ti=1l..n"

ponents form an angle between them, ﬁ, which is defined as

T @ddfre
|Vl

where o denotes the scalar product, that is 7 e W @uviwy. .... vpWy,, and

denotes \/a? . .... aZ. With '/ we denote +vy /w1, v2/wa, ..., 0n/Wy,.

@]
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Following the U-learnability framework defined in [16], P xj j dwq “4; ~ ghuyhg d
Ed hvrixgfwrqirup d{1p IMqj srwiurusu edeldw ri K| srvkhviv z khg dduglgj
iwp srvvyhgdvdlZ hedh | uvylhz vkdwirup xaivir g 1g viklv Vhfwr gl

X Ivvdnhg w ehd frxguded faw ri lgwdgf hvdgg H € 2¥ w ehd frxgvdedn
faw ri frgfhswlOwDx dqg Dy eh suedeldw glwdexwrqv ryhu X dgg H
uvshivilyhd 11 ru H € Hl Dx(H) Ivgh ghg dv X, gy Dx (2)1M}h dqg j hghuddvy
ri dk|srvkiMv H duhgh ghg dvirarz v=

sz2(H) = 0m Dyn(H) (1)
g(H) =Dx(H) (2)

zkhuhiry xd (1) Ivmwt hg e|] Rffdp *v Ud}ruM51Wkh Ed| hv vkhruhp dayz v
xvw thaivh v}h dgg j hghuddw1Ohwp(H | E) eh lguusuwving dv vkh suredeldw
vkdwkh k| srvkiMv fkrvig e| vikhddwghu H/ z rxa ehvkhvay hwwkhr g 77 j lyhg
vikh h{ dp sdh vit xhgf h E1Khgf i

L Ce

@ p(H | E)=mq (ﬁ) ~a(H) + dy (4)

zkhthd,, = @ ¢, ZIVK ¢,,, ehlgj dgrup ddvigj frawdgwll rup xal (4) WKrz vvikdw
vkh suredeldw vkdwd k| srvkhvv H zrxa eh vkh vdy hwvkhry  ghf undviv z khg
hivkhu lw vi}h dgg j hghuddwy 1gf uhdvhl

Dv z h kdyh dahdg| p hgwrghg Iq Vhfwrq 4/ 1g vkh deryh wwvr gdd Iwlv dvO
wxp hg vkdwdamvkh hylghgfh gh ghv r gh ydoch ru f @w=vkh true ydochl

Lg zkdwirarz v/ zh h{vingg vklv iruyp xawrq w venh fawhv lqw frgvighudO
wirgllg rxusuwsrwdoiruld OS/ X Ivvkh viwT (F,C) z khuhdv vikh hylghgfh E Iv
frpsrvhg e| htxavrqvri vkhirup I = » wxfk vkdwl € X dgg » Ighgw hvd fawl
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Lg vklvvhfwrg/ zhgh ghrxup hvkr g iruvkh hydocavr g ri k| srvkhviviWkh edvif
Ighd Ivw gh ghvkhj hghuddw ri d k| srvkhMv kh deryhirw xa (2), z 1l d®
vkh fawhv gh ghg e| vkh vdy hwvkhry Hhle| vkh suredp, dgg vkh uhavir g
ehve hhg d suredeldw glwuexwrqg ryhu H dqg 71

Lg z kdwirarz v/ vkh +srwled Ig qlvin, frahfwrq ri fawhv C ghvip Ighg €]
d vdy hwsujudp 7 Ivgh ghg dv C = |J!, ¢;/ zkhth ¢; ghgrviv hdfk rgh ri
vkh » fawhviDor/ X, ghgrvwv vkh Igwdgfhvri X zklfk ehogj w vkh ¢; faw
difruglgj w 71QrvihvkdwX fdg ehlg glvilZ khg Iwlvvkhfawy z hz ledwxp h
vkdwX Ivdssu {lp dwg e| d glvlhvxevtmz kIfk Ivaly hhgrxj k w ehp hdglgj ixd
Lg Wifvirg : zh zlolgwr gxfh d surfhgxuh w j hghudvh  glvih dssur{1p dvr qv w
ervk X dqg C1

Wkhirarzlgj gh glvirq Wkrz v vkdwvkh suredeldw glwdexwrq ryhud frd
difwrg C ri n fawhvdffruglg) w d k| srvkiMv A Ivd yhfwuwxfk vkdwhdfk rgh
ri lwfrp srghgw uhsuvhgw vkh suredeldw ri hdfk faw lq H1

Dh qglwrq 41 Given a hypothesis Hﬂl}d given a collection of classes C, the
probability distribution over C for H, Dc+H, | is:

card+X.,tH,,

—
+ —_—
Dc#l, @ card+Xo+H,,

i=1l..n
where [
X, HH, @{z € X | H| @z @c;} and X+, @ X, HH,

i=1l..n
Ezample 2. For instance, if H defines the function mod6/4 (which computes
true if its argument is divisible by 3 and false otherwise), then mﬂf , @-%, %,‘

Definition 2. Given a hypothesis H, the probability distribution of H w.r.t. X

and C, D¢ x+H, is:
6

[ .
D¢ x+H, @? Dx+z,8
r € X, +tH,

i=1l..n

FExample 3. Consider again the target theory T' @ mod6 and suppose that the
terms from X follow the distribution Dx+r, @5 “*)/ vkhg=

D&(T) = 3 2-Us'(0) > 2-Us"O) | [0.6,0.4]
i=0.n t=0.n
mod3(s'(0)) =1 mod3(s'(0)) =r
true false

z khih st(0) ghgrwv vikh gdvxudogxp ehuil



Rxudip Ivw hwip dvh z khvkhud k| srvkhvv H Ivfavh ruhyhg w vkh vay hw
vkhry T1WKhjrrgghwri H fdg ehrewdighg e| dgdd vgj z kdwvwkh suredeldvy
ri hdfk faw ri C lg H Ivdgg z kdwvkh suredeldw 1g 7" IviMgfh vkhvh sured0
eldwhv duh frp srghqw ri ver ynfww/ zhfdg frpsduh H zIvk T e| phdgvri
vkh dgj d vkdwlw fruwivsrqglgj yhifww igup g vikh vsdfhllg d fhuelq z d| / vkiv
dgj dv Iv d p hdvxth ri vkh favhghw ri Do(T) zIvk D (H)?1Wklv gl huhgfh v

fdahg unevenness and is defined as follows:

Definition 3. Class Unevenness
Given a hypothesis H and a collection C' of n classes, the class unevenness of
H s

tan o

H=—+—
u( ) 1+tano

) (De (H))

I=1=q
where « represents the angle # (I?)%? (7).

The above definition shows that the smaller the angle is, the better the
hypothesis is because unevenness is lower.

Ezample 4. Consider H; = mrg2 and Ko = p rg3. We have G¢ (K1) = [05>05]
and G (K2) ~ [0:83>0%7]. Consider a Wsuch that Go(W) = £>2 . Comparing
the two hypotheses with W

1 = arccos( )=038217 =0

0%
05270
(K1) = 08332 x(Ks) =0

As we could expect, the correct hypothesis obtains a 0 udg angle.

Although from a theoretical point of view, the probability distribution over a
collection of classes has been defined considering the set of terms [ , in practice,
the learning task is done from a partial evidence H. This also means that we
must take into consideration that H can contain one example 0= U more than
once since this evidence is generated according to the probability distribution
Gx (0. Note that, on the contrary, [ does not contain any term twice.

Definition 4. The probability distribution function over an evidence H, G_]);,
can be computed as:

fdugf
9 Z fdug
I=1=q

® This has usually been done by a statistical x? test. This test cannot be used here,
because, for it to be useful, the absolute frequency of each class must be > Dand
the initial distribution must be closer to the uniform distribution. There are other
methods to estimate the discrepancy such as some corrections of the x? test. However,
these can only be applied if all the expected frequencies are greater than 0. Example
6, for instance, shows a case where this test cannot be used.



The following results show that the probability distribution over classes w.r.t.
an evidence H with infinite examples converges to the theoretical one (which
considers [ instead of H).

Lemma 1. Jlyhq dq hylghgfh E wxfk vkdwdkv ri htxdirqv ri £ duh j hghuoving
iravzlgj dglwdexvirq Dx/ vkhg

dp  Dp @Do x4,

card(E)— oo
The following result is established when ZTX> is the uniform distribution:

Corollary 1. Li Dy Ivvkhxqglirup glwdexvr g/ vkhg
dp  Dp @D+,

card(E)—oo

Suril Trivial, since if D—X> is the uniform distribution then

4

Vie {4.n}t Ve e X, ¥, =Dxtr, @ ————
i€ {4n}va ’ X @card+Xo+T,,

and by Definition 2

Dox,i @ Y Dyt @ Y — e @

+X ¥
e X, e X, card+Xc+l,,

card+X,, ¥,

D,
card+X o+, @+Do

Therefore, the corollary holds by Lemma 1. O

Example 4 illustrates how we can choose among a set of hypotheses by comparing
them with the target theory. However, this is not a very real situation because
De+T, is usually not known, and without this distribution it is impossible to
know the angle between a hypothesis and 7. We sohghis problem by introduc-
ing a method that computes an approximation of Do+,. Our approximation,

which we denote as D_C>+T,, is expressed by the following definitions:

Definition 5. Given an evidence E and a collection of classes C, [W+E, 1is:

card+E,

e DxHhs+e,, - —————
124 ’ @ Z X ST, , cardci+E,

rekl P
Definition 6. The distribution D_C: (T) is approzimated from an evidence E and
a distribution Dx by:

—

Do(T) = ﬁD(?E)




Example 5. Owfoo ehdvkhry wxfk vkdwe

foo(x) = if 1<x<33 thenl
T lif 34<x<99then

vkhg Dc(T) = (%, 2) 1Dqg fravghu

5 _ [l<@<33 00203
T34 <2 <99 - 0.005

Li zhwvanh dgq hylghgfh E; iryp hg e|] 43 h{dp sdW 8 iuwrp hdfk faw/ vkhg zh
kdyh=

Dp, = (0.5,0.5) 70(Ey) = (0.066,1.939) D (7)™ = (0.967,0.033)

L zhvdnh d vhfrgg hylghgf v Es/ exlavighda) iwp Dx/ zh zrxag j w4333
h{ dp sdwv z khth 66 duhirp vkh uwwfaw/ dgg <67 are from the second class.

DY, = (0.033,0.967)% 1 () = (1,14.665) 1ho(T)mo™ — (0.33,0.67)

As we see, ag long as the evidence is generated according to Dx and T, Jﬁc (T)rorm
is close to D¢(T).

This last example shows how important a_good evidence is, when I%C (T) is not
given. Therefore, the approximation to ﬁg(T) greatly depends on the quality
and quantity of the evidence. If the evidence goes to infinite, then both the
theoretical value and its approximation agree, as the following theorem shows.

Wkhruhp 41 If an evidence E is generated following the distribution Dx and a
theory T then

lim () = Du(T)

card(E)$ 4

o7

Proof. By Definition 6, we have that ﬁc (T) ﬁfpm%—) Hence,

i ﬁ lim g, ﬁ
lim ﬁo(T) = lim $ E_— - —card(B)$ i z
card(E)$ 4 card(E)$ 4% [ (E) hmcmd(E)g; 4% [ (E)

Now, by Lemma 1, lim qrq(£)s 4 ﬁ = Do?x (T). Therefore,

liInccwd(E)$ 4 ﬁE _ DC%( (T)

liInccwal(E)$ 4:1:/1“ (E) - liInccwd(E)$ 4:b:u (E>
and by Definitions 2 and 5

Dc?fx(z;) _ e v, k)G ¥ |—1=q
i [ fdug(H) |
limeqra(m)s 4 1 (E) AP fdug(H)—oo _Z{EH G| *{,fdu;?l((l-%)_lzlzq




On the other hand, it holds that

dp fdugtH, @N fdugd r W,
fdug(H)—oo

dp fdugf,-lH, @N fdug ¢, W
fdug(H)—

where N is a constant. Finally,

[Z{E[ fl(K)G[ -’{'Lzlzq @
4 G -I{ fdug(H)
P fdug(H)—oo Z{eH [ ™ Tdugy, (H)

{Z{G[M(K)G *{’}I =1=g @C?F"'VV,

M-fdug([ £ (W)
[Z{ €l 1, ( G[ A, "M -fdug([ fFl (W)}Izlzq

hoim

O
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We have introduced the previous measures in order to generalise the results
of learning from only positive data to any proportion of instances of each of
the classes. Now we will show that this extension is coherent with the results
which are obtained for one class. We will also establish the equivalence between
Boolean problems with one class and the same problem presented with two
classes (false and true). In most problems of learning from only positive data, the
proportion of possible constructable positive examples over negative examples is
small. For instance, in natural languages, there are many more combinations of
characters that mean nothing (or are incorrect) than there are well-formed ones.
Moreover, as any problem from only positive data, the general (everything is
valid) hypothesis is suggested by the data and one must ‘correct’ the hypothesis
towards more specific ones. If we consider two classes (positive and negative) it
holds that the ‘ideal’ vector to consider is G W, @+3>4,, for the previous two
reasons. WkIvIv qda) z kdwlv Ip sdflwlq p dg] zrunvri ddwlgj iwp srviwyh
gdvd rqq 4;°1

Theorem 2. Jlyhqg d dduglgj swedp A zlvk rgq rgh faw ¢; dqg d sduwido
k| srvkhMv H, dqg d vifrqg suedip B zIvk ver fawhv ¢; dgg ¢z zkhih vikhuh
h{Iwv d wvdok| srvikhmMv Hp vxfk vikdwe

i =g, ¢ khg T =p, €1
V‘UGX{ rvkhz Ivh & =, ¢

L zh frgvghu vikh rsvp doyhfwu iru srviviyh hylghgfh D_C)(T) = (0,1)/ 11y
vikhth duh 1g glving p ruh gh dvyh fdvhv vkdg srviviyh rghv/ vikhg

9(Ha) = u(Hy)
dgg vklv krav irudg| glwdexvrq ri h{dp sdw ri vkh k| srvkhvivl

43



Suril Frgvghud k| srvkhvv H, z Ivk d glwdexwvir g ri h{ dp sdwvwik vikawD g =
(1/a,(a —1)/a) zkhth 1/a frubvsrqgvw faw ¢ 1Frgvht xhove / g(H,) = 1/al
Rq vkh rvkhukdqg/ iuwp vkhgh glvrq ri «(H) zhkdyh=

lana > (Da(Hy))s

u(Hp) = ————
1+ tana S5

which is equal to:
u(Hb) =

since Hy is total. It is easy to show that, from the angle between ﬁc (T)=(0,1)
and Dg = (1/a,(a 1)/a), it follows that tana = 1/(a 1). From here,

1

u(Hy) = T2 = - = g(H,)
a—1

tana
1+ tano

It is important to note that the previous theorem shows the equivalence between
considering the problem with two classes and a total function, and considering
the problem with one class and a partial function in the traditional NAF (Nega-
tion As Failure) sense.

Ezample 6 Con51der a complete hypothesis with 155 =(1/3,2/3). The an-
gle with ﬁ =(0,1) is arccosSQ— = arccos 2/ 5 = O 4636 rad. From here
u(H) = % =92 =0.3333 Wthh matches with the corresponding one-

class partial hypothesis g(H,) = 1/3.

However, function u(H) is not equal to g(H) for one class, since for one class,
angles are always 0, and u(H) will always be 0. Consequently, if one is going
to consider partial hypothesis, it is better to add a “default class” to which
unclassified examples are going to be assigned.

Corollary 2. Consider a hypothesis H for n classes where only 2 of them (c;
and c¢;) follow that D;(H) + D;(H) = 1, and the expected vector Do (T) is of
the form (0,0, ,0,1,0,0, ,0) where D; = 1. If we construct a hypothesis H'
such that:

if ©=pgc thenx =g ¢;

VazeX{f x=pg ¢j thenz =g ¢;

then u(H) = u(

The previous corollary affirms that empty classes can be added without af-
fecting the evaluation measure.

The advantage is that we can now consider any distribution of positive and
negative examples, either in the initial distribution Dx which generates the ex-
amples or in the expected distribution of classes of the theory which has assigned
classes to the examples.

11
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In the case of classification problems with more than two classes, our approach
extends the formulation of Muggleton [18] since we take into consideration not
only classes in the formulae but the probability distribution of every class.

Also, we have shown that for Boolean problems, it is better to work with two
classes, that is, without negative examples. However, in the case of more than
two classes, negative examples are less useful than positive ones. Consider, for
instance, a problem which defines four classes {¢1, ca, c3, ¢4 }. A negative example
fla) # cs, is equivalent to f(a) =c1 V f(a) = c2 V f(a) = ¢4. This last formula
is less informative than f(a) = co, for instance. Hence, positive examples carry
more information than negative examples if n > 2. This situation is extreme
when the number of classes is infinite. In fact, in this case, a negative example
as sum(3,4) # 6 has no information, since it is equivalent to

sum(3,4) =0V sum(3,4) =1V sum(3,4) =2V sum(3,4) =3...

The FLIP system is able to handle negative examples, although, as we have
shown, they are not necessary for classification problems.

1 CICCT OO T O T T

In the previous sections we have seen a method for comparing m)(T) with
m}(H ), resulting in the extension of the notion of generality. We have also found
an estimation for ZTC:(T) that converges in the limit. For this estimation, we must
know Dx, as in [18]. For many problems of positive data, this distribution can
be estimated. For instance, in grammar learning, one may suppose that written
corpora or spoken examples are constituted by mostly positive examples. In
other words, if we consider two classes {w, b} where w represents a well-formed
sentence and b a badly-formed sentence, then we can assume De =~ 0 if wrong
examples are not given. In other cases, if this distribution is not known, we will
assume the universal distribution.

Another question with regard to implementation is the handling of zero val-
ues for some classes. This can cause division by zero in some of the previous
definitions. In order to solve this problem, it is sufficient to redefine card;, (E) =
cards ,(E) + ¢. In other words, ¢ fictitious examples of each class is initially
added, in order to avoid zero values. This constant ¢ (0 < ¢ < 1) should be
as small as possible in order to preserve the classes probabilities. Note that for
two classes and ¢ = 1, this corresponds to the Laplace corrected estimate of
9(H) = (positiveE + 1)/ (possibleE + 2) [18].

Example 7. Consider Dy = (100, 0) and that D[ assigns nine times more prob-
ability to positive examples than to negative ones, i.e. Dpy (T) = (0.9,0.1).
From here, we have that:

= Dy (101,1) (101,1)
Df(T) = = = ! = " — (1.1,0.098)
E 91.8,10.2
FE) 909 %,0.1 X g) (91.8,10.2)

12



The other question is how to compute D (H) because X is usually infinite or
very large. In these cases, as in [18], we must generate examples according to a
distribution, in order to obtain Dey (H) and, from here, Dr (H). Finally, for an
infinite number of classes, the vectors are of infinite dimension. In these cases,
only the finite number of classes which appeared in the evidence are considered.

7.1 Evidence Generators

In this subsection, we discuss how to generate random samples in order to gen-
erate evidences that will permit us to evaluate the hypothesis.

The easiest case is when there exists a limited number of classes in the do-
main. This first method produces examples randomly from a given distribution
function D; which can be arbitrarily selected (or given). One particular in-
stance of this case is when D is the universal distribution. Even if the number
of classes n is finite, a generator can be useful because this number could be
large and Dg (H) can also be approximated.

The second case is when there are infinitely many classes in the domain. In
this case, D must necessarily be approximated, because the infinite positive
inputs to the hypothesis cannot all be evaluated. This situation is more common
than one might expect, because any function over the natural, integer or real
numbers has an infinite number of classes. At first glance, it seems that we cannot
define a distribution to generate examples for testing to which class they belong,
because probabilities, if uniformly distributed, would tend to 0. In order to solve
this problem, we use an approach which is based on the universal distribution:
Dy =27N W{), Specifically, we will use Levin’s variant [11]. This variant is derived
from the notion of “age” of a string, where “age is dominated by the total time
needed for a string to appear out of nothing, enumerated by a constant-size
program”. The Levin variant is defined as Kt(X) = log age(z). More formally:

Gh qglwrq : 1 The Levin Length-Time Complexity of an object x given y on a
descriptional mechanism (3 is:

Kt (o) = mini IT (o) < & (kp,yl) = )
where LT (pm) = l(p) + log 7 (kp,yl) and ¢ (a) represents the output given by
¢ on input a.

The term y represents the background knowledge and x represents the evi-
dence. LT weights the length of the program with the logarithm of the temporal
cost 7 that the program takes to generate the evidence.

For the logical functional case, we have the additional advantage that if
we have a confluent program, each term that we can ever construct over the
program will have only a normal form. Consequently, we simply have to randomly
generate lhs of equations but not complete equations. For instance, consider the
sum example. We have the signature X' @ sum, 3, s. If we consider types, the
signature is divided into o9 @ {sumy 1y} and o1 @{3(3, {11}, where subindexes
represent the number of arguments of each function symbol and which signature
they are from. In the remainder of the paper, by type we denote a natural number

13



as the index of each subsignature. We denote the constructors with o.. In this
case, 0 @{3, s}. We denote the set of these subsignatures (all the o; and the o)
by op.

The generator can easily be constructed from this point:

function generate(n, 0o): t;
e:= select with prob. 1/card(c,) an element from o ;
let m:= number of arguments of e;
for i:= 1 to m do begin
let s := type of the ith argument of e;
t;:= generate(s;, 0 );
endfor;
construct the term t:= e(t1, t2, ... y tm);
return t;
endfunction;

L h{ hfxvihg z Ivk vkh f daj hghudvia(0> )/ vklvp sddg ruvkp j hghudwv j urxqg
wp vwdffruglg) w djrrgdssu{lpawrgw S(w =241

| Igda}/ frgighud ixgfvir q qduur z v(wS/ ydu=wisv>p d{ winsv> ) : x vkdw
gdurzvdwiyp wzudd sujulp S uwxuglg) Ig x vikh grup doirup ri vikh viup
+d vinp zkiIfk Ivgl hugwiurp wwxfk vkdwdmolw ixgfwwrg Vi perovdihlg ,°
dgg vimw winsv dv vkh gxp ehuri qdurz 1gj winsv Hgf oxglgj idldg eudqgfkhv, vikdw
zhuh ghfhwdd iru ghdylgj x1WKlv ixgfwrg uwugy @ i vikh viup wgrhv grw
gdurz w dqru doiryp ruli p d{ whsv duh xvhgl

lup khtv p srvvyh h{dp sdwv fdg ehj hghudving Ig vkhirarzlgj zd| =

function positive(m, P, mazsteps, o ): set of examples;
let S:= 0;
while m # 0 do
t:= generate(0, 0,);
u:= narrows(t, P, steps, mazsteps, os);
if u # () and TempCorrection(steps) then
add {t =u} to S; m:=m—1;
endif;
endwhile;
return S;
endfunction;

Whp sFruwhfvr gtwhsy, Ivd ixgfwrq vikdwfrp sxviv vkh irarz Igj fruhfwrg w
dssu{lp dvh ixgfvirg N wWhp srudd-ruuhfvir g+whsv, @ +udqqg - aj wwhsv,, ?
4@ z khuh udgg j lyhv d udqgrp ydoch ehve hhg 3 dgg 41

Lg vxp p du/ vkh suhylr xv dssur dfk j hghudvv h{ dp sdw dffruglgj w dg dsO
su{lp dwrq ri vkh xglyhwdoglwdexwrq SH, @5 “*®1Wklv dssur dfk Iv gl0
thfvg dssdfdedyw ojlIf surjudp v wkhl duh vshfldofdvhv ri frgglvirgdoixqgfO
vrqdoaj If surjudp v, dgg havd dgdsvdedw rvkhu algj xdj hvAli Whp srudd=r L0
uhfwr g Iv Ij gr ung/ Iwj lyhv vkh glwdexvir g 2=/ z kIfk Iv dg dssur{Ip dvirq w

% In FLIP [5] we do this by constructing an equation ¢t ' X with X being a fresh
variable. The normal form is given by the substitution of X.
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vkh xglyhudo glwdexwrq P(z) = 2-5@ zlwk K(z) ehlgj vkh dew ocvih Nr @
prjruy frpsdyflwl

| lqday/ e| xvqgj vikhjhghudww zhfdg dssu{Ip dvh D¢ x(H) €| j hghudvaj
k h{dp sdwvIqw dq hylghafh E*1Lli Dx Ivxqliryp /e| fruamy 4/ vkhg DE(H) *
DE «(H) = E* zkhq k vy hilg j hghudd

- norm

- D (1)

ZmEEk GX(‘U

rhs(z) = ¢

i=1l..n-

FEzample 8. Let us recover example 4. Consider the following evidence H formed
by 100 examples (n = 100) and generated by the universal distribution 2=,

H{dp sdh|Suredddw |Qxp ehuri [Ko =prg3

p rg(0) 05 52 Wuxh

prog(l) 025 26 | dovh

pro(2) 0425 12 | dovh

prg(3) | 09625 6 Wuxh

prg4)| 046312 3 I dovh

p ra(s) 0915 1 | dovh

We have
- qarup
G¢ x(K) (58,42) 19"

k _ C,X _ s —

GelK) = - [(26.38,8.109)]
> omE, D@
rhs(z) = ¢

l=1= -

[(2.199,5.18)]97% = (0.298,0.702) = (0.33, 0.66)
With all this, we can retake the entire definition of the probability P(H|E):

Definition 8. The optimality of a hypothesis is

1

Opt(H) =In p(HWE) dp,=m ln(m

) sz(H)

Apart from being useful for approximating D¢ x (H) and D (H), the generators,
are useful for generating sets of evidence and essaying the robustness of learning
systems. However, we do not deal with this question in this paper.

15



7.2 Experiments

Let us present an example that illustrates the use of the approximations. This
example has been implemented in the FLIP system and describes a case where
Dx is known (a uniform distribution).

Example 9. Consider Table 1 which represents an evidence of size 100 based on
a uniform Dx of a simplified database for fitting contact lenses which originally
appeared in [3]. 7

. +e},@r r|}16 @r6 |JAe@ o0J_ g J?|S9?|H

oer R J? - @e ,e?rer |[Examples

myopia no reduced no 13

myopia no normal soft 15

myopia yes reduced no 11

myopia yes normal hard 11
hypermetropia no reduced no 13
hypermetropia no normal soft 12
hypermetropia yes reduced no 14
hypermetropia yes normal hard 11

Table 1. Databases for fitting contact lenses

Wklv gdvdedvh fdg eh Igvhusuving dv d suredp  vikdw ghvinup Ighv z kKhvkhu vikh
sdwhgwghhgv w xvh fr gvaf wdgvihv/ dqg li vklv Iv vikh fdwy z kdwwsh ri dgvihv
v2kh p xwwxvh1Wkhuhir v vklv favh Ivd fawl fdwrq suredp z Ivk vkuhh vdy hw
f@wWhv=C @{no, soft, hard} zI\vk D¢ @+4/5,4/7,4/7,1
Z Ivk rxup hvkrg zhfdq dssur{lp dvh D¢, 4T, dv=
——

= D
Do, @u:E @+3.84,3.5: , 3,55,
E

Fravghuvkivh srwled k| srvkivhv z vk vkhiu uvshfwyh D dag vkh daj dh vkh|
. —
irgp zhvk D+, 1

H, @{ lenstX,Y,r, @no Do @73.8,3,3 a1 @3.8<< rad

lens+X,Y,r, @no R
H2 @{ l€n8+X7Kn, @SOft DC @/88' 38)3 Qo @3797 rad

lenstX,Y,r, @no

Hs @{ lens+X,no,n, @soft Do @78.8,3.58,3 a3 @3.698 rad

lens+X,Y,r, @no
Hy @« lenstX, no,n, @soft Do @73.8,3.58,3.58 «3 @3.4:7 rad
lens+X, yes, n, @hard

" The simplification consists in assuming that a fourth attribute (age) is always young.
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As expected, the angle with respect to J o+, gets lower and lower as the hypoth-
esis becomes more accurate. Moreover, the corresponding u+H, and optimalities
are:

Hy:l=4, u= 12059 x (0.5=0.2028, Opt = 100in(+=r5p) — 4 = 155.55

14+tan0.599
Hy :1=8, wu=0.3333 x 1 =0.333, Opt = 100in(——) — 8 = 101.86
H :1=8, u=0276x0.75=0207,  Opt = 100In(r5—) — 8 = 149.4
He:1=12,4u=0.15x1=0.15, Opt = 100[n,(f_'T)) —12=177.71

This and other experiments can be found in the FLIP system web page:
kwns=22zzz1gvl f 1xsy1lhv2 nrudoor 2i ol s2

(] CTINTIITT T 1

This paper has converted the notion of hypothesis generality into a new notion
of class unevenness. This new view of the problem places the learning of Boolean
functions as a special case: when the number of classes equals 2 and where any
proportion of examples of class true and class false can be used.

Moreover, it clarifies the problem when sparse or non-uniform evidence is
given for one class. Consider, for instance, the lens example in a purely logical
way, as a predicate lens(X,Y, Z, C) where C' is the argument that represents the
classes to be predicted (usually done by a mode declaration in ILP systems).
The learnability of the problem and the evaluation of hypotheses do not only
depend on the number of positive or negative examples, but also depends on the
proportion of classes in the evidence, hypothesis and theory.

In conclusion, the approach presented in this paper neglects the use of nega-
tive evidence and supports the conversion of Boolean problems into classification
problems. Although there is important literature on handling class distribution,
it does not deal with universal representation languages, such as functional logic
programming. In this regard, the IFLP framework is the most natural step for
handling classes from the ILP point of view.

In the presence of noise, our work could be extended following the model
presented in [13].
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