SMILES v23

A Multi-purpose Learning System’”

Technical Report 5-Sep-2002

C. Ferri-Ramirez J. Hernandez-Orallo M.J. Ramirez-Quintana

Dep. Sistemes Informatics i Computacié, Univ. Politécnica de Valéncia (Spain)
{cferri, jorallo, mramirez}@dsic.upv.es

Abstract

In this paper we describe SMILES, a Stunning Multi-purpose Integrated LEarning System. A
machine learning system is useful for extracting models from data and hence it can be used
for many applications such as data analysis, decision support or data mining. SMILES is a
machine learning system that integrates many different features from other machine
learning techniques and paradigms and, more importantly, it presents several innovations
in almost all of these features. This report contains four major parts: a description about the
system architecture, a user’s manual, a more advanced section on how to take the most of
the system and, finally, some brief programmer’s guidelines. A complete table of all the
options provided in the system is also included.

Keywords: Decision tree learning, machine learning, data mining, hypothesis combination,
ensemble learning, cost-sensitive learning, ROC analysis.

“ This work has been partially supported by CICYT under grant TIC2001-2705-C03-01 and by Generalitat
Valenciana under grant GV00-092-14. This system was initiated during two research stays in the
Department of Computer Science of the University of Bristol. The stays were granted by Universitat
Politecnica de Valéncia and by Generalitat Valenciana.

I g o o [T 4 o PSS 3
2 The Structure Of the SYSTEIMc e e e e raenres 4
BIUSEI'S IMIANUAL ... b bt bt e bbb 5
3.1 SMILES USAQJE BASICS ..ottt sttt st bbbttt bbbttt 6
3.2 Simple Input and OULPUL FOMMAL........c.cooiiiiiiiiiiee e e 8
BB OPLIONS FHle....e e bbbttt b e bbbt n e 11
3.4 GENEIAL OPLIONS ...ttt bbbttt b e bbbt b e et e a b et e b e b bt et e beeb e e e nnas 11
3.5 MUITITIEE OPTIONS. ...ttt bbbttt b ettt bbbt 14
3.6 Combination and FUSION OPLIONS ...t e 16
3.7 SNOWING SEVEral SOIULIONSccuoiiiiiiiie e 20
3.8 Validation Set and Cross-Validationccoeoiiniiiiii e 24
3.9 k-fold Cross-Validation and repeated k-fold Cross-Validationccccocoiiiiiiiinnenn. 26
3.10 Expected Error and Smoothing OPLioNS...........cccviiiiiiiiiniiees e 27
3.11 Cost-sensitive and ROC ANaAlYSiS FEATUIESccoviiiiriiiiiritse e 28
312 AUC EVAIUATION ...ttt 33
3.13 Multi-class AUC Evaluation. AUCH, MSE and LogL 0SS Measures..........c.ccceceveveerveinenne. 34
3.13. 1 Hand and Till M FUNCHIONc.couiiiiiiiieeseese ettt 34
3.13.2 Other Measures MSE and LOGLOSSc.coeiieiriiiniieisietsiee st 35

3.14 ROC-based SPITLING CHITEIIA........ciiieiieieieeie et e 36
00T =] A 0 Y OSSR 38
3.16 ArchetyPe SOTULION ..ottt e 43
TN @ 1 1= gl Vol | 1 TS 46

4 SIMIILES EXPEITISE ...ttt ettt bbbttt bbbt bbbt e et eb e bbb e bt ebe e e nnas 47
4.1 Experimental comparison of Splitting Criteria.........ccooooiiiiiiiii e 47
4.2 Comparison of criteria to extract a solution from the multitree...........cccoooviiiinininen 51
4.3 Evolution of Best Solution Accuracy for Increasing Number of trees.........cccoovvveiienenn 53
4.4 Comparison Of COMBDINATIONcciiiiiiiic bbb e 54
4.5 FUSION IMEENOUS ...ttt et 56
4.6 Combination Accuracy as MUlti-tree iS BIgQer.......ccocoieriirienenisienese e 58
4.7 The relevance of Second Tree Opening CriterioNccoceviveieriiienerisienee e 59
4.8 ArCNETYPE EXPEITISE ..viiiiiiieiieieie ettt bbbt b ettt 61
4.9 Forgetting SUSPENEA NOAES.......cc.oiiiiiiiiiie bbb bbbt 64
4.10 Comparison With Other SYSTEIMSciiiiii e bbb 65

5 Short Programmer’s IMANUAEL............ccooiiiiiii et et 67
5.1 Summary of source files: classes and fUNCLIONS...........ccocoiiiiniiiin e 67
5.2 MAIN SOUTCE TIIES ...ttt 67
5.3 Default and hardwWired OPLIONS ... e 70

B OPLIONS SUMIMIAIY ...ttt et b ettt b e ekt b e ekt eb e ekt b et ekt e bt ekt ab et et e ab e e et e abe e ebe s 72
A U 10 =Y o PSS 80
ACKNOWIEAGMIENTS. ...ttt bbb bbb bbb bbb bbb st nb et nb et enn 82
RETEIEINCES ...t 82
APPENdiX A: Program HISTOMY ..ottt sb et bttt ee s 85
Appendix B: Datasets in SMILES fOrMALccoooiiiiiiiiiicce s 88

1 Introduction

SMILES (Stunning Multi-purpose Integrated LEarning System) is a machine learning system
that integrates many different features from other machine learning techniques and paradigms
and presents several innovations in almost all of these features. In particular, it extends classical
decision tree learners in many ways (new splitting criteria, non-greedy search, new partitions,
extraction of several and different solutions), it has an anytime handling of resources, and has a
sophisticated and quite effective handling of costs. In this way, SMILES combines and improves
the recent interest in hypotheses combination (e.g. boosting[54]) and cost-sensitive learning (a
priori and a posteriori class assignments [11], ROC analysis [48]) outperforming previous
systems in many situations.

The origin of SMILES dates back to our previous system FLIP (Functional Logic Inductive
Programmer) developed from 1998 until 2001 [32][19][20] with the goal of inducing declarative
models from evidence in the form of functional logic programming. The paradigm was called
Inductive Functional Logic Programming (IFLP) [31]. As a successful extension of ILP
techniques to functional logic programs, it inherited some of the limitations of ILP systems:
poor scalability and poor accuracy results with respect to other more general machine learning
algorithms.

With the goal of broadening the applicability of machine learning for functional logic
programming and other declarative paradigms, we endeavoured the construction of a new
system based on a more scalable, flexible and efficient basis, with the premise of generating
highly expressive and comprehensible models from data. Although at the present moment the
models induced are just a slight extension of classical decision trees, they can still be
represented as a restrictive kind of functional logic programs. The next stage that must logically
follow this work is the inclusion of more partitions in order to make SMILES more expressive,
capable of using background knowledge and capable of generating full functional logic
programs with possible higher-order features. It is this long-term goal that shapes the
continuity between our previous system FLIP and SMILES (in fact, previous versions of
SMILES were called CDTL or FLIP 2.0/3.0) and not the implementation, because, as we will see,
they differ drastically in architecture and learning techniques.

This paper tries to present the system in its present form, serving as a short technical
description from the machine learning point of view and also as a user’s and programmer’s
guide, which can accompany the source in case that someone wants to use or extend the system.

The paper is then organised as follows. In section 2 the structure of the system is described
in a practical and succinct way. SMILES user’s manual is presented in section 3, describing
separately the general inputs/outputs of the system, the general options, the multitree features,
the different ways to extract several solutions, the cost-sensitive and ROC features, the
archetype procedure and other facilities. In section 4 we include several results and plenty of
know-how about how to take the most from SMILES. Section 5 describes how the system is
implemented and how the source code is structured, resembling a very brief programmer’s
manual. Due to the large number of options that SMILES has, section 6 includes a table with all
the system options. Finally, section 7 presents possible future work.

2 The Structure of the System

In this section we briefly present the main algorithm and underlying methods of SMILES. For
more details on the structure, we refer to [18][21][22].

Decision tree learning is a very popular kind of machine learning technique. In a decision
tree, each node contains a test on an attribute, each branch from a node represents a possible
outcome of the test, and each leaf contains a class prediction. A decision tree is usually induced
by recursively replacing leaves by test nodes, starting at the root. Classic decision-tree learners
such as CART [6], ID3 [49], C4.5 [I] or FOIL [51] have given very good results and are currently
used in many applications; however, they do not have flexibility with respect to trading result
quality for computational resources.

The main algorithm of SMILES is also based on a greedy search in the decision tree space,
such as CART, ID3 or C4.5. However, SMILES is able to obtain more than one solution, looking
for the best one or combining them in order to improve the overall accuracy or minimise the
classification cost. To do this, once a hode has been selected to be split (an AND node) the other
possible splits at this point (OR nodes) are suspended until a new solution is required. In this
way, the search space is an AND/OR tree [44][42] which is traversed producing an increasing
number of solutions for increasing provided time. Since each new solution is built following the
construction of a complete tree, our method differs from other approaches such as the boosting
method [28][54], which induces a new decision tree for each solution. The result is a multitree
rather than a forest; with the advantage that a multitree shares the common parts and the forest
does not. We perform a greedy search for each solution, but once the first solution is found the
following ones can be obtained taking into consideration a limited computation time. Therefore,
our algorithm can be considered anytime in a certain way [8].

Apart from the multitree (AND-OR) structure, our system extends the representation
language by extending the possible partitions. The final goal, as we have stated in the
introduction, is to induce functional logic programs with even higher-order characteristics. In
the Functional Logic Programming (FLP) paradigm, conditional programs are sets of rules and,
hence, they can also be represented as trees. This allows us to include the type information of
the function profile in the split criterion.

The types handled by SMILES are:

Type Use
Nominal For value sets, Booleans and any non-numerical attribute.
Numerical For integers, real numbers and any numerical attribute.

Ordered nominal attributes such as {low, medium, high} are
not directly handled and should be substituted by integers.

At the present moment, our system allows the following partitions, two of them using negation:

Partition
Partition X=a, X=b, X=c... | Presentin ID3, C4.5
Partition X=a, X' a
Partition X=Y, Xt Y
Partition X<c, X3 ¢ Present in ID3, C4.5

Note that the search of the decision tree space requires the use of several criteria. If the search
can be re-activated to explore further solutions then more criteria are needed. The main criteria
used by SMILES are:

Splitting Criterion: among all the possible partitions (split) which one is selected to
open the tree.

Traversal Criterion: from all the given nodes after a split, which nodes are explored first
(the rest are suspended).

Suspended Nodes Forgetting: Should all the suspended nodes retained or some of them
can be forgotten?

Second Tree Opening Criterion: specifies which node to explore for second-best
solutions.

Best Tree Selection Criterion: specifies which of all of these solutions must be shown if
the user wants just the best solution.

kBest Different Solutions Selection criterion: specifies how to select from the AND/OR
tree a set of solutions. If k is equal to 1, then it just selects one solution according to the
BestTree Selection Criterion.

One important feature of the system is that many of the previous criteria can optionally be
defined in terms of the Minimum Description Length (MDL) principle [56]. If all of these criteria
are MDL-based then the decision tree is built in a short-to-long way. The MDL principle has
previously been used in the induction of decision trees in the post-pruning phase [41] [55]. Also,
the MDL principle has been used as a stopping criterion (pre-pruning) [45][51], as a measure for
globally evaluating discretisations of continuous attributes [46], and for restructuring decision
trees [1]. In our approach, the MDL principle is used at the generation phase which is justified
because other quality criteria based on discrimination such as the information gain [52], the
information gain ratio [52] or the Gini heuristic [6] are not useful for functions that have a
recursive definition or that use concepts of the background knowledge. This was one of our
premises and, although these functions cannot be learnt with the current version, future
versions will hopefully be able to. Another reason is that the guidance of the search by the MDL
principle ensures a better use of computational resources following a Levin search [38][57]. We
can use the MDL principle as split criterion, as stopping criterion, as pre-pruning criterion and
also as solution tree selection criterion. Finally, we derive a measure of confidence for
combining multiple solutions. In this way, we can use a uniform framework based on the same
measure for constructing the tree, selecting the split, selecting second-best trees to explore and
selecting or combining hypotheses.

3 User’s Manual

SMILES source-code can be downloaded from http://www.dsic.upv.es/~flip/smiles/. The
package includes the C++ sources and some sample datasets. Once the software downloaded
and decompressed, follow the readme file and run the shell-script for installation on Unix-like
machines.
If the installation is successful, you can directly type:
./smles -?

and you will have the following usage information:
x* SMLES v.2.3.1 (Rel ease Date: 23- August-2002) *

USAGCE:
.Ismles file.train [file.test] [file.cost] [file.testcost]

That means that the software has been correctly installed.

3.1 SMILES Usage Basics

The current SMILES version is a command-line batch application with little interaction during
the learning stage. Almost all interaction is performed through the inputs (mainly the training
set, the data set and the options) and the outputs (mainly solution trees and statistics).

The previous usage information suggests that the system must be supplied with some files,
at least a training set.

We can run the system by using some of the examples that are provided with the
distribution, e.g., the playtennis example. If we type:
./smles sanpl es/playt.train sanpl es/playt.test

Using the simplest options (no combination) in the option file (we will discuss on this) the result
may be something similar to this:

**** SM LES v.2.3.1 (Rel ease Date: 23-August-2002) ****
ftrain: sanples/playt.train

ftest: sanpl es/playt.test

fcost:

ftestcost:

Training Set: "sanples/playt.train"

No. of Attributes: 4

Cardinality: 14 exanples

Class: 0 ("yes"). Distribution: 9

Class: 1 ("no"). Distribution: 5

Valid options.

Creating the nultitree.
Learni ng begins. ..

The test set: "sanples/playt.test"” will be used to evaluate the results
Predicting and preparing statistics

Filling new test probabilities of the |leaves of the nulti-tree with the
Test set
15 exanpl es done.
Showi ng bel ow the properties of the best single tree
SCLUTION O: 5 rules
Statistics over test set of |ength: 15:
Rel ative Accuracy: 1

AUC Hand: 1

END OF RESULTS

Test dataset destroyed successfully
The nultitree has been destroyed successfully

====> Time used (for learning): 0.01 secs.

**** Smpoth end of SM LES execution ****

If we take a look at the results we observe several parts. A first part informs us that the files
have been read and tells us about their characteristics: number of attributes of the dataset,
number of the examples and class distribution, in the previous example 4 attributes and 14
examples. Finally, it includes statistics on the tree
Let us use a different example: “house-votes™:
./smles sanpl es/ house-votes.train sanpl es/ house-votes. test
If we use an option file that uses combination, the output varies slightly:
**** SM LES v. 2.3.1 (Rel ease Date: 23-August-2002) ****

ftrain: sanples/house-votes.train
ftest: sanpl es/ house-votes.test
fcost:

ftestcost:

Trai ning Set: "sanpl es/ house-votes.train”

No. of Attributes: 16

Cardinality: 217 exanples

Class: 0 ("denocrat"). Distribution: 136
Class: 1 ("repub”). Distribution: 81

Valid options.

Creating the nultitree.
Learni ng begins. ..
Last Opened Node #1000 | earned of 1000
MeanDept h of Second Solution Start Positions: 4.36837

The test set: "sanples/house-votes.test” wll be used to evaluate the
results

Predi cting and preparing statistics

Showi ng first the results of the conbination method of all branches:

COVBI NATI ON RESULTS:

Statistics over test set of |ength: 218:

Rel ative Accuracy: 0.963303
AUC (exanple by exanple) in Hand & Till's way: 0.990568

Filling new test probabilities of the |leaves of the nulti-tree with the
Test set

218 exanpl es done.

FI RST SOLUTION: (solution as if 1 tree were generated).

Note: if postpruning is enabled this solution is not the same as with 1
tree.

Num of Rules: 21

Statistics over test set of |ength: 218:
Rel ative Accuracy: 0.949541
AUC Hand: 0.980477

Showi ng bel ow the properties of the best single tree
SOLUTION 0: 21 rules

Statistics over test set of length: 218:
Rel ative Accuracy: 0.940367
AUC Hand: 0.976968

END OF RESULTS

Test dataset destroyed successfully
The multitree has been destroyed successfully

====> Time used (for learning): 10.49 secs.

**** Smpoth end of SM LES execution ****

Now, learning begins exploring not only the first splits but many others (# of opened OR-
nodes, in the previous example 1000), in order to obtain a good result. After the learning
process, some statistics of the combination all the trees are shown (0.963 accuracy and 0.991
AUC), statistics of the first solution as if the multitree would have only 1 solution (21 rules,
0.950 accuracy and 0.980 AUC) and, finally, a solution which is extracted using a criterion from
the multitree (21 rules, 0.940 accuracy and 0.977 AUC).

3.2 Simple Input and Output Format

Let us explain first the format of the training set file. The lines that begin with ! are meant to be
directives to the parser. Only the “! TYPES: ” directive is mandatory. After several lines of
directives the dataset starts with the values of each argument separated by commas. Each
example must be put in a different line. The last value of each line is the class of the example
and must not be followed by comma.

The meaning of the directives is given in the following table:

Directive

Syntax

Mandatory

ITYPES:

Natural numbers: for nominal types, each number 3 1 denotes a
different type. For numerical types, a 0 must be used, (Ou or OU if
missing values are to be taken into account).

Yes

INAMES:

Argument names separated by commas. Only used for visualising the
solutions.

No

IWEIGHTS:

Set of pairs “classname = weight” where weight is a real number. Tries
to give more relevance to some classes over others. This will be further
explained along with the cost-sensitive options.

No

IRECLASSIFY

Set of pairs “originalclassname>changedclassname;”. The semicolon is
mandatory even for the last assignment. This options is to change the
name of one or more class. This is used for joining two or more
classes.

No

Let us illustrate this syntax with an example (playt.train):

ITYPES: 1, 2, 3,4,5

I NAMES: sky, t enp, humi d, wi nd, pl ay

I VEl GHTS: yes=1, no=2

over cast, hot, hi gh, weak, yes

rain, mld, high, weak, yes

rain, cool , nornal , weak, yes

sunny, m | d, nor mal , strong, yes

overcast, m | d, hi gh, strong, yes

over cast, hot, nor mal , weak, yes

sunny, hot, hi gh, weak, no

sunny, hot, hi gh, strong, no

rain, cool , nornal, strong, no

sunny, m | d, hi gh, weak, no

over cast, cool , nornal , strong, yes

sunny, cool , nor nal , weak, yes

rain, mld, nornmal, weak, yes

rain, mld, high, strong, no
This is a dataset with two classes, where all the attributes are nominal and different (this is why
all the integers of the directive ITYPES are different). This training set gives more relevance to
class “no” (2) than to class “yes” (1) by using the directive “IWEIGHTS”.

Another example could be like this.
I'TYPES: 1,2,2,0,3,0,4
I NAMES: sex, f at her st udl evel , not her st udl evel , 1 Q regi on, f ameconl evel , st udl ev

el

I RECLASSI FY: el ement ar y>no- uni ; secondar y>no- uni ; hi ghschool >no-uni ;
uni ver si ty>uni ; doct or >uni ;

f emal e, secondary, hi ghschool , 120, Val enci a, 20000, doct or
nmal e, uni versity, uni versity, 130, Madri d, 50000, hi ghschool
f emal e, secondary, el ement ary, 150, Ber| i n, 30000, doct or

mal e, el ement ary, el ement ary, 90, Br et agne, 40000, secondary

f emal e, secondary, el ement ary, 105, Cal abri a, 15000, uni versity

In this case we have four nominal and two numerical attributes. Two attributes
(“fatherstudlevel” and “motherstudlevel”) are of the same type. The class originally had five
possible values from the datasets, but the 'RECLASSIFY directive has joined the first three into
a new class “no-uni” and the remainder two into a new class “uni”. This means that this

problem will be treated by SMILES as a two classes problem. Note that when the IRECLASSIFY
option is used, the type for the class should not be used for any other attribute (using type 2 for
the class in this case could produce some errors).

We can ignore some attributes, either nominal or numerical, (if we think they are not useful
for learning) when instead of the type, an 'I' or 'i' is put in the ITYPES directive.

Nominal missing values are represented by “?” and are simply considered as an additional
value for an attribute. Consequently, tree partitions may have “?” in some of the branches.

For numerical missing values (which must also be represented by “?”), there are three
possible options for handling them: ignore any example that contains numerical missing values
(by using the value “0” in the ITYPES directive), treat them as a special value (by using the
value “0U” or “0u” in the ITYPES directive) or substitute missing numeric values by a 0. We
will see how to change this option later.

For instance::

ITYPES: 1,2,2,0,1,0U, 4

I NAMES: sex, f at her st udl evel , not her st udl evel , | Q regi on, f anmeconl evel , st udl ev
el

f emal e, secondary, hi ghschool , 120, Val enci a, 20000, doct or
nal e, uni versity, university, ?, Madri d, 50000, hi ghschool
femal e, secondary, el ement ary, 150, Berl i n, ?, doct or

mal e, el enent ary, el enent ary, ?, Bret agne, ?, secondary
femal e, ?, el ement ary, 105, Cal abri a, 15000, uni versity

Now we have some examples with missing numerical and nominal values. We also see that the
“region” attribute is ignored and consequently not used for learning. Supposing we have set in
the options file that missing values should be discarded and not substituted by zero (we will go
back on this), the first example does not contain missing values; the second example is
discarded as a missing value appears for an attribute (IQ) that does not accept it; the third
example is taken into account because the missing value appears for an attribute (famconlevel)
that accepts it; the fourth is discarded as a missing value appears for an attribute (1Q) that does
not accept it; the fifth is taken into account and the second attribute (fatherstudlevel) would
have an additional value “?”.

Numerical partitions with missing values are “trios” of the form (X <a, X>=a, X=?).

Note: if two nominal arguments are set to be of the same type, it must be ensured that
both of them have missing values or none of them. Otherwise, the types would not be
identical and there may be an error.

The test set has the same format as the training set, although directives are ignored. If the
number or type of the attributes in the test set is different from the training set, an error is
produced and SMILES exits. Moreover, it should be noted that in the current version if the test
set presents for a nominal type an attribute value that was not present in the training set, an
error is produced and SMILES exits. A very easy way to avoid this is to add a line like the
following one in the training set:

?,?2,?2,?2,7?
which adds an unknown attribute value “?” for all types. Then the test dataset should be
modified in order to substitute any new value by a ?.

10

3.3 Options File

Before, we saw that the system options are not given through the command line. In order to
specify the system options, a configuration system is used, called “options.cfg”.

In this file, comment lines begin with ‘%’. The rest are pairs “option=value”, where spaces
should not be placed around the symbol “=". Most of the options are not mandatory but the file
“options.cfg” must be placed in the same directory SMILES is.

The syntax of the options file is illustrated by the following excerpt:

% - Expected error nethod: ways to conpute expected error
expected error method=no conpute

%

% - frequency error snoothing:use snmoot hing or not

smoot hi ng net hod=no snoot hi ng

As we have said before, lines that begin with ‘%’ are considered comments and are ignored. The
options file is then constituted by assignments, where the left hand side is the option name and
the right hand side is the value given to the option. Both the option name and the option value
side have a strict syntax and no spaces can be inserted on either side of the ‘=" sign. A complete
list of the available options is given in section 6.
Let us make a change in the options file. If we open it with an editor and modify the “show

all k-best solutions” option as follows:

% -show al | k-best solutions

show al | k-best sol uti ons=show

and now, following with the playtennis example, we run SMILES again with the same training
set and test set, we have that now the output includes one solution in form of rules:

**** SMLES v.2.3.1 (Rel ease Date: 23- August-2002) ****

Let us show the solution: O

f(X0, X1, X2, X3) = R :- XO=overcast. [class: yes]

f(X0, X1, X2, X3) = R:- XO=rain, X3=weak. [class: yes]
f(X0, X1, X2, X3) = R :- XO=rain, X3=strong. [class: no]
f(X0, X1, X2, X3) = R :- XO0=sunny, X2=high. [class: no]
f(X0, X1, X2, X3) = R :- XO=sunny, X2=normal. [class: yes]

**** Smpoth end of SM LES execution ****

This shows the solution in the form of conditional rules of the type Head :- Body.

3.4 General Options

Given the basics of the system, now we are going to describe some other main features and
options. All of them are described in Section 6.

One of the first things to choose in a decision tree learning algorithm is the splitting
criterion. Different splitting criteria have been implemented: Left first, Gain (entropy),
Gain_Ratio and C4.5 [53], CART [6], MDL, DKM [33], Expected_Error and Area Under the ROC
Curve [24].

11

In the options file, the user can choose among all of these:
% -splitting criterion: criterion which is used to select the best split
Y%splitting criterion=left first
Y%splitting criterion=gain
Y%plitting criterion=gain ratio
Y%splitting criterion=c4.5
Y%splitting criterion=cart
Y%splitting criterion=ngini
Y%splitting criteri on=desc ndl
Y%splitting criterion=dkm
Y%plitting criterion=split expected error
Y%plitting criterion=local roc area
Y%splitting criterion=one point |ocal roc area
splitting criterion=nse
Y%splitting criterion=logloss
Y%splitting criterion=sqdiff
Y%splitting criterion=genentropy
Y%splitting criterion=rocv
Y%splitting criterion=auch
Y%splitting criterion=aucs

Their description is as follows:
left first: just chooses the first split.
gain: Quinlan’s information gain [49].
gain ratio: Quinlan’s information gain ratio. [52][55]
c4.5: same as gain ratio but splits with gain lower than the mean are discarded [52].
cart: simple implementation of GINI criterion of CART system [6].
mgini: true implementation of GINI criterion [6].
desc mdl: a criterion based on MDL (see [18] for more information).
dkm: An optimisation of mgini [33].
split expected error: The split with lowest expected error.

local roc area: the split with greatest area under the ROC curve. Only valid for 2
classes.

one point local roc area: simplification of “local ROC area”. Just computes the are
with one point.

mse: minimum squared errror. It will be explained in section 3.14.
logloss: It will be explained in section 3.14.

sqdiff: computed as the square of the difference between probability for class a and
probability for class b. Only valid for two classes.

genentropy: gain and gini can be seen as special cases of a generalised entropy
function depending on a power. This is a parametrised split criterion where this
exponent can be modified (by program).

rocv: another (not very successful) extension to the roc split for more than 2 classes.

auch: Based on Hand and Till's extension of Area Under the ROC Curve for more
than two classes [30]. It will be further explained in section 3.14.

aucs: Fawecett’s variant of AUCH.

12

The best results are usually obtained with the mse, auch and c4.5 criteria. CART only works
well for two classes, and MGINI should be used instead. MGINI works well for two classes, so
never use CART.

Another important feature to be considered in a decision tree learning algorithm is pruning.
Currently, SMILES includes pre-pruning methods and post-pruning. The available pre-pruning
criteria can be chosen in the options file as follows:

% - pre-pruni ng nethod: criterion for pruning when constructing the tree
pre-pruni ng nmethod=no pruning

%pr e- pruni ng nmet hod=pr oporti onal

%pr e- pruni ng nmet hod=expected error pruning

%pr e- pruni ng nmet hod=MDL pruni ng

%pr e- pruni ng et hod=stunp pruni ng

%pr e- pruni ng et hod=pep pruning

%

% -only for stunp pruning. Depth Limt.

%-1f stunp pruning is not active, this option is ignored
stunp pruning limt=3

It is advisable to use some kind of pruning when some noise is expected in the data. Many of
these criteria have some parameters although currently only the stump pruning (depth limit) is
modifiable through the options file, whereas the rest of them can be modified in the source
code. The effectiveness on accuracy of these criteria is very variable. The MDL pruning criterion
can only be used if the MDL splitting criterion has also been selected.

Post-pruning is less efficient (because the entire tree is populated before pruning) but it is
easier to use and more effective. Currently, the only post-pruning method implemented is the
“Pessimistic Error Pruning” (PEP) introduced by [50] (Quinlan 1987). According to the study in
[12], this is the best method that does not modify the tree structure (unlike C4.5 pruning).
Although it has a tendency to underprune, we think that it is a quite simple and effective
method. The way to activate it

% - post-pruning nmethod: criterion for pruning after constructing the tree
(not used for conbination)

%post - pruni ng met hod=no pruni ng
post - pruni ng net hod=pep pruning

It is possible to combine pre-pruning and post-pruning. It could be good results to have a very
strict pre-pruning criterion (only pruning very clear cases) and then post-pruning. We have not,
though, performed any experiment about this.

Additionally, numerical splits can also be particularised. The problem with numerical splits
arises when a dataset has a great number of different values for an attribute. This happens very
often with continuous values, such as real numbers. A dataset of thousands of examples and a
single numerical attribute could generate a partition with thousands of children. Given n
different values, after ordering them, we would have a middle value a; and a condition (x<a;) for
each interval generated by two consecutive different values. This could slow down the system
dramatically. For this reason there are some methods for reducing the number of intervals (also
called discretisation methods): in a logarithmic way, with a maximum or with no limit. These
options can be selected in the options file:

% -nuneric interval criterion: how nunerical attributes are handl ed
nurmeric interval criterion=log

% wuneric interval criterion=nmax

Y% wumeric interval criterion=no limt

13

Some of these options have parameters. Currently, these parameters cannot be specified
through the options file and must be changed in the source code through program re-
compilation.
Finally, the options that correspond to the handling of missing numeric values are:
% - how to handl e m ssing nuneric val ues
m ssi ng nuneric val ues=i gnore exanples with m ssing nuneric val ues
%m ssing numeric val ues=substitute m ssing nuneric val ues

The first one ignores any example that contains a value *?’ for a numerical attribute. The second
option substitutes them by 0s. Both options are not applicable if we use the types “0U” or “0u”
in the “ITYPES” directive of the training set.

Until now, we have described the options that are common to many decision tree
algorithms. In the next sections we describe more distinct and advanced features of SMILES.

3.5 Multitree Options

As we have discussed in the introduction, one way to overcome the greedy behaviour of
traditional decision tree learning is to explore other splits. Once these alternative trees (OR
trees) are grown, then the best tree can be selected from all the open branches or a combined
solution of all of them could be built.

The following figure shows a multitree for the playtennis example with a partial
exploration of the entire search space:

| Playtennis(X |,X2.X3 X4)=X5 |

LN~

-

Partition 1 : Partition 1 Partition 1 Partition 1 Partition 5

Argument [1 Argument 2 Argument 3 Arguiment 4 Argument 3
1

r
1

Playennis(3}1,X2. X3 X4=X5 Playtennis(31,X2 X3 X4=%5 Playrennis(X1,X2 X3 X4=X5
Wl=rain Xl=ovecas, X5=yes Xl=munny
Partition 1 Partition 1 1 Pauition 1 f Partition 5 Partition 1 1 Patition 1 i Partition 1 Partition 5
Argument 2 Argument 3 i Argument 4 | Arguiment 5 Argument 2 i Argument 3 | Arguiment 4 Arguiment 5
/C--X-I /L<:l>\
Playtennis(3{1 X2 X1 X=X Playtennis(3}1 X2 X3 X4=X5 Playtennis(31,X2 X3 X4)=X5 Playtennis{3 1,32 X3 X4 =X5
K 1=tain X4=ztrang X5=no Kl=rain, Xd=weak, X=3es K l=sunny, X3=highX5=no X 1=sunny,X3=normal X5=yes

Figure 1: Partial AND/OR tree for the playtennis example

The first thing to specify is the number of trees in the multi-tree that are going to be explored.
More precisely, the number correspond to how many different OR-nodes will be explored,
which can give many more solutions (all their possible combinations). This is done in the
options file as follows:
% -multitree: construction: how many or-nodes are opened in the nultitree
mul titree nunber of trees=1000

14

Additionally to the number of trees, the way in which second solutions are found has to be also
specified. For instance, the following lines would select that the second solution would be the
still unexplored node that is topmost.

% -second tree opening: how to sel ect the 2ond node to explore

Y%second tree opening=split optimality

%second tree opening=optimality rival ratio

%second tree opening=optimality rival ratio depth

%second tree opening=optimality rival ratio conmponent

%second tree opening=optimality rival ratio conmponent random

second tree openi ng=second topnost

%second tree openi ng=second bott onmost

%second tree openi ng=second random

%second tree openi ng=second random depth

These options are more deeply explained in section 6. It is advisable to use topmost to improve
accuracy, although it is the one that requires more resources. In case of resource limitations, a
good option might be random.

The number of trees (or-nodes) to be explored and how to select them determines the
resulting multitree. Now, with all these open branches two things can be done: select a subset of
solutions or combine them.

If we decide to select one solution, then we have to choose a selection criterion to specify
which of all the possible solutions must be shown. To do this, the options file includes the
following alternatives:

% -nmultitree: best tree selection criterion

multitree best tree criteri on=occam best

%rultitree best tree criterion=test cost best

%rultitree best tree criterion=occam and test cost best

%l titree best tree criterion=coverage best

%l titree best tree criterion=cross coverage

%l titree best tree criterion=expected error best

%l titree best tree criterion=split optinality best

%rultitree best tree criterion=nmdl best
For instance, “occam best” selects the shortest solution possible from the multitree. Others such
“coverage best”, “expected error best” and “mdl best” choose the tree that gets best results with
these measures. These options are explained in sections 3.15 and 6. Later on we will see another
method for obtaining a single solution from the set (ensemble) of solutions.

Taking into account alternative solutions provides better solutions than the first eager,
greedy, single solution. This behaviour may require a lot of memory to store all the alternatives
(used or not). In fact, most of the alternate trees (the OR nodes) that are suspended never are
woken and, consequently, are never explored. A way to do a more efficient use of resources,
can be based on not opening all the OR nodes or, seen in other way, to forget part of the
suspended nodes. Currently, SMILES presents “suspended nodes forgetting” methods:

% - suspended nodes forgetting: must all suspended nodes mai ntai ned?
suspended nodes forgetting=naintain al

Y%suspended nodes forgetting=nmintain const random

%suspended nodes forgetting=nmaintain | og random

Y%suspended nodes forgetting=maintain | og randomw th depth
%suspended nodes forgetting=maintain | og randomw th squared depth
%suspended nodes forgetting=maintain | og random wi th depth adjusted

15

The meaning of these options are:
“maintain all”: as before. Everything is kept in memory.

“maintain const random”. a constant number of children (randomly selected) is
maintained.

“maintain log random”: only a log (number of children) are maintained.

“maintain log random with depth”: only a log(humber of children/(depth+1)) are
maintained.

“maintain log random with depth adjusted”: as “maintain log random with depth”
but a constant is added to the number of children. This constant is hardwired in the
program.

“maintain log random with squared depth”: similar to the preceding ones, but the
formula is now: log(number of children/sqrt(depth+1)).

With these methods, memory and time requirements for the multi-tree can be significantly
improved. A compromise between memory and quality of results is obtained through the
method “maintain log random with depth adjusted”. As we have said, the method “maintain
all” just maintains all the suspended nodes and it is the recommended option when there are
not memory restrictions.

Finally, although most of the methods maintain a logarithm proportion, in some cases the
number of remaining nodes must be too low. In order to avoid this, a minimum number of
nodes that must be preserved can be specified. This can be done through the following option.

% - suspended nodes nmi ntain const val ue
suspended nodes nai ntain const val ue=2

According to the experimental results shown in Section 4, LOG WITH DEPTH is the most
economical option, both in memory and in time, and results are not significantly deteriorated. If
time is not a problem (and just memory), LOG WITH DEPTH ADJUSTED is also a good option
because it even increases accuracy in some cases.

3.6 Combination and Fusion Options

The other way to use the multiplicity in the multi-tree is to combine the results of different
branches. There are also several methods to combine the different solutions that can be given in
the multi-tree, and they can be selected using the option file.

% - Conbi nation: How to conbi ne several sol utions

%rultitree solution conbi nati on=no conbi nati on

%l titree sol ution conbination=cross coverage comnbi nation

%l titree solution conbination=majority crisp

nmultitree solution conbination=ngjority absolute stochastic

%l titree solution conbination=mgjority relative stochastic

%l titree solution conbination=mgjority cost stochastic

As we will discuss later, the “majority absolute stochastic” method gives the better results and
can be combined with other more sophisticated options.

In particular, a decision tree learner can be seen as a soft classifier, taking the proportion of
examples that have fallen in each leaf as the probability that a new examples would be assigned
to that class.

16

When we have multiple solutions the question is how these vectors can be “fusioned” in
order to give a mixture or ensemble classifier. In our case the fusion is made whenever two or
more OR-nodes are found and their predictions are weighted.

At each leaf node, we have a cardinality vector that tells how many examples of the training
set have fallen for each class. The first thing that we can decide is to work with the absolute
vector or with the relative vector. For this we have the following options:

% - Combi nation vector: absolute (n. of exanples) or relative (frequency)
conbi nati on vect or =absol ute
%onbi nati on vector=rel ative

Let us see an example. As we have said, the estimated probabilities assigned to each node
depend on the proportion of training examples of each class that have fallen into each node
during the training of the decision tree learning. The reliability of each node usually depends on
the cardinality of the node. Consider three classes a, b and ¢ and two nodes nl and n2 with the
following train distribution:

nl={40, 10,30}
n2={0,2,1}
If we convert this absolute values to relative values, we would have:
nl={0.5,0.125, 0.375}
n2={0, 0.667, 0.333 }

The prediction of class a by ni seems less reliable than prediction of class b by n.. However,
node nl has 40 examples supporting the prediction whereas n2 has only 2 examples.
Consequently, in this case it seems that the absolute values provide more information.
In either case, in some situations it may be convenient to perform a Laplace smoothing of

these vectors. This can be enabled through the following option:

% - Combi nati on snoot hi ng. Use snoot hi ng before comnbi nati on

% onbi nati on snoot hi ng=t rue

conbi nati on snoot hi ng=f al se

The vectors can be left as they are originally or they can be modified in several ways, so
affecting the resulting fusion.

% - Conbi nation vector method: how to derive the vector

conbi nati on vector nethod=origi na

% onbi nati on vector net hod=good | oser

% onbi nati on vector method=bad | oser

%onbi nati on vector method=difference

%onbi nati on vector nethod=ngjority

%onbi nati on vector nmethod=squared

The exact definition of these transformations is as follows. Consider a vector of values (either
absolute or relative) that each classifier assigns for each class and example, v j(x). The
transformations are:

original: v, (x) =V, ;(X)
difference: v/, (x) =V, (X)- a Vi (%)
it

good loser: V'k,j (X) = é Vi (X) if :argmax(vk,j (x)) and 0 otherwise.
j

bad loser: v/, | (X) =V, ,(x) if j=argmax(v,(x)) and 0 otherwise.

17

majority: v, (x) =1 if :argmax(vk,j(x)) and 0 otherwise.
squared: v, ; (x) = [vk‘j (x)]2
Let us illustrate the previous transformation with an example. Consider four classifiers and
three classes with the following values:
vy, j(x)={ 40, 10, 30 }
Vo i(xX)={ 7, 2,10}
vsj(x)={ 0,10, 1}
Vs j(xX)={ 5, 6, 3}
These transformations would convert the initial vectors into these:
Original:
vy, j(x)={ 40, 10, 30 }
Vo, i(xX)={ 7, 2,10}
vs j(x)={ 0,10, 1}
Ve j(X)={ 5, 6, 3}
Difference:
vj(X)={ 0, -60,-30}
Vzuj(X): { -5, -15, l}
v j(X)={-11, 9, -9}
Vs j(X)={ -4, -2, -8}
Good loser:
vy, j(x)={80, 0, 0}
Vo, i(x)={ 0, 0,19}
vsj(x)={ 0, 11, 0}
V4 j(X)={ 0, 14, 0}
Bad loser:
vy,j(x)={40, 0, 0}
v2,jx)={ 0, 0,10}
vs j(x)={ 0,10, 0}

Vs j(x)={ 0, 6, 0}
Majority:

vyix)={ 1, 0, 0}

Vo, i(x)={ 0, 0, 1}

V3”j(X):{ 0, l, O}

vai(X)={ 0, 1, 0}
Squared:

v1,j(x)={ 1600, 100, 900 }
v2,i(X)={ 49, 4,100}
vs j(x)={ 0,100, 1}
vaj(x)={ 25, 36, 9}
Finally, with these vectors and each time two or more OR-nodes exist at the same level the

following fusion methods can be chosen:
% - Conbi nation fusion nethod: how to conbine the vectors

18

%onbi nati on fusion met hod=sum
%onbi nati on fusion met hod=prod
%onbi nati on fusion method=arithnmean
% onbi nati on fusion nmet hod=geonean
conbi nati on fusion nmet hod=max

%onbi nati on fusion nmethod=mn
%onbi nati on fusion met hod=nmedi an

The meaning of these fusion strategies can be explained by the following definitions of fusion
strategies that convert the K classifiers vectors into one combined vector W(x):

sum: W, (X) :ék_ V. (X)
arithmetic mean: W (x) = § v, , () /K

k
product: W, (x) = 6 Vvi.; (¥)

k
geometric mean: W, (¥) = O Vi (¥)
k

maximum: W, (x) = mkax(vk‘j (X))
minimum: w, (x) :mkin(vkyj(x))
median: W, (x) = me?ian(vm (x))

An important remark to mull over in shared ensembles is that the fusion points may be
different. For instance, different predictions can be compared at the bottom of the tree where or-
nodes appear whereas this can also happen at the top of the multi-tree. Consequently, a great
difference in combined prediction may come out between the sum and the average methods, for
instance.

Let us illustrate the application of these fusion methods with the previous example. The
four original vectors were:

vy,j(x)= {40, 10,30}
Vo i(X)={ 7, 2,10}
V3”j(X):{ 0, 10, 1}
Vs j(X)={ 5, 6, 3}
Supposing they are at the same OR level, then we have the following fusioned vectors:

sum: {52,28,44} ® a
arithmean: {13, 7, 11} ® a
product: {0,1200,900}® b
geomean: {0,5.89,548}® b
maximum: {40,10,30} ® a
minimum: {0, 2, 1} ®b
median: {6, 8 65} ®b

On the right we see which would be the class predicted if we would compute the maximum
value of the resulting fusion vector, which is made at the top of the tree.

We have seen transformation + fusion. Some combination give better results than other or
correspond to classical combination politics. For instance, “majority + sum” would give the

19

typical majority selection. According to the results in [13][14][15], the best method is “absolute +
no smoothing + original + max”, although this may depend on the examples.

Another thing to take into account is that because of the very nature of combination
(combination avoids overfitting and hence improves accuracy and other quality measures) ,
pruning is not beneficial. Consequently, pruning is not recommended to be used for
combination.

For this reason, since sometimes we may want post-pruning for the best single solution but
not for the combination, there exists another option that disables post-pruning for combination
despite it can be enabled for single solutions. This is obtained through the following option:

% - All ow post-pruning in conbination (if post-prune enabl ed)
%ost - pruning in conbination=yes
post - pruning in conbinati on=no

Unless the option for combination is “no combination”, SMILES always gives statistics for the
combination and statistics for the best single solution. In this way, SMILES tries to give the
usually better accuracy results of the combination method jointly with the intelligible results of
a single best solution.

3.7 Showing Several Solutions

Up to now we have always produced one best solution from the multi-tree (apart from the
combination results that do not provide a comprehensible solution). However, there are some
situations where it may be interesting to generate more than one solution. For this, we can
determine the number of solutions output in the options file:

% -k best: how many solutions are generated in the nultitree

k best nunber of sol utions=3

The interest in obtaining more than one solution is maintained only if the solutions are different
between them. In order to ensure that the solutions are quite different and still are good,
SMILES has several “k-best” methods.

% - sel ect k best nethod

%el ect k best=k-best |less visited

Y%sel ect k best=k-best |ess visited plus

sel ect k best=k-best less visited then different conponents

%sel ect k best=k-best different conponents

%el ect k best =k-best random

The previous methods are based on two main ideas: to avoid the use of the same branches that
have been output for other solution (this is possible if several splits have been opened for an OR
node), and secondly to avoid the use of the same partitions and attributes (herewith called
components) in several solutions. In other words, these two ideas try to avoid repeated parts of
solutions. For the second idea, a component matrix is used.

A component matrix describes in a very concise way which components take part in a
decision tree. For instance, if we have 3 possible partitions and 4 attributes then a component
matrix could be like this:

At0 | Atl | At2 | At3
Partl 1.5 0 0.5 0.5
Part2 0
Part3 0 0 0 0

o
o
o

20

A component matrix ignores the values of the conditions. For instance, the previous matrix
could represent the following tree:

f(X0, X1, X2, X3) = R :- XO=overcast.

f(X0, X1, X2, X3) = R :- X0=rain, X3=weak.

f(X0, X1, X2, X3) = R :- X0=rain, X3=strong.

f(X0, X1, X2, X3) = R :- XO0=sunny, X2=high.

f (X0, X1, X2, X3) = R :- XO0=sunny, X2=normal .

The values are obtained depending on the times an attribute is used and the depth at which it is
used. For instance, 1.5 corresponds to 3/2 because the split with X0 has three children at depth
1 (this gives the value 21 in the denominator). The value 0.5 corresponds to 2/4 because the split
with X3 is used in two splits and at depth 2 (this gives the value 22 in the denominator).

SMILES allows the user to see the component matrix of each solution, just by changing the
corresponding option in the options file:
% - show conponent nmatrix of solutions
%show sol uti ons conponent s=no show
show sol uti ons conmponent s=show

As we have said the component matrix is used for obtaining different solutions. For this reason,
a reference component matrix has to be updated in order to reflect what kind of partitions and
attributes have to be avoided. There are three different ways of how to generate this component
matrix between several solutions:

% -sel ect k best conponents generation

sel ect k best conponents generati on=conponent accunul ate

%sel ect k best conponents generation=conponent random generated from
start

%sel ect k best conponents generation=conponent random generated from
second

More detailed explanation on how this works can be shown in [27].

Let us show an example of how SMILES produces several solutions. If we use the
playtennis dataset , 100 open or-nodes in the multi-tree, the “component random generated
from second options” and “3 k-best solutions”, we obtain the following output:

**** SM LES v. 2.3.1 (Rel ease Date: 23-August-2002) ****

ftrain: sanples/playt.train
ftest: sanples/playt.test
fcost:

ftestcost:

Training Set: "sanples/playt.train"
No. of Attributes: 4

Cardinality: 14 exanples

Class: 0. Distribution: 9

Class: 1. Distribution: 5

Valid options.

Creating the nultitree.

Learni ng begins. ..
Tree #100 | earned of 100

21

MeanDept h of Second Solution Start Positions: 1.77778

The test set: "sanples/playt.test"” will be used to evaluate the results
Predicting and preparing statistics

Showi ng first the results of the conbination nmethod of all branches:

COMVBI NATI ON RESULTS:

Statistics over test set of |ength: 15:

Rel ative Accuracy: 1

AUC (exanple by exanple) in Hand & Till's way: 1

Filling new test probabilities of the |eaves of the nulti-tree with the
Test set

15 exanpl es done.

Let us select the 3 best trees.
From 3 seeked, 3 solutions have been found.
Showi ng their properties

SCLUTION O: 5 rules
Conponent Matri x:
P\R co C1 C2 cC3

COo 1.5 0/ 0.5 0.5
c1 0 0| 0| 0|
c2 o 0| 0| 0|

Statistics over test set of |ength: 15:

Rel ative Accuracy: 1
AUC (exanple by exanple) in Hand & Till's way: 1

Let us show the solution: O

f(X0, X1, X2, X3) = R :- XO=overcast. [class: yes]

f (X0, X1, X2, X3) = R:- XO=rain, X3=weak. [class: yes]

f (X0, X1, X2, X3) R :- XO=rain, X3=strong. [class: no]

f (X0, X1, X2, X3) R :- XO=sunny, X2=high. [class: no]
f(X0, X1, X2, X3) = R :- XO=sunny, X2=normal. [class: yes]

SOLUTION 1: 10 rules
Conponent Matri x:
P\R co C1 C2 cC3

C 0 1.75| 0.75] o] 1.75|
c1i1 0]] 0l
c2 0]] 0l

Statistics over test set of length: 15:

22

Rel ative Accuracy: 1
AUC (exanple by exanple) in Hand & Till's way: 1
Let us show the solution: 1

f(X0, X1, X2, X3) = R :- XO=overcast, X3=weak. [class: yes]

f(X0, X1, X2, X3) = R :- XO=rain, X3=weak. [class: yes]

f (X0, X1, X2, X3) = R :- XO=sunny, Xl=hot, X3=weak. [class: no]
f(X0, X1, X2, X3) = R :- XO=sunny, Xl=mld, X3=weak. [class: no]

f (X0, X1, X2, X3) = R :- XO=sunny, Xl=cool, X3=weak. [class: yes]
f(X0, X1, X2, X3) = R :- XO=overcast, X3=strong. [class: yes]

f(X0, X1, X2, X3) = R :- XO=rain, X3=strong. [class: no]

f(X0, X1, X2, X3) = R :- XO=sunny, Xl=hot, X3=strong. [class: no]

f (X0, X1, X2, X3) = R :- XO=sunny, Xl=mld, X3=strong. [class: yes]
f (X0, X1, X2, X3) = R :- XO=sunny, Xl=cool, X3=strong. [class: yes]

SOLUTION 2: 8 rules
Conponent Matri x:
P\R cCo0o C1 cC2 CcC3g

C 01. 125] 0| 1. 375/ 0. 875|
c1 o 0| 0| 0|
c2 o 0| 0| 0|

Statistics over test set of length: 15:

Rel ative Accuracy: 1
AUC (exanple by exanple) in Hand & Till's way: 1

Let us show the solution: 2

f (X0, X1, X2, X3) = R :- XO=overcast, X2=high. [class: yes]

f(X0, X1, X2, X3) = R :- XO=rain, X2=high, X3=weak. [class: yes]

f(X0, X1, X2, X3) = R :- XO=rain, X2=high, X3=strong. [class: no]

f(X0, X1, X2, X3) = R :- XO0=sunny, X2=high. [class: no]

f(X0, X1, X2, X3) = R:- X2=nornmal, X3=weak. [class: yes]

f (X0, X1, X2, X3) = R :- XO=overcast, X2=nornml, X3=strong. [class: yes]
f(X0, X1, X2, X3) = R:- XO=rain, X2=normal, X3=strong. [class: no]
f(X0, X1, X2, X3) = R :- XO=sunny, X2=normal, X3=strong. [class: yes]

END OF RESULTS

Cal cul ating mean differences between sol utions
Mean Di screpancy: 0.133333

Mean Syntactic Euclidean Distance: 1.49475
Mean Syntactic Manhattan Di stance: 2.66667
Mean Accuracy: 0.933333

Maxi mum Accuracy: 1

Test dataset destroyed successfully
The nultitree has been destroyed successfully

23

====> Time used (for learning): 0.03 secs.
**** Smpoth end of SM LES execution ****

Three different solutions have been obtained, which have different components. At the end of
the results, SMILES shows some statistics: mean discrepancy indicates the mean semantic
difference between the solutions (i.e. the percentage of examples in which their predictions
differ), two different syntactic distances which measure the difference in components between
the solutions, the mean and maximum accuracy from all the solutions. More detailed
explanation on these measures can be found in [27].

3.8 Validation Set and Cross-validation

A validation set is a subset of the training set that is not used for constructing the model, but for
selecting between or combining the constructed models. A typical use of validation sets is the
technique known as cross-validation.

In our case, if the training set is large enough we can “reserve” some part of it and use just a
portion of it for training (we will call it subtraining set). This is especially useful with our
multitree paradigm, since we can grow the multitree using the subtraining set as always, and
then use the remaining dataset (the validation set) to select a good solution or combining
between different solutions.

At the present moment, this option can be selected as follows:

% -sanpl e training: whether or not a subset of the trainset is to be used
Y%sanpl e trai ning set=no sanple training set
sanpl e training set=sanple training set

Note that if the *“cross coverage” option is selected as the option for the best tree selection or
““cross coverage combination” is selected, then the sample training must be activated.

Finally, the proportion (from 0 to 1) of the training set that is devoted for learning is
specified through the following option:
% -sanple training set portion: the portion of the trainset to be sanpled
sanpl e training set proportion=0.05

In the previous case, 5% of the data would be used for training and 95% of the data would be
used for validation.

The use of a validation test can also be quite useful when the number of examples is too
large to be handled by SMILES with a reasonable consumption of resources. Note that the
sample is random and the rest is used for selection/combination. Consequently, this is better
than making a manual sample before feeding the data to SMILES.

Another important feature of SMILES is cross-validation. Cross-validation is a powerful
method to evaluate the quality of a classifier in a more reliable way. Cross-validation is based
on the idea of automatically splitting the whole dataset into two parts: training set and test set.
However, this split can be done randomly several times and obtain the average of all the results.
This can give a much more accurate result than just evaluating one split (either manually done
into training set file and test set file, or automatically).

In order to do cross-validation, the system should be supplied with a training set that
contains all the data. In the smiles distribution, this kind of files can be found in the samples
directory with names such as “/samples/monk2.all”.

The options must be chosen in the following way to do cross-validation:

% -sanpl e training: whether or not using a subset of the training set
sanpl e training set=no sanple training set

24

%sanpl e training set=sanple training set

%

% -sanple training set portion: the proportion of the training set to be
sanpl ed

sanpl e training set proportion=0.50

%

% - cross validation: use a different test set file for results or split
the training set

%ross validation=use separate test set

cross validation=cross validation

%ross validation=kfold cross validation

%ross validation=repeated kfold cross validation

%

% - how many tinmes (if cross validation) the split has to be done
k fold of cross validation=10

%

% - how many tines (if cross validation) we repeat the experinent
repeat kfold=1

Note that the “sample training” option must not be enabled. The “sample training set portion”,
however, is necessary and tells SMILES that the input data file is going to be split into two
datasets (training and test) of equal size (50% and 50%). The next option is the key one: “cross-
validation” that must be selected “cross validation”, in order to make SMILES not expect the
test set, and let it extract its test set. Finally, the last option “k fold of cross validation” selects
the times that different splits have to be done. Note that each fold performs a different and
random split of the initial dataset into two different sets (training set and dataset) and learns the
multitree, with all the associated process.

For instance, if we use the file “samples/monks2.all” with MSE split and 100 trees, then we
would have 10 runs of the algorithm. At the end, a summarised listing of the 10 runs is included
and, ultimately, the mean and standard deviation of these 10 runs are computed, giving a
portrait as follows:

Mean Results:
N. of susp. nodes explored : 100 +/ - 0
Solutions in the Multitree : 6.31864e+09 +/- 7.02266e+09
Results for 1st Sol ution:

Accuracy of 1st Sol ution 0. 701667 +/ - 0. 0541203
AUC (by nodes) of 1st Sol : 0. 710585 +/ - 0. 0698885
Mean # Rul es : 286.9

Resul ts for Conbination:

Accuracy of Conbination : 0. 768333 +/ - 0.0677914
AUC of Combi nati on : 0. 768977 +/ - 0. 0550205
Results for Best Solution:

Accuracy of Best 0. 693333 +/- 0. 073367

Mean # Rul es : 275.2

Accuracy class 0 0. 756506 +/ - 0. 0753576
Accuracy class 1 0. 566578 +/ - 0. 0963091
AUC by Hand 0. 680732 +/ - 0. 0821538
MSE 0. 719583 +/ - 0. 0714988
LogLoss 0. 740103 +/ - 0. 0827415
Ti me Used : 0.273 +/ - 0. 0498999

25

Mean results are computed for a lot of measures. First some statistics on the multitree are
shown. Then, the mean results of the first solution are shown: its accuracy and its AUC (Area
Under the ROC Curve), as well as the number of rules. Secondly, the same results for
combination are shown (except, logically, the number of rules). Finally, for the best solution
further measures are shown. The AUC, MSE and LogLoss measures will be discussed later. In
the end the mean time used for each iteration is shown.

3.9 k-fold Cross-Validation and repeated k-fold Cross-Validation

K-fold Cross-Validation is the usual way to use cross-validation. The idea is to use all the
possible combinations of a partition. For instance if k=10, we can partition the dataset into ten
parts. Then, we can select ten different combinations of 9 parts for the training set and 1 part for
the test set.

The way to use k-fold Cross-Validation in SMILES is quite simple:

% -sanpl e training: whether or not a subset of the training set is to be
used

Y%sanpl e trai ning set=sanple training set

%

% -sanple training set portion: the proportion of the training set to be
sanpl ed

sanpl e training set proportion=0.90

%

% - cross validation: use a different test set file for results or split
the training set

cross validation=repeated kfold cross validation

%

% - how many times (if cross validation) the split has to be done
k fold of cross validation=10

%

% - how many tines (if cross validation) we repeat the experinment
repeat kfold=1

The “sample training set proportion” (lets call it p) tells which proportion is used for training, as
always. The difference is that now, each iteration a different subset of the same partition is used.
Note that the meaning of any combination of p and k is clear when (1-p)*k <= 1. Other
combinations are implementation dependent.

Finally, in some cases 10-fold validation could not give a quite reliable information about
the quality of a hypothesis. A good idea is to augment k, even to match the number of
examples, known as all-to-1 cross-validation.

Another way to augment reliability of the means computed by SMILES is the use of
repeated experiments. This option is called “repeated kfold cross validation”. For instance, if we
use the previous options with these modifications:

% - cross validation: use a different test set file for results or split
the training set

cross validation=repeated kfold cross validation
% - how many tines (if cross validation) we repeat the experinment
repeat kf ol d=20

Then the experiment will be repeated 20 times, i.e. we make 20 partitions and exploit each
combination of each partition. In the previous case, we would have 20x10= 200 iterations, from

26

which the means are computed. For instance, the following output shows the results for
monks2 with MSE split and 100 trees, and 10x10= 100 runs of the algorithm.
Mean Results:
N. of susp. nodes explored : 100 +/ - 0
Solutions in the Multitree : 8.07935e+10 +/- 4.18201e+11
Results for 1st Sol ution:

Accuracy of 1st Sol ution : 0. 683 +/ - 0. 0511364
AUC (by nodes) of 1st Sol : 0. 666375 +/ - 0. 0615097
Mean # Rul es : 282.79
Resul ts for Conbi nation:
Accuracy of Conbination : 0. 750167 +/ - 0. 0583391
AUC of Combi nati on : 0. 741057 +/ - 0. 0611061
Results for Best Sol ution:
Accuracy of Best : 0.692 +/ - 0. 0524634
Mean # Rul es : 270.71
Accuracy class 0 : 0. 755819 +/ - 0. 0685639
Accuracy class 1 0. 576554 +/ - 0. 0986817
AUC by Hand 0. 669107 +/ - 0. 0568279
MSE 0.712333 +/ - 0. 0493715
LogLoss 0. 743794 +/ - 0. 0519433
Ti me Used : 0.2756 +/ - 0. 0591577

As we can see the deviations are now lower than for just 10 cross-validation.

When small datasets are used or low proportions are used for cross-validation, there is a
higher possibility than in one partition of the dataset one class wouldn’t appear in any example
of the validation test dataset. In this case, the evaluation results would not be as accurate, as if
this happens. In order to avoid this there is simple (although inefficient) way: if a partition
leaves the validation test dataset without examples of any class, than the partition is repeated.
This can be enabled through the following options:

%-allow (if cross validation) a test dataset with one class without
exanpl es

%l |1 ow test without one cl ass=yes
all ow test w thout one class=no

3.10 Expected Error and Smoothing Options

The current system includes several ways to compute the expected error. This value can be used
or not depending on other options, especially if expected error pre-pruning is active or some
other criterion is based on it (split criterion, best tree criterion).

% - Expected error nmethod: several ways to conpute expected error

%expected error nmet hod=no conpute

expected error nethod=relative frequency with majority class

%expected error nethod=relative frequency with frequency probability

%expected error method=cost with mnimum cl ass

%expected error nethod=cost with frequency probability

%expected error nethod=cost with cost probability

Section 6 includes some details about these options.

The relative frequency used for computing the expected error can be smoothed. Different
smoothing criteria can be selected:

27

smoot hi ng net hod=no snoot hi ng

%snoot hi ng net hod=Il apl ace

%snoot hi ng nmet hod=k- esti nmat e

%snoot hi ng met hod=m esti mat e

%snoot hi ng met hod=m esti mate uniform

Smoothing can also be used for assigning the majority class when using cost information, as we
will see in the next subsection, and it can be used in splitting criteria, as we describe next.

The cardinalities of each node in a split are taken into account in some splitting criteria. The

derived probabilities can be smoothed in different ways:

% -frequency error snoothing:use smoothing or not for node probabilities

inasplit

node snoot hi ng met hod=no snoot hi ng

%ode snoot hi ng net hod=l apl ace

%ode snoot hi ng nmet hod=k-estimate

%mode snoot hi ng nmet hod=m estimate

%mode snoot hi ng net hod=m estinmate uni form

According to our experiments, this smoothing does not improve in general.

Similarly, many splitting criteria are based on the probabilities of the nodes under the split.
This probability can be computed from the frequency directly or it can be computed in other
more sophisticated ways. These are the current options:

% -Probability in splitting criteria

probability in splitting criteria=from frequency no snoot hing

Y%probability in splitting criteria=fromfrequency snoot hi ng

Y%probability in splitting criteria=from costs

Y%robability in splitting criteria=fromfrequency with stratification

Y%robability in splitting criteria=from frequency with stratification no

snoot hi ng
None of these options is relevant to the Descriptive MDL Splitting Criterion, because this
method does not use probabilities. For the Local ROC Splitting Criterion only the two first
probabilities (with and without smoothing) can be used and are effective.

Frequency smoothing is especially recommended for CART and DKM splitting criteria.
Both of them do not work well for more than two classes. For more than two classes, if you
want to use a similar criterion, use MGINI.

3.11 Cost-sensitive and ROC Analysis Features

In many previous sections we have seen some options related to costs. In this subsection we are
going to briefly explain cost-sensitive learning [9] and ROC analysis [38] and which features
SMILES provides around these items.

Accuracy (or error), i.e., percentage of instances that are correctly classified (respectively
incorrectly classified) has been traditionally used as a measure of the quality of classifiers.
However, in most situations, not every misclassification has the same consequences. In fact, it is
usually the case that misclassifications of minority classes into majority classes (e.g. predicting
that a system is safe when it is not) have greater costs than misclassifications of majority classes
into minority classes (e.g. predicting that a system is not safe when it actually is). Obviously, the
costs of each misclassification are problem dependent, but it is almost never the case that they
would be uniform for a single problem. Consequently, accuracy is not generally the best way to
evaluate the quality of a classifier or a learning algorithm.

28

Although there can be other kinds of cost associated with predictions [63] (e.g. test cost that
we will address later on), the most relevant ones are misclassification costs, i.e., the cost of
classifying an instance of class a into class b. All these misclassification costs for a specific
problem can be arranged in a c-dimensional matrix, with ¢ being the number of classes. This
matrix is called a cost matrix.

A Cost Matrix (also known as Loss Matrix) indicates the costs for correct and incorrect
classifications. An example of a Cost Matrix C for three classes {a, b, ¢} might be as follows:

Actual
a b C
a -2.5 4 2
Predicted b 2.1 -3.5 0
c 1.2 1.3 -4

This example shows the usual portrait, the diagonal of the matrix shows the costs for correct
classification (-2.5, -3.5, -4). These values are usually negative or zero, because a correct
classification could have benefits instead of costs. The other values represent different cases of
misclassification. For instance, the value 2.1 in cell (b,a) means that classifying incorrectly an ‘a’
instance as a ‘b’ instance has a cost of 2.1.

The use of cost matrices for the generation of classifiers that minimise the resulting
prediction cost instead of the prediction error has been incorporated in a few aspects of a few
learning systems by changing some criteria or measures used by these methods [43][5][35].
Nonetheless, it is also common to use a learning system that is not cost-sensitive and to modify
the class distribution of the training data set to obtain a classifier that adjusts itself to a specific
cost matrix and the class distribution of the test set if known [37][17][9].

However, a change of class distribution is usually done by stratification (or re-balancing),
i.e., either by under-sampling or by over-sampling. Stratification presents some problems
though (lost of data or redundant data).

The usefulness of cost-sensitive learning does not only apply when the cost matrix is known
a priori. If the cost matrix is not known, one or many classifiers can be generated in order to
behave well in the widest range of circumstances or contexts as possible. The Receiver
Operating Characteristic (ROC) analysis [48][61] provides tools to select a set of classifiers that
would behave optimally and reject some other useless classifiers.

Finally, given a classifier, it is usual that its accuracy could be lower than 100%, let us say,
for instance, 87,5%. In this case, it may be interesting to know to which class the misclassified
12,5% goes and how this error is distributed. A Confusion Matrix is a very practical and
intuitive way of seeing such a distribution. Given 100 test examples and a classifier, an example
of a Confusion Matrix M for three classes {a, b, c} might be as follows:

Actual
a b c
a 20 2
Predicted b 0 30 3
c 0 2 40

This matrix is understood as follows. From the hundred examples, 20 were of class ‘a’ and all
were correctly classified, 34 were of class ‘b’ from which 30 were correctly classified as ‘b’, 2
misclassified as ‘a’ and 2 misclassified as ‘c’. Finally, 46 were of class ‘c’ from which 40 were
correctly classified as ‘c’, 3 misclassified as ‘a’ and 3 misclassified as ‘b’. The confusion matrix
can be shown by SMILES if costs are active or by modifying an option (see section 3.17).

29

From the cost matrix and the confusion matrix it is very easy to compute the cost of a
classifier for a given dataset, just as the 1 by 1 matrix product, given a Resulting Matrix:
R(i.j) = M(i.j) - C(i.j)
Our system SMILES incorporates many features that can handle cost information, either given
as class weights or as a cost matrix.

The first thing to tell SMILES is how the cost matrix is going to be specified. This once again

can be done through the option file:

% - wei ghts nethod: how the cost matrix is constructed

wei ght met hod=no costs

%nei ght met hod=uni f or m wei ght's

%wei ght net hod=i nverse frequency wei ghts

%wei ght nethod=wei ghts fromfile

%wei ght nethod=costs from matri x

The first three options do not need any additional information. The next two require some
information, either a line in the training set file or a separate cost matrix file.

The “no costs” option is the default option and it is equivalent to the use of “uniform
weights”, which means a matrix with all equal costs. The difference is just in efficiency, since
the first option does not force SMILES to do any cost calculation.

The third option generates class weights according to the class distribution. For instance, if
a training set of three classes has distribution (500, 2000, 2500) , then the following weights are
generated (¢/500, ¢/2000, ¢/2500) where ¢ is a parameter that can be modified through program
(hardwired option). This inverse class distribution assigned weights try to give more relevance
to the classes with less cardinality in order to “compensate” the dataset.

As we have discussed before, accuracy is frequently a much too simplified measure of the
quality of a classifier. For instance, given a dataset whose distribution of classes is (p.= 0.85, py=
0.1, p= 0.05), i.e., most of the examples are of the class ‘a’, a simple classifier predicting
everything into class ‘a’ would have 85% of accuracy.

The weight can also be read from the training file if the option “weights from file” is chosen.
Then SMILES would look for a line as follows:

I VEI GHTS: yes=1, no=2
as we discussed in section 3.1.

For this two latter options, we have talked about weights, whereas we talked about costs
elsewhere. How is a weight vector converted into a cost matrix?

For instance, from this weight vector:

a b C
Weights | 3 | 5 | 2 |
If we could use over-sampling with these weights, then we would have that the frequency of
class ‘a’ would be multiplied by 3/2, and the frequency of class ‘b’ by 5/2, by conveniently
duplicating some of the examples.
It is easy to show that the corresponding cost matrix to this over-sampling would be:

Actual
a b C
a -3 5 2
Predicted b 3 -5 2
3 5 -2

30

Moreover, for two classes it is easy to show (see [27]) that the resulting assignments will be
exactly the same that if we put 0s on the diagonal.

Finally, the easiest way to create a matrix is to set the *“costs from matrix” option. In this
case, SMILES will look for a cost file specified in the command line (the third file), as the usage
shows:

USACE:
.Ismles file.train [file.test] [file.cost] [file.testcost]

Otherwise this file will be ignored. If we do not want to specify the test set, we just place the
symbol “-*. For instance, the following command line, would just look for a train set file and a
cost file.

./smiles samples/liver.all - liver.cost

The format of the file is just a list of real numbers separated by commas. The last one must also
have a comma, such in the following example:
% Matrix 4x4 for cars problem

0, 3.2, 1.1, 4.3,
2.5, 0, 10.4, 8.2,
3.2, 17.1, O, 0.1,
2.3, 8.2, 4.1, 0,

As always, lines beginning with ‘%’ are ignored.

Now that we know how to construct the cost matrix in several ways, what can we do with
it? The first and most effective thing to do is to change the way in which the classes are assigned
to each node. Instead of assigning the majority class (the default option), i.e. the most frequent
class, we can label a node with the class that minimises the cost. The possible ways are as follows:

% -cl ass selection nmethod: how the class of a |eaf is assigned
cl ass sel ection nethod=mgjority class

%! ass sel ecti on met hod=m ni mrum cost sel ection

%! ass sel ecti on met hod=m ni mrum cost cl ass without snoothing
%! ass sel ection nethod=stratification class

%l ass sel ection nethod=stratification wthout snpothing

The “minimum cost selection” is the option that assigns the class taking into account the costs,
i.e., if we have a leaf vector V(i) then we look for the class i such that:
Assigned Class = argming C(i, j) ¥/ (j)
i .
J

For instance, if a leaf node has V = {20, 10, 22} and we have the following cost matrix:

Actual
a b c
a 0 10 5
Predicted b 1 0 2
5 3 0

If we assign class a to the node we have a cost of 20-0+10-10+22-5=210. If we assign class b to the
node we have a cost of 20-1+10:0+22.2=64. If we assign class ¢ to the node we have a cost of
20:5+10:3+22:0=130. It turns out that despite that c is the majority class, b is the less costly class.

Note that when pruning is not active all the leaf nodes are pure and hence, the options
“minimum cost selection” and “minimum cost class without smoothing” are equal to the
majority class provided the cost matrix is normalised (all values are positive and only 0s in the

31

diagonal). The stratification methods are usually worse because they use a simplified version of
the cost matrix. They are useful for comparing with other methods and are not recommended.

The class selection method is the most important option in the sense that it has a very
effective impact on cost minimisation. Other less effective (or even with no provable good
effects) are based on modifying some criteria used during learning.

One first idea that turned out to be poorly successful was to modify the splitting criteria
taking costs into account. Since most of them are based on probabilities, the idea was to modify
these probabilities taking cost into account. Although we saw the probability in the splitting
criteria before, the three last possibilities can now be understood as ways to compute this
probability based on expected costs instead of expected frequencies.

% -Probability in splitting criteria
probability in splitting criteria=fromfrequency no snoothing
Y%probability in splitting criteria=fromfrequency snoot hi ng
Y%probability in splitting criteria=from costs
%robability in splitting criteria=fromfrequency with stratification
Y%robability in splitting criteria=from frequency wth stratification
with stratification
In the case that the third one is chosen (“from costs”), then there are two ways of deriving this
probability, that can be selected through the option file:
% - cost derived probability method
cost derived probability=direct
%ost derived probability=wi th snpothing

These options are explained in Section 6.

There are also cost-sensitive options in how to compute the expected error, which would
turn into an expected cost. This would be used in any other option that uses expected error.
Costs can also be used in “multitree solution combination” options.

Finally, there are some facilities related to ROC analysis. These are possible for problems
with 2 classes (in the following sections we will see measures that are applicable for more than 2
classes). A ROC plot of several points is a convex hull as illustrated in the following figure:

1.0 A
[} D
c B
g =
() 0.6
=
= E
g -+
o
) C,
>
|_

0.0

0.0 0.3 1.0

False Positive Rate

Example of a ROC curve

First of all we can compute and show the ROC points obtained by the optimal assignments of a
classifier. Note that these points are obtained from a single “soft” classifier, not as usual, when
we obtain a ROC curve from many classifiers. These points represent different assignments of
the same trees, that, in fact, give different classifiers:

32

% - conput e ROC points
conput e ROC poi nt s=no
%conput e ROC poi nt s=yes
%

% - show ROC points
show ROC poi nt s=no
%show ROC poi nt s=yes

From these points we can draw and compute the area by using these options:
% - conmpute ROC area
comput e RCC ar ea=no
%onput e ROC area=yes
%
% - generate ROCC curve file
%generate ROC curve file=no
generate ROC curve fil e=yes

The outputs of each solution are generated into a postscript file called “ROCtstN.ps” for the
training set, “ROCtotN.ps” when the training set is used for ordering the nodes and the test set
to compute the leaves probabilities, and “ROCtstN.ps” for the test set, where N is the number of
the solution. If there is only one solution, then N is just 0.

These ROC features are thoroughly explained in [24].

3.12 AUC Evaluation

We have just described that different curves can be output: wrt. the training set, using the
training set for the ordering and the test set to compute the leaves probabilities and the entire
curve with the test set. From these curves we can compute the area under the ROC curve, which
is very useful to estimate the quality of a classifier. In particular the AUC measures used and
output by SMILES are:

AUCO: the curve is constructed with the order derived from the training set and
with the node distributions given by the training set. If pruning is not active, it is
usually 1. Consequently this measure is not much too informative.

AUC1.: the curve is constructed with the order derived from the test set and with
the node distributions given by the test set. This way to evaluate a classifier seems
cheating, because the order is derived from the test, which could not be performed
in general. What this measure tells is that if this value is high, there will be good
labellings of the tree that could obtain high accuracies for different cost matrices,
but it does not tell that we are necessarily going to be able to use these optimal
labellings.

AUC?2: the curve is constructed with the order derived from the training set and
with the node distributions given by the test set. This is a very useful measure.
What this measure tells is that if this value is high, there will be good labellings of
the tree that could obtain high accuracies for different cost matrices, and since we
are using the order from the training set, we can know that order and we will be
able to use these optimal labellings.

AUC4 (1P-AUC): it is a simplification of AUC2 that only uses one point for
computing the curve. The interest of this measure is that can be used for more than
2 classes (currently it is not implemented for more than 2 classes).

33

All the AUC measures have singular values when FPR=0 or TPR=0. We have assumed the
following assignments. If FPR=0 then AUC=TPR, and if TPR=0 then AUC=FPR.

Theoretically, AUC1<AUC0, AUC2<AUC1 and AUC4<AUCL. These measures are shown
with cross-validation when ROC options are active (option “compute ROC points=yes”). For
monks2, for instance, this could be a possible result (only the excerpt for the best solution is

shown):
Results for Best Sol ution:

Accuracy of Best : 0.692 +/- 0. 0524634
Mean # Rul es : 270.71

Accuracy class 0 : 0. 755819 +/ - 0. 0685639
Accuracy class 1 0.576554 +/ - 0. 0986817
AUCO (train) 0.185172 +/ - 0.014343
AUCL (test) 0.991017 +/ - 0. 00788894
AUC2 (train-order + test) 0. 669008 +/ - 0. 0594674
AUCA (train-1-lab + test) 0. 666187 +/ - 0. 0528094
AUC by Hand 0. 669107 +/ - 0. 0568279
MSE 0.712333 +/ - 0. 0493715
LoglLoss 0. 743794 +/ - 0. 0519433

If possible, AUC2 should be used instead of accuracy to evaluate classifiers when class
distributions or costs might change when the model were to be applied. This is the one that is
shown by default (computed in Hand and Till’s way) and shown as “AUC by Hand”. AUC by
Hand and AUC2 are not exactly the same because of the ordering functions. When two or more
nodes have the same ratio, then their precise order is not defined, and hence small variations
can occur if both methods order them differently (this is solved since version 2.1.7) he next
section we better explain how AUC?2 is computed in Hand and Till’s way.

3.13 Multi-class AUC Evaluation. AUCH, MSE and LogLoss Measures

The problem of previous AUC measures and ROC analysis is that they are only applicable to
problems with two classes and not valid for multi-class problems. Only the 1-point AUC
measure is extensible. However this measure does not take into account the possible labelling
that can be done in a decision tree, turning it into a soft classifier.

Fortunately there are some extensions and approximations of the AUC measure for more
than two classes. The first one is the Hand and Till M Function (that we will call AUCH), which
is the most popular extension, and the other two are traditional measures adapted for this
purpose. All of them try to consider that not all the errors have the same consequences and that
more compensated solutions are preferable from those that would be selected by using
accuracy.

3.13.1 Hand and Till M Function

Hand and Till present a generalisation of a particular AUC measure [30]. It has been shown that
for two dimensions the AUC measure is equivalent to the GINI measure (not that the GINI
measure is not the GINI splitting criterion used in the CART algorithm).

The idea is that in the AUC measure for 2 dimensions, they use the estimated probabilities
of an example x; pertaining to the class 0, denoted by po(-), (estimated from the training set), to
rank the pairs {g, fi} where gy and fy are defined as gi = po (x1i) and fj = po (x0;) where x1; are the
examples from the test set of class 1 and x0; are the examples from the test set of class 0. Note
that instead of ordering nodes they order examples.

34

For instance consider the following two nodes for the training set:
Node 1: (4,1) --> class 0 with prob=4/5=0.8
Node 2: (2,3) --> class 1 with prob=2/5=0.4
And now consider that the test set is distributed in the following way over the decision tree:
Node 1: (6,4)
Node 2: (4,11)
with ng= 10 elements of class 0 and n;= 15 elements of class 1. Then we have:
6 of class 0 with po(-) = 0.8
4 of class 1 with po(-) = 0.8
4 of class 0 with po(-) = 0.4
11 of class 0 with po(-) = 0.4

From here, we can rank them as described in [30]. Let us denote with r; the rank of the ith class 0
test set point. Let us denote Sy = Sr;. The they derive the area as:

A= Sp- Ny(ng +/2
Moy
This area, although is an AUC (and it has the equivalence Gini + 1 =2~ A), has two main
differences with respect to usual ROC curves and also to a similar proposal in [18]:

It is a step-like (or a stairs-like) area (no diagonals between the points are
computed)).

It is not convex, because the order is given by the training set and the examples are
given by the test set.

Apart from this, the most relevant novelty of Hand and Till paper is that they understand A as
“an overall measure of how well separated are the estimated distributions of po(-) for class 0
and class 17, i.e., A(i,j) could be computed for whatever pair of classes i and j.

This interpretation allows what they call “a simple generalisation of the AUC for multiple
class classification problems”. They define a new measure M as:

1 o &, . 2 o A,
A,)= A,
oo A AGD= A AL

3.13.2 Other Measures MSE and LogLoss

The AUC measure tells “how well separated are the estimated distributions of p(x) for class 0
and class 1” (Hand & Till 2001). Why do not we develop other measures that try to approximate
how well separated two distributions are?
One measure of this kind is the well-known Mean Squared Error measure.
a aan- e iy
MSE = i=1.mj=l.c

m>xc

Where f(i,j) is the actual probability of example i to be of class j and p(i,j) is the estimated
probability of example i to be of class j. The denominator gives a hormalised MSE between 0
and 1. For classification problems, f(i,j) will be always 0 or 1, depending on the class.

Another measure is the log-loss, which is claimed to be a measure of the goodness of
probability estimates (Bernardo & Smith 1993) (Mitchell 1997).

35

- & At ilog, p(, i)

i=l.mj=l.c

LogLoss =
m

In the case p(i,j)=0, we use a forced smoothing in order to avoid a negative infinite value.

Note that these two measures are closely related to AUCH. As we have said, the AUCH
measure tells “how well separated are the estimated distributions of p(x) for class 0 and class 1”
(Hand & Till 2001). This is quite the same of what is measured by the expression (f(i,j)- p(i,j))? or
by the expression (f(i,j)log p(i.j)).

These two measures have the advantage that are much easier to be understood and
computed. Obviously, they have no problems of generalisation for more than 2 classes.

3.14 ROC-based Splitting Criteria

In [24], the first ROC-based splitting criteria was defined as follows:
AUCsplit: Given several splits s;, each one formed by nj leaves {li1, li;..., liy}, then the best
split is the one that maximises:
AUCslit(s)) = § A(R),R))
i=l.n;
where the points P;i are obtained in the usual way (sorting the leaves of each split by local
positive accuracy), and A(pl, p2) means the area of the trapezoid between these two points.

The first question that arises with a new splitting criterion is how it differs from other
criteria previously proposed. To answer this question, let us review the general formula of other
well-known splitting criteria, such as Gini [6], Gain, Gain Ratio and C4.5 criterion [52] and DKM
[33]. These splitting criteria find the split with the lowest I(s}), where I(s;) is defined as:

19)= & p,-f (P}, p;)
j=l.n;
where p; is the probability of being sorted into that node in the split (cardinality of child node
divided by the cardinality of parent node). Using this general formula, each splitting criterion
implements a different function f, as shown in the following table:

CRITERION f(a,b)
AccuRACY (EERROR) min(a,b)
GINI (CART) 2ab
ENTROPY (GAIN) a-log(a)+b-log(b)
DKM 2(a-h)Y?

These functions f(a,b) are impurity functions, and the function I(s) calculates a weighted average
of the impurity of the children in a split. In general, we need to compare this weighted average
impurity of the children with the impurity of the parent, if we are comparing different splits of
different nodes.

Consider for instance the following two splits:

[ath,a+b] [2a,2b]
[a,b] [b,a] [a,b] [a,b]

The children have the same weighted average impurity in both cases. In order to see that the
left is a better split than the right (assuming a?b), we need to take the impurity of the parent into
account. In contrast, AUCsplit evaluates the quality of the whole split (parent + children) and

36

cannot be reduced to a difference in impurity between parent and children. The left split has
AUCsplit=a/(a+b) (assuming a>b), while the right split has AUCsplit=0.5, indicating that
nothing has been gained in ROC space with respect to the default diagonal from (0,0) to (1,1).

An interesting relationship can be established with the Gini index. Consider the following
binary split:

(p.n]

[p1,ni] [p2,n2]

If the left child has higher local positive accuracy, then we have:

AUCsplit _1la&p, ﬁﬂg: p.n- pn, +pn_ p,n+ pn,
2§ p N 4 2pn 2pn

It is interesting to note that the denominator of this expression is the Gini index of the parent,
and the enumerator could be called a mutual Gini index of the children given the parent.

This splitting criterion should be used when we want to maximise AUC instead of
maximising accuracy.

In the previous section we have discussed that this measure can only be applied to
problems with two classes, and, consequently, so can the splitting criterion. Nonetheless, in the
previous section, we have presented measures that are valid for more than two classes. Let us
see the corresponding splitting criteria. These are developed in [25]. Let us begin with Hand
and Till’s M function (AUCH).

The first problem is that the previous formulation of Hand and Till’s M function is based on
a ranking of examples. Consequently it has cost O(m-logm), where m is the number of examples.
If this has to be done for the c classes, this can be intractable. This high computational
complexity would become an important hindrance for using it as splitting criterion.

Fortunately, this complexity could be reduced if we know that for all the examples under
the same node the rank would be the same. Consequently, we only have to rank the nodes, as
we made in the two-classes case, and the complexity of the ordering would be O(n-logn) where
n is the number of nodes. Given a set of nodes S, let us define the area just considering two
classes a and b:

AUC,,(S)= & A,(P2.P®)
i=1.]s|
where the points P;® are obtained in the usual way (sorting the leaves of each split by local
positive accuracy, just taking into account classes a and b).

And now, we can redefine the M function as M-AUC in the following way:

MAUC(S) = 2 a AUC,(S)
C(C- a<b

Finally, we can easily define the splitting criterion in the following way:

M-AUCsplit. Given several splits s;, each one formed by nj leaves {li1, li,...., linj}, then the best
split is the one that maximises MAUC(s)).

The other two measures MSE and LogLoss are much easier to be used as splitting criteria.
Consider a partition with n nodes. Since for classification problems, f(i,j) will be always 0 or 1,
depending on the class, we have the following equation:
a 4 card(i,j)-Aif (k= j)- p(i,))*else(0- p(i, 1))
M%Spllt - i=l.nj=l..c k=l..c

n>xc

37

where card(i,j) is the number of examples of class j in the node i, and p(i,j) is the estimated
probability of class j for the node i.
The formula for logloss is simpler, because many cases are just removed when f(i,j)=0.

Consequently, we have:
o

8 & card(i,))f i, j)log, p(, i)
LogLOSsajlit — izLlnj=Lc

n
The cost is just O(n-c). Finally, it is important to note that, in the same way expected error is not
a very good splitting criterion for obtaining low global errors, it is possible that M-AUCsplit is
not the best formulation for minimising M-AUC, MSEsplit is not the best formulation for
minimising MSE and LogLossSplit is not the best formulation for minimising LogLoss.
According to our experiments (which we will show in section 4), the best criterion seems to
be MSE.

3.15 Test Cost

Apart from misclassification costs, there is another kind of costs that can be extremely
important in some applications, especially in medical diagnosis. Consider an imaginary
diagnosis problem for three different diseases (DISEASE1l, DISEASE2 and DISEASE3) as
follows:

BP-Min (Minimum Blood Pressure): numerical.

BP-Max (Maximum Blood Pressure): numerical.

Div_End (Diverticulities_through_Endoscopy). Nominal: pos / neg.

Cysts_Scopy (Cysts through Colonoscopy) . Nominal: pos / neg

Meningitis_Lumbar (Meningitis through Lumbar Puncture). Nominal: pos / neg

Cysts_Echo (Cysts through Echography). Nominal: pos / neg

Glucose_BA (Glucose concentration through Blood Analysis): numerical

Leucocytoses_Urine (Leucocytoses through Urine Analysis) Nominal: pos / neg
The test costs (taking into account economic, risk and pain issues) have been determined as
follows:

BP-Min: 1 cost units.

BP-Max : 1 cost units.

Div_End: 30 cost units.

Cysts_Scopy: 50 cost units.

Meningitis_Lumbar: 200 cost units.

Cysts_Echo: 15 cost units.

Glucose_BA: 15 cost units.

Leucocytoses_Urine: 10 cost units.

And now consider that we have three decision trees for this problem:
DECISION TREE 1:
Disease (BP-Min, BP-Max, Div_End, Cysts_Scopy, Meningitis_Lumbar, Cysts_Echo, Glucose_BA, Leucocytoses_Urine) = R
{DT1-Nodel} :- Cysts_Scopy=neg, Glucose_BA>=120 [class: DISEASE1]
{DT1-Node2} :- Cysts_Scopy=neg, Glucose_BA<120, Leucocytoses_Urine=neg [class: DISEASE1]
{DT1-Node3} :- Cysts_Scopy=neg, Glucose_BA<120, Leucocytoses_Urine=pos [class: DISEASE2]
{DT1-Node4} :- Cysts_Scopy=pos [class: DISEASE3]

DECISION TREE 2:

38

Disease (BP-Min, BP-Max, Div_End, Cysts_Scopy, Meningitis_Lumbar, Cysts_Echo, Glucose_BA, Leucocytoses_Urine) = R

{DT2-Nodel} :- BP_Min >= 100, Cysts_Echo = pos [class: DISEASE3]

{DT2-Node2} :- BP_Min >= 100, Cysts_Echo = neg, Meningitis_Lumbar=neg [class: DISEASE1]

{DT2-Node3} :- BP_Min >= 100, Cysts_Echo = neg, Meningitis_Lumbar=pos [class: DISEASE2]

{DT2-Node4} :- BP_Max >= 150, Cysts_Echo = pos [class: DISEASE3]

{DT2-Node5} :- BP_Max >= 150, Cysts_Echo = neg, Meningitis_Lumbar=neg [class: DISEASE1]

{DT2-Node6} :- BP_Max >= 150, Cysts_Echo = neg, Meningitis_Lumbar=pos [class: DISEASE?]

{DT2-Node7} :- BP_Min < 100, BP_Max < 150, Div_End = pos [class: DISEASE3]

{DT2-Node8} :- BP_Min < 100, BP_Max < 150, Div_End = neg [class: DISEASE1]

DECISION TREE 3:

Disease (BP-Min, BP-Max, Div_End, Cysts_Scopy, Meningitis_Lumbar, Cysts_Echo, Glucose_BA, Leucocytoses_Urine) = R
{DT3-Nodel} :- Leucocytoses_Urine=neg, Cysts_Echo = pos [class: DISEASE3]
{DT3-Node2} :- Leucocytoses_Urine=neg, Cysts_Echo = neg [class: DISEASE]
{DT3-Node3} :- Leucocytoses_Urine=pos [class: DISEASE?]

The three previous trees use different attributes to make a diagnosis. If we do not have any
additional information apart from their accuracy we would have to select the most accurate one
or the one with highest AUC.

However, let us consider that we have determined, by using e.g. the training set, what is the
frequency that an example falls into each node:

DECISION TREE 1: DECISION TREE 2: DECISION TREE 3:
{DT1-Nodel} (0.2) {DT2-Nodel} (0.1) {DT3-Node1} (0.4)
{DT1-Node2} (0.3) {DT2-Node2} (0.03) {DT3-Node2} (0.5)
{DT1-Node3} (0.1) {DT2-Node3} (0.05) {DT3-Node3} (0.1)
{DT1-Noded} (0.4) {DT2-Node4} (0.15)

{DT2-Node5} (0.02)
{DT2-Node6} (0.05)
{DT2-Node7} (0.15)
{DT2-Node8} (0.45)

From the previous information we can compute the mean test cost of an example.

MEAN TEST COST DECISION TREE 1:
{DT1-Node1} 0.2-[50+ 15]=12
{DT1-Node2} 0.3-[50+15+10]=225
{DT1-Node3} 0.1-[50+15+10]=75
{DT1-Node4} 0.4 -[50] = 20
TOTAL: 62 cost units.

DECISION TREE 2:
{DT2-Nodel} 0.1-[1+ 15]=1.6
{DT2-Node2} 0.03-[1+ 15+ 200] = 6.48
{DT2-Node3} 0.05-[1+ 15+ 200]=10.8
{DT2-Node4} 0.15-[1+ 15]= 2.4
{DT2-Node5} 0.03-[1+ 15+ 200] = 6.48
{DT2-Node6} 0.05-[1+ 15+ 200]=10.8
{DT2-Node7} 0.15-[1+ 1+30]=4.8
{DT2-Node8} 0.45-[1+ 1+30]=144
TOTAL: 57.76 cost units.

DECISION TREE 3:
{DT3-Nodel}:- 0.4 - [10 + 15] = 10
{DT3-Node2} :- 0.5 - [10 + 15] = 12.5

39

{DT3-Node3} :- 0.1 -[10] = 1

TOTAL: 23.5 cost units.
As we can see the third decision tree has an average test cost quite lower than the other two
trees, and in this regard, it is preferable over the rest. We can also see that the frequency of each
node is very relevant. For instance, decision tree 2 uses the most expensive test
(Meningitis_Lumbar). However, it uses it quite infrequently and turns out to be, in overall
terms, a decision tree which is less expensive than the first one. Note that a combination of the
three trees, by using any fusion method, would have a cost of ths um of all the single costs, i.e.:
143.26.

Provided that the three decision trees have similar accuracy, it is then much more preferable
to use the third decision tree, because test cost would be minimised. Consequently, economic,
risk and pain issues are minimised.

SMILES provides tools to compute test cost and to use it in a reasonable way, in order to
obtain trees with less cost or to select from a pool of trees (the multitree) the tree with less test
cost. Let us review the facilities that SMILES offers in this regard.

The first obvious thing to be done is to allow SMILES to read the test cost information. From
this there is an optional additional file that can be specified through the command line:
USAGE:
.Ismles file.train [file.test] [file.cost] [file.testcost]

If we do not want to specify neither a test set nor a cost matrix, we just place the symbol “-*“. For
instance, the following command line, would just look for a train set file and a testcost file.
.Ismles sanples/liver.all - - liver.testcost

The format of the file is just a list of real humbers separated by commas. The last one must also
have a comma, such in the following example:

% Test costs fromUCH |iver bupa problem

7.27, 7.27, 7.27, 7.27, 9.86, 1

As always, lines beginning with ‘%’ are ignored. However, if this file is specified in the
command line we must also enable one option in the options file, that tells SMILES to read test
costs from files.

% -test cost nethod: how the wvector of attribute test <costs is
construct ed

% est cost nethod=no test costs
% est cost nethod=uni formtest costs
test cost nethod=test costs fromfile

SMILES shows the information has read. For instance, for the following command line:
.Ismles sanples/liver.all - - liver.testcost

SMILES outputs the following after reading the training set:

Test Cost Vector to be used:

Argunent 0: 7.27
Argunent 1: 7.27
Argunent 2: 7.27
Argunent 3: 7.27
Argunent 4: 9.86
Argunent 5: 1

40

As we can see there are two other options: “no test costs” which does not take this kind of cost
into account and “uniform test costs”, which, when we do not know any information about the
test costs, we can assume that these are uniform, and SMILES will look for trees that minimise
the average number of tests per example, in a similar way as is made in ROC analysis. In other
words, if AUC can be computed when the real cost matrix is not know, the uniform test cost
vector can be used when the test cost vector is not known.

Now that we know how to read a particular test cost vector or to assume a uniform one, let
us explain how SMILES can take advantage of it.

When constructing each tree, a splitting criterion is used to assign different degrees of
optimality to each split. This optimality can be modified taking testcost into account. The
testcost is computed using the cardinality of each node, i.e., multiplying the examples that fall
into each branch by the cost of the tests (attributes) used until that node. Once the testcost is
computed, there are three ways of treating test cost information for modifying splitting criteria:

% -test cost use: how the vector of attribute test costs is used
test cost use=test costs no use

% est cost use=test costs linear plusl without repetition

% est cost use=test costs linear plusl with repetition

The first option logically makes no use of this information. The second and third options use
this formula to modify the existing splitting optimality (Opt):

Opt / (testcost + 1) w

A new weight that tells how much the testcost is used to inversely modify splitting criteria. The
exponent w is used to give more relevance to the testcost. This factor is 1 by default and can
only be modified in the program sources through the TestCostRelevancelnSplitting option that
must be between 0 and infinite. Note that the relevance of testcost can also be modified quite
easily by augmenting the absolute value of the testcost vector file.

The difference between the two last options (without or with repetition) is that numerical
attributes can be used more than once in the same branch. Consider e.g. a condition X < 3.2; this
could be followed by an additional partition below on the same attribute in the same branch suc
as X < 1.3 and X >= 1.3. It is not sensible to compute the test cost of attribute X more than once.
For this reason, it is more accurate the use of the option “without repetition” that only takes into
account this cost once. This gives an exact measurement of testcost.

This modification provides a way to construct trees and muli-trees that have lower average
testcosts per example. Obviously, if testcost is given too much importance then accuracy can be
affected. For a deeper explanation of this effect and some results, we refer to [16].

Despite the effect and good results of the previous approach, it is not much wise to use a
testcost sensitive criterion and then select the best tree using non-testcost sensitive criteria. For
this, SMILES also includes two methods for extracting the best solution from the tree taking
testcosts into account.

%-nultitree: best tree selection criterion
%ultitree best tree criterion=test cost best
%ultitree best tree criterion=occam and test cost best

Apart from the “occam best” and others, SMILES provides “test cost best” and “occam and test
cost best”. The first method selects the tree with the lowest testcost (repeated use of the same
attribute in the same branch are discarded). The “occam and test cost best” combines “occam
best” and “test cost best” through the use of a weight factor. The weight of each is determined
through the following formula:

test cost® xnumrules®?

41

Where a is a factor modifiable by program by the new option value
TestCostRelevancelnSelectBest that must be from 0 to 1.

More information of how effective this selection methods are can be found in [16].

Finally, testcost vectors can be used to give more relevance to some attributes than others,
e.g. when the user thinks that some attributes can be more useful or comprehensible than
others.

Let us see an example with monk2. Its test costs are given in the file “monks.testcost”:

% Test costs for nonks probl ens
1.0, 0.0, 10.0, 5.0, 0.0, 100.0

If we run SMILES with MSE splitting criterion, and a multi-tree with 100 open nodes and with
10x10 cross validation, but without using testcost, we have:
Mean Results:
N. of susp. nodes explored : 100 +/- 0
Solutions in the Miltitree : 8.07935e+10 +/- 4.1820le+11l
Results for 1st Sol ution:

Accuracy of 1st Sol ution : 0.683 +/ - 0. 0511364

AUC (by nodes) of 1st Sol : 0. 666375 +/ - 0. 0615097

Mean # Rul es : 282.79

Test Cost per Exanple : 96. 038 +/ - 9. 27396

Resul ts for Conbi nation:

Accuracy of Conbination : 0. 750167 +/ - 0. 0583391

AUC of Conbi nation : 0. 741057 +/ - 0. 0611061
Results for Best Solution:

Accuracy of Best : 0.692 +/- 0. 0524634

Mean # Rul es : 270.71

Accuracy class 0 : 0. 755819 +/- 0. 0685639

Accuracy class 1 0. 576554 +/ - 0. 0986817

AUC by Hand 0. 669107 +/ - 0. 0568279

MSE 0.712333 +/- 0. 0493715

LogLoss : 0. 743794 +/ - 0. 0519433

Test Cost per Exanple : 103. 333 +/ - 8. 65866
Ti me Used : 0.2765 +/- 0. 0581599

As we can see how, we have “Test Cost per Example” information for the 1st solution and for
the Best Solution. For the first solution we have 96.038 testcost units, and for the best solution
we have 103.333.
Now we can see the results if we enable
test cost use=test costs linear plusl w thout repetition
Then we have:
Mean Results:

N. of susp. nodes explored : 100 +/- 0
Solutions in the Miltitree : 1.2661le+14 +/ - 6. 4715e+14
Results for 1st Sol ution:

Accuracy of 1st Sol ution : 0. 687667 +/ - 0. 0535297
AUC (by nodes) of 1st Sol : 0. 607398 +/ - 0. 0676029
Mean # Rul es : 324. 36

Test Cost per Exanple : 46. 2625 +/ - 6. 58806

Resul ts for Conbi nation:

42

Accuracy of Conbination : 0. 736667 +/ - 0. 0566558

AUC of Conbi nation : 0. 671598 +/ - 0. 0699609
Results for Best Sol ution:

Accuracy of Best : 0. 682667 +/ - 0. 0624922

Mean # Rul es : 309. 23

Accuracy class 0 : 0. 74696 +/ - 0. 0755163

Accuracy class 1 : 0.566277 +/ - 0. 0993084

AUC by Hand : 0. 648622 +/ - 0. 0827158

VSE : 0. 689375 +/ - 0. 0669407

LogLoss : 0.8372 +/ - 0. 0476209

Test Cost per Exanple : 77.3888 + - 17.9072
Ti me Used : 0.2716 +/- 0. 0625344

We can see that testcost is dramatically reduced, with a slight loss in accuracy. We see that the
best solution has greater cost than the first solution. This is so because the best solution is
defined “Occam best”, in order to obtain the shortest one, not the one with lowest testcost.
We can even reduce the test cost of the best solution by using the option:
multitree best tree criterion=test cost best

And now we have:
Mean Results:

N. of susp. nodes explored : 100 +/ - 0
Solutions in the Miltitree : 1.2661e+14 +/ - 6. 4715e+14
Results for 1st Sol ution:

Accuracy of 1st Sol ution : 0. 687667 +/ - 0. 0535297
AUC (by nodes) of 1st Sol : 0. 607398 +/ - 0. 0676029
Mean # Rul es : 324. 36

Test Cost per Exanple : 46. 2625 +/ - 6. 58806

Resul ts for Conbi nati on:

Accuracy of Conbination 0. 736667 +/ - 0. 0566558
AUC of Conbi nation 0. 671598 +/ - 0. 0699609
Results for Best Sol ution:

Accuracy of Best 0. 685667 +/ - 0. 0546399

Mean # Rul es : 323. 39

Accuracy class 0 0. 753444 +/ - 0. 0629829
Accuracy class 1 0.561628 +/ - 0. 0993743
AUC by Hand 0. 610403 +/ - 0. 0687935
MSE 0. 685792 +/ - 0. 0541103
LogLoss : 0. 845749 +/ - 0.0451748
Test Cost per Exanple : 46. 6472 + - 6. 5868
Ti me Used : 0.2716 +/ - 0. 0648654

We see that the test cost for the best solution is now significantly lower than before. Unlike this
example, in general, with these options is usually lower than the one for the first solution.

3.16 Archetype Solution

The use of a multi-tree allows combination to obtain more accurate results. However,
comprehensibility is lost with combined hypothesis. Moreover, combined solutions explored
many alternatives and, consequently, they have an extremely high test cost. Consequently they

43

are not useful when “test-cost” is to be taken into account. This makes combination methods
useless for many applications, such as medicine, where test are expensive, and may also be
risky and painful. It is not sensible to make all the existing tests to a patient, because a machine
learning algorithm requires a multiplicity of different solutions.

But we have described before that a single solution can be extracted from the pool of
solutions (with several best single solution methods), the solution is usually not as good (by far)
as the combined solution.

An original idea introduced in SMILES is the notion of “archetype” or “representative”.
Combined solutions are usually much better than single solution. Combined solutions have a
behaviour that is different from any single solution, but, in many cases, one or more solutions
are quite closer (in a semantic way) to the combined solution. Why not choosing the single
solution that is semantically closer to the combined solution? This is the idea of the archetype or
representative of a group: the individual that best represents the group.

Another original idea of SMILES is that it does not require an additional dataset to compute
which is the solution that is most similar to the combined one. SMILES can construct an
invented dataset for this. The first thing we must tell SMILES is to extract this archetype to the
use of an invented dataset. This is done through the “combination to single solution”:

% - Conbi nation to Single Solution Options
%onbi nati on to single solution nmethod=no extraction
conbi nation to single solution nethod=i nvented dat aset

Once determined the construction of an invented dataset, we must tell the size of this invented
dataset.

% - Length of the invented random dat aset

i nvented dataset |ength=10000

The greater the invented dataset the better the estimation of the archetype will be (and it will be
slower too). Finally, the last thing to specify is how the similarity is to be computed. For this
SMILES provides three similarity functions to be applied to the invented dataset.

%- Simlarity function used for the selection of a single solution from
t he combi nati on

simlarity method for conbination to single=kappa
%imlarity nethod for conbination to single=kappal
%imlarity nethod for combination to single=gstat

According to our experiments in [23], the best similarity method is “kappa”.

Let us see an example. If we run “monks2” in SMILES with MSE splitting criterion, and a
multi-tree with 100 open nodes and with 10x10 cross validation, and select the previous options,
as well as the use of the testcost (“monks2.testcost™), the option that restricts archetype criteria
to just similarity, i.e.:

% - Combi nation to Single Solution (Archetype) Use of Other Criteria
archetype simlarity inportance factor=1.0

archetype occam i nportance factor=0.0

archetype test cost inportance factor=0.0

Then we would have:
Mean Resul ts:
N. of susp. nodes explored : 100 +/ - 0
Solutions in the Multitree : 4.12571e+15 +/- 3.88401e+16
Results for 1st Sol ution:
Accuracy of 1st Sol ution : 0. 687667 +/ - 0. 0535297
AUC (by nodes) of 1st Sol : 0. 607398 +/ - 0. 0676029

44

Mean # Rul es : 324. 36

Test Cost per Exanple : 46. 2625 +/ - 6. 58806
Resul ts for Conbination:

Accuracy of Conbination : 0. 737833 +/ - 0. 0522155

AUC of Conbi nation : 0.676091 +/- 0. 0692213
Results for Archetype:

Accuracy of Archetype : 0. 720333 +/ - 0. 0520392

AUC (by nodes) of Archetype: 0.670872 +/ - 0.0742581

Mean # Rul es : 321. 89

Test Cost per Exanple : 63. 6257 +/ - 16. 246
Results for Best Solution:

Accuracy of Best : 0. 685167 +/- 0. 0593121

Mean # Rul es : 308. 93

Accuracy class 0 : 0. 75152 +/ - 0. 0752203

Accuracy class 1 : 0. 564675 +/ - 0.0977124

AUC by Hand : 0. 648288 +/ - 0. 0775428

MSE : 0. 692875 +/- 0. 0626703

LogLoss : 0. 83394 +/ - 0. 0513109

Test Cost per Exanple : 77.5215 + - 17. 3678
Ti me Used : 0.2738 +/ - 0. 0758358

As we can see the combination has an accuracy and AUC of 0.738 and 0.676 respectively, which
are significantly higher than the accuracy and AUC of the First and Best Solutions. However,
we have obtained an archetype whose accuracy and AUC are quite closer to the combination,
and is a single solution.

Finally, we have seen several methods to extract a single solution from the multi-tree:
Occam-best, Testcost-best, a combination of both, and, finally, we have just seen the semantic
archetype. It makes sense to be able to obtain a single solution that combines the Occam
criterion, Testcost criterion and the semantic criterion. SMILES allows this through three
options:

% - Combi nation to Single Solution (Archetype) Use of Other Criteria
archetype simlarity inportance factor=15.0

archetype occam i nportance factor=4.0

archetype test cost inportance factor=1.0

Considering these factor f1, f2 and 3, the exact formula for this combination is:

similarity™ X{%\umrules”)(test cost ’3)

These factors affect how the Archetype is extracted. If all the factors except similarity are left to
0, then it is just a semantic extraction

But if these factors are used, then we can extract an archetype taking into account its length
and its testcost too.

This permits the user to extract of the best single solution according to the user’s relevance:
comprehensible and shortness (Occam), accuracy and AUC (similarity) and testcost (test cost
factor).

For the previous example (monks2), if we use weights 15, 4 and 1, now we would have:
Mean Results:
N. of susp. nodes explored : 100 +/ - 0
Solutions in the Multitree : 4.12571e+15 +/- 3.88401e+16

45

Results for 1st Sol ution:

Accuracy of 1st Sol ution : 0. 687667 +/ - 0. 0535297

AUC (by nodes) of 1st Sol : 0. 607398 +/ - 0. 0676029

Mean # Rul es : 324. 36

Test Cost per Exanple : 46. 2625 +/ - 6. 58806
Resul ts for Conbination:

Accuracy of Conbination : 0.737833 +/ - 0. 0522155

AUC of Conbi nation : 0. 676091 +/ - 0. 0692213
Results for Archetype:

Accuracy of Archetype : 0. 715833 +/ - 0. 0527778

AUC (by nodes) of Archetype: 0. 647856 +/ - 0. 0750104

Mean # Rul es : 318.3

Test Cost per Exanple : 57.2522 +/ - 9. 0557
Results for Best Solution:

Accuracy of Best : 0. 685167 +/ - 0. 0593121

Mean # Rul es : 308. 93

Accuracy class 0 : 0. 75152 +/ - 0. 0752203

Accuracy class 1 : 0. 564675 +/ - 0.0977124

AUC by Hand : 0. 648288 +/ - 0. 0775428

VSE : 0. 692875 +/ - 0. 0626703

LogLoss : 0. 83394 +/ - 0. 0513109

Test Cost per Exanple : 77.5215 + - 17. 3678
Ti me Used : 0.2743 +/- 0. 0758555

Now we can see that the archetype has lost some similarity to the combination (and
consequently accuracy and AUC are reduced) but the number of rules and the testcost is also
reduced, that is what we wanted, a single solution that takes into account the similarity with the
combination, a short number of rules and a low testcost.

The weights assigned to each criteria are problem dependent, but according to the usual
absolute amounts of each factor, the values 15, 4 and 1 represent a compromise of the three
criteria. The user can change these values in order to give more relevance to each desired
characteristic of the model.

3.17 Other Facilities

There are other options mainly related to output. They are self-explained by their description in
the options file, although a more complete description can be found in Section 6:

% -out put: syntax to show the rules:

show rul es nmode=functional -1 ogic

%

% -out put class dist.: show the trainset exanples falling in each rule.

show cl ass distribution=no

%show cl ass distribution=yes (not inplemented)

%

% -show all nultitree rules

show all nmultitree rul es=no show

%show all multitree rul es=show

%how all rnultitree rules=to file

%

% -show al | k-best solutions

46

show al | k-best sol utions=no show

%show al | k-best sol uti ons=show

%show al | k-best solutions=to file

%

% - show conmponent matrix of solutions

show sol uti ons conponent s=no show

%show sol uti ons conponent s=show

%

% - show confusion matrix

Y%show confusion matri x=no show

%show confusion matri x=show only if costs

show confusi on nmatri x=show

%

% -how to show statistics

%show statistics=absolute statistics

%show statistics=relative statistics

%show statistics=both statistics

show statistics=just accuracy

%

% - show nunber of possible solutions in the nultitree
show nunmber of nultitree possible sol utions=yes
%show nunber of nultitree possible solutions=no

At the present version of SMILES there are no other options (from the ones already explained)
that could be modified through the options file. We will introduce in Section 5 other hardwired
options for programmers or expert users.

4 SMILES Expertise

In this section, we take a more practical view on how to use the options described in the
previous section, and we explain, mainly through experiments, when it is better to use some
options over others.

4.1 Experimental comparison of splitting criteria

One of the things that affect the resulting accuracy of a decision tree is the splitting criterion
used for learning.

First of all, we are going to study the splitting criteria wrt. two-class problems and then
with multi-class problems. We use 25 datasets extracted from the UCI repository [2]. All of them
have two classes, either originally or by selecting one of the classes and joining all the other
classes. Table 1 shows the dataset (and the class selected in case of more than two classes), the
size in number of examples, the nominal and numerical attributes and the percentage of
examples of the minority class.

Table 1. Datasets used for the experiments.

ATTRIBUTES YoMIN

DATASET SIZE

NOM NUM CLASS
1 MoONKs1 566 6 0 50
2 MONKS2 601 6 0 34.28
3 MONKS3 554 6 0 48.01

47

4 Tic-TAC 958 8 0 34.66
5 HOUSE-VOTES 435 16 0 38.62
6 AGARICUS 8124 22 0 48.2
7 BREAST-WDBC 569 0 30 37.26
8 BREAST-WPBC 194 0 33 23.71
9 |ONOSPHERE 351 0 34 35.9
10 LIVER 345 0 6 42.03
11 PimA 768 0 8 349
12 CHESSKR-VSKP 3196 36 0 47.78
13 SONAR 208 0 60 46.63
14 BREAST-CANCER 683 0 9 34.99
15 HEPATITIS 83 14 5 18.07
16 THYROID-HYPO 2012 19 6 6.06
17 THYROID-SICK-EU 2012 19 6 11.83
18 TAE[{0}] 151 2 3 32.45
19 cars[{uNnacc}] 1728 6 0 29.98
20 NURSERY [{NR}] 12960 8 0 33.33
21 peNDIGITS[{O}] 10992 O 16 104
22 pPAGE-BLOCKS[{0}] 5473 0 10 10.23
23 veasT[{ERL}] 1484 0 8 31.2
24 LETTER[{A}] 20000 O 16 3.95
25 orpDiGITS[{0}] 5620 O 64 9.86

First we compare the most commonly used splitting criteria: Gain Ratio (only considering splits
with at least average gain as is done in C4.5), Gini (as used in CART), DKM and Expected Error.

Table 2. AUC values for different splitting criteria.

SET GAIN RATIO GINI DKM EERR
1 815+140 79.8%+119 798+119 822+53
2 606+104 57.7+84 555%+79 69.8+4.1
3 988+16 98717 987x17 954+ 2.6
4 813+80 806+75 79881 76.4+5.6
5 969+25 969+25 969%25 96.9+ 25
6 1+0 99.9+0.2 1+0 1+£0.1
7 91.1+6.6 909%+58 95.7+53 93.6+ 3.7
8 581+244 664+183 549+186 51.2+35
9 888+102 56.1+136 90.8+50 59.0+151
10 651+6.7 634+82 656+84 50.9+94
11 780+£52 278+35 693+257 30.5%+39.8
12 99.7+04 993+04 99.7+0.3 98.3+0.8
13 60.6+10.2 69.7+104 727+6.8 68.1+128
14 955+25 952+27 96.8+21 948+ 2.9
15 929+124 6541244 729+26.3 65+ 24.2
16 832x+165 4861512 969+57 348411
17 936+32 4971461 658+455 37+113
18 50.5+259 4891271 525+245 2151214
19 981+07 982+0.8 981108 97.8+1.1
20 1+0 1+0 1+0 1+£0
21 99.7+£06 982+0.7 99.7+0.3 96.3+2.1
22 937+37 8L7+49 66.6+216 50+0
23 73731 666+99 735+43 51.0+4.0
24 987+10 959+24 994105 85.7+0.5
25 981+23 959+33 980+26 96.0+ 3.3
M 85.53 77.26 83.19 7112

48

Although all methods behave very similarly in terms of accuracy (as has been shown in the
machine learning literature and by our own experiments not listed here), the differences in
AUC are very noticeable, especially in datasets 9, 11, 15, 16, 17, 22, 23. There is no apparent
relationship with any dataset characteristic except the minority class proportion, which will be
analysed at the end of this section.

The worst methods according to the AUC measure are clearly Gini and Expected Error.
Better and more similar results are given by GainRatio and DKM. If we select Gain Ratio as the
best classical method, we can compare its results with AUCsplit results. In order to make
comparisons significant, we have repeated 10-fold cross validation 10 times, making a total of
100 learning runs for each pair of dataset and method. These new results are shown in Table 3.

Table 3. Accuracy and AUC for Gain Ratio and AUCsplit.

GAIN RATIO AUCsPLIT BETTER?
Ser Acc. AUC Acc. AUC Acc. AUC
1 90.746.6 83.6+11.8 96.5+39 94.3+6.7 v VvV
2 57765 61.1+7.9 56.0£6.2 56.7£8.0 X X
3 97.6+7.8 97.4+85 99.1+1.1 99.1+14 v YV
4 78.9+46 79.8+7.2 T77.6x4.7 76.9+65 X X
5 058126 952+31 95.8+26 95.2+3.1
6 1+0 1+0 1+0 1+0
7 92541 915461 929+3.7 94.7+4.6 4
8 721+10.2 61.3+16.9 69.5+10.6 59.3+16.2 X
9 920+4.7 90.4+7.0 89.6+5.0 89.7+6.7 X
10 62.6+8.8 64.2+10.6 64.0£9.0 65.8+10.1
11 733457 76.6£6.9 725t51 76.7+6.0
12 99.1+23 995+1.6 99.2+0.6 99.5+0.6
13 68.2+10.2 67.4+11.9 71.0+104 73.6+110 v Vv
14 954+25 96.3x25 96.2+25 976+21 v VvV
15 86.4+14.2 85.1+17.9 83.4+14.0 63.5+22.3 X
16 98.0+10.9 84.6+13.1 98.6+0.8 94.8t56 v VvV
17 952+14 926+35 96.7+12 951+31 v Vv
18 71.4+12.4 61.5+20.8 68.9+11.6 59.8+21.3
19 95.0+1.8 98.2+09 94.8+t19 98.1+10
20 1+0 1+0 1+0 1+0
21 99.6£0.3 99.6£0.5 99.6+0.2 99.4+0.6
22 96.8+0.9 93.3+4.7 96.8+0.2 95.1+6.9 4
23 704+39 722449 71.1+£3.6 73.3x4.0 v
24 995+0.2 98.9+1.4 995+0.1 99.3+0.7 v VvV
25 98.9+t1.8 94.2+19.4 995+0.3 985+18 v VvV

M. 87.49 85.78 87.55 86.24

Table 3 lists the accuracy of the chosen labelling and the AUC values of the whole set of optimal
labellings. The first thing that can be observed is that the differences in accuracy are smaller
than in AUC. In some cases it happens that Gain Ratio is better than AUCsplit in terms of
accuracy, but not significantly in terms of AUC.

Since means of different datasets are illustrative but not reliable we compare dataset by
dataset if one method is better than the other. The ‘Better?” column represents if AUCsplit

49

behaves better (v') or worse (x) than Gain Ratio. These marks are only shown when the
differences are significant according to the t-test with level of confidence 0.1. This gives 8 wins,
13 ties and 4 loses for accuracies and 11 wins, 11 ties and 3 loses for AUC.

Now let us analyse the splitting criteria used for more than two classes. We have performed
experiments with the same methodology as before for 14 multi-class datasets with the following
characteristics:

Table 4. Datasets used for the experiments.

DATASET

balance

Cars

derm
echocardiogram
newt
nursery_3c
page
pendigits
tae

10 iris

11 opt-digits

12 sat

13 segmentation
14 wine

O©CoO~NOO~WNER| H#

We examine now the results with the GainRatio, M-AUCsplit, MSEsplit, LogLsplit and the GINI
criterion, without and with pruning, also showing the results for the 25 two-class problems and
the 14 multi-class problems:

NOPRUNING
Two-class
GEOMEANS GainRatio M-AUCsplit MSEsplit LogLsplit GINI
Accuracy of Best 0,864903 0,865027 0,867024 0,867124 0,868102
M-AUC 0,888052 0,884429 0,889705 0,887637 0,872447
Rules 59,98738 58,18974 53,35602 56,46755 108,2007
Time Used 0,711908 0,573635 0,538084 0,535376 1,646817
Multi-class
GEOMEANS GainRatio MAUCsplit MSEsplit LogLsplit GINI
Accuracy of Best 0,833811 0,817345 0,838144 0,834983 0,8343
M-AUC 0,911666 0,896301 0,911093 0,912881 0.9074
Rules 144,9268 213,5072 130,7308 162,9093 257,69
PRUNING
Two-class
GEOMEANS GainRatio M-AUCsplit MSEsplit LogLsplit GINI
Accuracy of Best 0,874515 0,871911 0,870511 0,87014 0,8651
M-AUC 0,874204 0,880809 0,87984 0,879037 0.7901
Rules 23,27337 21,18863 22,99033 2128136 12,30577

50

Time Used 0,710292 0,556105 0,54099 0,529881 1,624467

Multi-class
GEOMEANS GainRatio MAUCsplit ~ MSEsplit LogLsplit GINI
Accuracy of Best 0,809011 0,802879 0,831174 0,809857 0,7969
M-AUC 0,893041 0,901847 0,900887 0,897177 0.8583
Rules 74,48508 75,61664 68,26054 82,5315 4254716

While it seems that MAUC is the best one with pruning, and both MSE and LogLoss are quite
good without pruning, it seems that the MSE is a quite good option for all the situations. It also
gives very short trees. Only GINI with pruning gives shorter trees, but this may be related to
the king of postpruning used (PEP pruning).

4.2 Comparison of criteria to extract a solution from the multitree

Once the multitree has been built there are several criteria to extract a solution from the
multitree. In the current implementation of the system, these are the possible options:

% -nmultitree: best tree selection criterion

nmultitree best tree criterion=occam best

%l titree best tree criterion=test cost best

%rultitree best tree criterion=occam and test cost best

%l titree best tree criterion=coverage best

%l titree best tree criterion=cross coverage

%l titree best tree criterion=expected error best

%l titree best tree criterion=split optinality best

%rultitree best tree criterion=ndl best

We are not going to analyse the combinations with test cost. We are going to analyse all the rest.

The cross-coverage option splits the train data set into two independent parts and requires
that the “same training set” option is active: the first part is used in the construction of the
multitree, and the second part (named validation data set) is used for the selection of the
solution. Concretely, we select the solution that has more accuracy w.r.t. the validation data set.
We often use approximately the 20% of the original train data set for the validation data set and
the rest 80% for the new train data set. Note that this technique is very useful to handle
problems with a huge amount of examples and/or arguments.

We have made experiments on the behaviour of some of the previous criteria in the
learning of 10 problems. These problems contain both numerical and continuous arguments
and noisy data. The following figures show the average of the accuracy of the programs
obtained with the C45, MDL, and Expected-Error splitting criteria to build the multitree
depending on the size of the multitree and the technique applied for the selection of the
solution. The number of solutions is varied from 1 to 1000.

51

C45

0,85
0,84
0,83
0,82
0,81

0,8
0,79
0,78
0,77

—&—0Occam
—& VDL

Expected
~>"Cross

1 10 100 1000

MDL

0.85
0.84
0.83
0.82
0.81

0.8
0.79
0.78
0.77

1 10 100 1000

Expected-Error

0,85
0,84
0,83
0,82
0,81

0,8
0,79
0,78
0,77

—e— Occam

—=— MDL
Expected

—<— Cross

1 10 100 1000

With one solution we only can examine the splitting criterion. The best one, as we said, seems to
be Expected-Error (although the difference is not significant). The performance of the four
techniques of selecting the solution is very similar apart from the bad behaviour of MDL using
MDL as splitting criterion. When C45 or Expected-Error criteria are used for the split criterion, a

52

further population of the multitree does not give the impression to improve the accuracy.
Cross-coverage seems to decrease.

This may suggest that further study on the best tree selection method must be performed.
However, it must be said that these results are obtained with RivalRatio instead of Topmost,
being the latter much better to increase accuracy. The next section tries to give more light on
this issue.

4.3 Evolution of Best Solution Accuracy for Increasing Number of trees

One of the great advantages of SMILES is that the multitree can be further explored to obtain
better solutions. However, is it always true that further populating the multitree gets better and
better solutions?

The next figure shows the number of rules and accuracy for increasing number of solutions.
From these solutions just one comprehensible solution is obtained with the “best
tree”="0Occam”, i.e., the shortest solution is selected. All the results are obtained for “second
tree opening criterion” = “rival ratio”. Moreover, pre-pruning is active and split MDL)

Numtree 1 10 100 1000
Example ||Rules|Accuracy||Rules|Accuracy|Rules|Accuracy||Rules|Accuracy
cars 126 | 85.53 126 | 85.53 101 | 85.65 69 84.03

house-votes|[71 86.70 71 86.70 53 93.11 49 89.90
tic-tac-toe || 346 | 65.55 297 | 70.35 263 | 75.99 252 | 74.94

nursery 471 | 91.34 467 | 91.37 408 | 91.77 364 | 92.37
monks1 17 94.90 17 94.90 7 100 7 100

monks2 100 | 69.90 97 69.90 89 79.16 61 79.62
monks3 35 88.42 35 88.42 28 87.26 22 88.19
drugs 134 | 92.09 132 | 92.90 131 | 92.72 129 | 93.00
tae 41 57.33 40 60.00 38 60.00 37 61.33
mean 81.31 82.23 85.07 84.82

Results with SMILES 0.5. Second Rival Ratio and Occam Best

It is clear (as expected) that if the best tree selection criterion (Occam) tries to select the shortest
solution, the number of rules cannot increase and, it is shown, it usually decreases. The results
are also generally positive for accuracy. Except in two cases, the accuracy with 1000 is higher
than with 1. One interesting thing that can be observed is that, in the average, the maximum is
not obtained with 1000 but with 100. This may suggest that there is a point from which Occam
criterion selects much too short solutions.

As we said before better results may be obtained with other second-best criteria, such as
topmost.

Let us make a comparison using more typical options, such as “MSE splitting criterion”,
“no pruning”, “second tree opening criterion=random”, and let us study the shortest solution
again (i.e. Occam), with the current version of SMILES, but now with more datasets:

53

1 10 100 1000

Dataset Size [Classes|[Nom.Attr. [Num.Attr. # 1st || Occ || Occ Oce
1 || Balance-scale | 625 3 0 4 1 76.82||76.81| 76.74(| 76.77
2 Cars 1728 4 5 0 2 89.01||89.03(| 89.08|(89.11
3 || Dermatology | 358 6 33 1 3 89.80(|90.09(| 90.20|[90.69
4 Ecoli 336 8 0 7 4 T7T.55||77.79|| 78.36| 77.48
5 Iris 150 3 0 4 5 93.63|(93.93|| 93.63 || 93.93
6 || House-votes |[435 2 16 0 6 94.67|(94.73| 94.40(| 94.80
7 Monks1 566 2 6 0 T 92.25(|96.47|/100.00(| 100.00
8 Monks?2 601 2 6 0 8 74.83]|73.75|| 72.53 || 70.43
9 Monks3 554 2 6 0 9 97.55||97.60(| 97.55]| 97.62
10|| New-thyroid | 215 3 0 5 10 92.62(|92.57|| 92.95|| 93.67
11|(Post-operative| 87 3 7 1 11 60.88(] 60.00|| 62.25| 62.13
12|[Soybean-small| 35 4 35 0 12 97.25]|97.50|| 96.75|| 96.25
13 Tae 151 3 2 3 13 62.93|(61.93| 62.07(61.13
14 Tic-tac 958 2 8 0 14 78.22||78.27|| 78.58 || 79.47
15 Wine 178 3 0 13 15 93.12((92.94|| 93.24 || 94.41

gmeans||83.87|| 83.93| 84.28|| 84.19

Now we can see that this increase arrives to a saturation point (in general around 100) and then
begins to decrease slowly. As we will see, without the use of combination or archetype, we do
not fully exploit the possibilities of the multitree.

4.4 Comparison of Combination

In this section, we present some results on the combination of the hypotheses once the multitree
has been created. The possible options are:

% - Combi nation: How to conbi ne several solutions

%l titree sol ution conbinati on=no conbi nation

%l titree sol ution conbination=cross coverage comnbi nation

%l titree solution conbination=mgjority crisp

multitree solution conbination=ngjority absol ute stochastic

%l titree solution conbination=nmajority relative stochastic

%l titree solution conbination=majority cost stochastic

We are going to explore the two ways with better results: majority crisp and majority absolute
stochastic. The following pictures compare these two methods on the learning of 10 problems.
The figures present the average of accuracy obtained using the two methods depending on the
size of the multitree and the split criterion. All the results are obtained for “second tree opening
criterion” = “rival ratio”.

54

C45

0,87
0,86
0,85
0,84
0,83
0,82
0,81

0,8

—e— Absolut
—m— Crisp

1 10 100 1000

0,87
0,86
0,85
0,84
0,83
0,82
0,81

0,8

Absolut

= Crisp

1 10 100 1000

Expected-Error

0,87
0,86
0,85
0,84
0,83
0,82
0,81

0,8

—e— Absolut
—m— Crisp

1 10 100 1000

There are some interesting points to conclude from these results:

The use of hypotheses combination usually improves the accuracy although it is
important to note that the comprehensibility of the solution is lost.

The improvement of accuracy does not grow linearly with the size of the multitree.
A multitree populated in excess might even affect negatively in the accuracy
because later solutions may have lower accuracy than the first ones.

The majority_absolute_stochastic technique seems to obtain better results than
majority_crisp.

The best improvement has been obtained with the MDL split criterion, although
this criterion has worse results initially.

Finally, we analyse in more detailed the results for one splitting criterion (MDL) and
majority_absolute_stochastic combination criterion.

Numdtree 1 10 100 1000
Example |[Accuracy||Accuracy||Accuracy||Accuracy
cars 85.53 85.53 90.16 92.12

house-votes|| 86.69 88.99 92.66 92.20
tic-tac-toe 65.55 82.46 83.71 85.39

nursery 91.34 91.45 92.98 93.98
monksl 94.90 94.90 100 91.90
monks2 69.90 69.91 79.17 79.63
monks3 88.43 90.05 92.59 86.80
drugs 92.09 92.45 93.09 93.09
tae 57.33 57.33 57.33 58.67
mean 81.31 83.67 86.85 85.97

Figure 2. Results with SMILES 0.5. Second Rival Ratio and Combination (pre-pruning active)

If we compare these results with the results with the selection of one solution with Occam best
criterion, we see that combination results are slightly better (around a 1% better in accuracy). In
our opinion, only in quite limited situations is preferable to have this slight increase in accuracy
with the loss of comprehensibility that combined solutions have.

Finally, although we are not showing results, we realised that in order to improve accuracy
for combination, pruning must not be used with combination when the multitree number is
high (>100).

4.5 Fusion Methods
To study the different fusion methods, we are going to use the following datasets:

56

Dataset Size |Classes|Nom. Attr. [Num.Attr.
1 || Balance-scale | 625 3 0 4
2 Cars 1728 4 5 0
3 || Dermatology | 358 6 33 1
4 Ecoli 336 8 0 7
5 Iris 150 3 0 4
6 || House-votes | 435 2 16 0
7 Monks1 566 2 6 0
8 Monks2 601 2 6 0
9 Monks3 554 2 6 0
10| New-thyroid | 215 3 0 5
11|[Post-operative| 87 3 7 1
12|[Soybean-small| 35 4 35 0
13 Tae 151 3 2 3
14 Tic-tac 958 2 8 0
15 Wine 178 3 0 13

Datasets used in the experiments

For the following experiments, we used GainRatio as splitting criterion and we chose a random
method for populating the shared ensemble (after a solution is found, a suspended OR-node is
woken at random). Pruning is not enabled.

Since there are many sources of randomness, we performed the experiments by averaging
10 results of a 10-fold cross-validation. This makes a total of 100 runs for each pair composed of
a method and a dataset.

The following table shows the mean accuracy and the standard deviation using the
different fusion techniques introduced in Section 3.6 for each dataset. We summarise the results
with the geometric means for each technique. The techniques studied are sum, product, maximum,
minimum, and arithmetic mean, all of which use the original vectors. In the table, we do not
include the experiments with geometric mean because they are equivalent to the results of product.
The multi-tree was generated by exploring 100 suspended OR-nodes, thus giving thousands of
possible hypotheses (with much less required memory than 100 non-shared hypotheses).
According to the experiments, the best fusion technique was maximum. Thus, we will use this
fusion method to study the effect of applying the transformations on the vector.

57

Arit. Sum. Prod. Max. Min.
Acc. |Dev. || Acc. | Dev.|| Acc. |Dev. || Acc. | Dev. || Acc. [Dev.
1 80.69| 5.01 ([81.24| 4.66 |(76.61| 5.04 ||83.02|4.76 (|76.61| 5.04
2 91.22] 2.25 ([91.25] 2.26 |[23.38| 3.65 {|90.90(2.09 (|83.38] 3.65
3 94.17] 4.06 ||94.34| 3.87 (|89.06] 5.19 [|94.00(4.05 ||89.06{ 5.19
1 80.09] 6.26 ||79.91| 6.13 ||76.97| 7.14 (|80.09(6.11 ||76.97| 7.14
5 95.63] 3.19 ||95.77| 3.18 (|93.28| 3.71 [|95.93| 2.81 ||93.28| 3.71
6 94.53| 5.39 ([94.20] 5.66 |(94.00| 5.34 ||94.47|5.45 (|94.40| 5.34
7 99.67] 1.30 |(99.71| 1.18 (|81.00] 8.60 [|99.89(0.51 ||81.00{ 8.60
8 73.35] 5.86 ||73.73| 5.82 ||74.53| 5.25 ||77.15| 5.88 ||74.53 5.25
9 97.87] 2.00 ||97.91| 1.80 (|97.58| 2.45 [|97.62| 1.93 ||97.58 2.45
10 94.52| 4.25 ([93.76] 5.10((92.05| 5.71 ||92.57| 5.43 (|92.05| 5.71
11 62.50|16.76|(63.25|16.93||61.63|17.61(|67.13|14.61(|/61.63|17.61
12 97.50| 8.33 ([97.50| 9.06 |(97.75| 8.02 ||94.75(11.94(|97.75| 8.02
13 63.60]12.59(|64.33(11.74(|62.00|12.26(|163.93(12.03||62.00{12.26
14 81.73] 3.82 ||82.04| 3.78 ||78.93] 3.73 [|82.68(3.97 ||78.93| 3.73
15 94.06] 6.00 ||93.88(6.42 (|91.47| 7.11 [|92.53|6.99 ||91.47| 7.11
Geomean||85.83]| 4.72 [|85.99] 4.71 ||82.53| 5.93 (|86.40(4.52 |[82.55] 5.93

Comparison between fusion techniques

The next table illustrates the results for accuracy using the original vector and the good loser,
bad loser, majority and difference transformations. According to these experiments, all
transformations get very similar results, except from majority. We will use the combination
“max + difference” in the following experiments.

Max + Orig||Max 4+ Good||Max + Bad||Max + Majo.||Max + Diff.

Acc.| Dev ||Acc.| Dev || Acc.| Dev |[Acc.| Dev ||Acc.| Dev
1 83.02| 4.76 (|83.02 4.76 ||83.02| 4.76 ||67.84| 6.61 |[|83.02] 4.76
2 90.90{ 2.09 (|90.90(2.09 (|90.90| 2.09 |(|81.48| 3.22 ||90.90| 2.09
3 94.00(4.05 |[94.00] 4.05 |(94.00| 4.05 ||79.97| 7.98 [|94.00| 4.05
4 80.09| 6.11 (|80.09(6.11 |[|80.09| 6.11 [|78.21 6.07 [|80.09] 6.11
5 95.93| 2.81 (|95.93| 2.81 [|95.93| 2.81 [|89.44| 4.84 ||95.93]| 2.81
6 94.47| 5.45 (|94.47| 5.45 ||94.47| 5.45 [|91.47(6.90 |/94.47| 5.45
7 99.89(0.51 |[99.89] 0.51 [[99.89| 0.51 ||77.58] 6.29 [|99.89| 0.51
8 77.15| 5.88 [|77.15] 5.88 ||77.15| 5.88 [|83.42 5.06 ||77.15] 5.88
9 97.62| 1.93 [|97.62 1.93 ||97.62| 1.93 [|90.40| 4.02 ||97.62] 1.93
10 92.57| 5.43 [|92.57| 5.43 ||92.57| 5.43 |[|89.14| 6.74 ||92.57| 5.43
11 67.13| 14.61 |[67.13]| 14.61 ||67.13|14.61 ||68.25]| 15.33 ||67.00| 14.60
12 94.75| 11.94 (|94.75(11.94 ||94.75| 11.94 ||50.75| 28.08 ||94.75|11.94
13 63.93| 12.03 (|63.87| 12.14 ||63.93| 12.03 [|60.93| 11.45 ||65.13] 12.53
14 82.68| 3.97 (|82.68(3.97 ||82.68| 3.97 [|68.26 4.35 |[|82.68]| 3.97
15 92.53| 6.99 |(92.53| 6.99 |[92.53| 6.99 ||78.41] 11.25 ||92.53| 6.99
Gmean||86.40| 4.52 |[86.39| 4.53 ||86.40| 4.52 |[76.11| 7.19 ||86.49| 4.54

Comparison between vector transformation methods

4.6 Combination Accuracy as Multi-tree is Bigger

Let us study now the influence of the size of the multi-tree, varying from 1 to 1,000 explored
OR-nodes. The results have been obtained with the combination “max + difference”. The next
table shows the accuracy obtained using the shared ensembles depending on the number of OR-
nodes opened.

58

The results indicate that the greater the population of the multi-tree the better the results of the
combination are. A saturation point is not arrived in most of the datasets (at least for 1000 open

second trees).

1 10 100 1000
Acc. | Dev. || Acc. | Dev. || Acc. [Dev. || Acc. |Dev.
1 76.82| 4.99 |[77.89] 5.18 ||83.02| 4.76 || 87.68 | 4.14
2 89.01| 2.02 |[89.34]| 2.20 ||90.90| 2.09 |[91.53 [2.08
3 90.00| 4.72 |[91.43] 4.67 ||94.00| 4.05 || 94.00 | 4.05
4 77.55| 6.96 |[78.58| 6.84 ||20.09| 6.11 || 80.09 | 6.11
5 93.63| 3.57 [|94.56(3.41 (|95.93| 2.81 || 95.56 | 2.83
6 94.67| 5.84 |[94.27| 5.69 ||94.47| 5.45 || 95.00 | 5.14
7 92.25| 6.27 |[96.45] 4.15 |[99.89| 0.51 ||{100.00| 0.01
8 74.83| 5.17 |[75.33] 5.11 ||77.15| 5.88 || 82.40 | 4.52
9 7.55] 1.89 ||97.84] 1.86 ||97.62| 1.93 || 97.75 | 1.92
10 [[92.62] 5.22 [|93.43 5.05 ||92.57| 5.43 || 90.76 | 5.89
11 |[60.88]17.91(|63.00(15.88||67.00{14.60|| 68.13 |15.11
12 7.25| 9.33 ([96.00(10.49(|194.75|11.94|[95.50 (10.88
13 [[62.93]12.51(|65.00(12.19||65.13[12.53|| 65.33 |12.92
14 78.22]1 4.25 [|79.23[4.03 (|82.68(3.97 || 84.65 | 3.34
15 [[93.12] 6.95 [|93.29(6.31 [|92.53]6.99 || 92.99 | 5.00
Gmean||83.88| 5.52 ||84.91] 5.30 ||86.49| 4.54 || 87.47 [4.47

Influence of the size of the multitree

4.7 The relevance of Second Tree Opening Criterion

Some of the previous results were obtained for “second tree opening criterion” = “rival ratio”.
and some other with “second tree opening criterion” = “random”. This was the criterion used in

the first versions of SMILES.

However, later on, we designed new second tree opening criteria and realised that many
other criteria behave much better that “rival ratio”. As we have shown in Section 3.5, these are

the possible other options:
% - second tree opening
opening=split optimality
openi ng=optimality rival
openi ng=optimality rival
openi ng=optinmality rival
openi ng=optinmality rival
second tree openi ng=second topnost
%second tree openi ng=second bottommost
%second tree openi ng=second random
%second tree openi ng=second random depth

%second tree
%second tree
%second tree
Y%second tree
Y%second tree

The first results were surprising. Simple criteria such as TopMost or Random were much better
than rival ratio with lower number of trees, both for select best solution (Occam) or for
combination. We did the experiments with just one dataset: cars.

how to sel ect the 2ond node to explore

59

ratio

rati o depth
rati o conmponent

rati o conponent

random

Method 1 10 100 500 1000 5000 10000
Rival Ratio - Occam Best

carsl- 0.894 0.894 0.898 0.896 0.896 0.898 0.898
TopMost - Occam Best

carsl- 0.894 0.883 0.883 0.884 0.884 0.889 0.890
Bottom Most- Occam Best

carsl- 0.894 0.890 0.902 0.894 0.898 0.895 0.895
Rival Ratio - Combination

carsl- 0.894 0.902 0.896 0.897 0.904 0.925 0.933
BottomMost - Combination

carsl- 0.894 0.903 0.899 0.890 0.894 0.918 0.907
TopMost - Combination

carsl- 0.894 0.925 0.934 0.934 0.931 0.925 0.913
Random - Combination

carsl- 0.894 0.895 0.912 0.924 0.92 0.911 0.91

Figure 3. Effect on accuracy depending on several second tree opening methods

Figure 5 shows that the best single solution results are obtained for BottomMost at 100 with
Occam: 0.902 accuracy, whereas for combination the topmost at 100 also gets the maximum
with TopMost: 0.934. Rival Ratio seems to have the maximum later, at 10000 opened trees.

If we restrict to just combination and 1000 second trees for different datasets, we have a
clearer portrait of the several second tree opening methods (RivalRatio, Front (LIFO), Back
(FIFO), BottomMost, TopMost and Random), as we can see in the following table:

Dataset || RivalR | time Front | time Back | time || Bottm | time || TopMost | time Rand. | time
cars 0.904 0.69 0.932 22.9 0.904 0.6 0.894 0.56 0.931 83.84 0.920 4.8
nursery 0.951 3.4 0.967 | 101.2 0.926 1.0 0.962 0.92 0.970 13245 0.967 21.3
tae 0.6 3.8 0.6 84.5 0.6 0.3 0.6 0.34 0.613 316.8 0.613 28.9
monksl 0.991 0.7 1 5.4 0.97 0.34 0.956 0.26 1 12.2 1 2.1
monks2 0.734 1.58 0.771 18.64 0.773 0.31 0.724 0.26 0.773 54.1 0.773 4.6
monks3 0.919 0.94 0.949 5.39 0.891 0.26 0.926 0.27 0.947 12.3 0.947 2.3
means 0.850 1.85 || 0.870 | 39.7 0.844 | 0.47 0.844 0.44 0.872 2287 0.870 | 10.7

Figure 4. Effect on combination accuracy depending on several second tree opening methods

The best results are obtained with TopMost. However, the required time is much higher than
for the other methods. In fact, with TopMost we lose the shared parts between trees and the
multitree method is similar to a forest method. After this result, it seems that the “Random”
option obtains high accuracy relatively quick. “RivalRatio” also seems a compromise between
accuracy and time. Note that these results depend, in the end, on the mean depth at which
second tree openings are performed.

Finally, we can corroborate the previous results if we make a selection of methods and
study them with variable number of trees (1 tree, RivalRatio 1000, TopMost 100 and 1000, and
Random 100, 1000 and 10000):

[[Dataset Sol-1 RIR1000 TMLOD TMI1000 R100 R1000 R10000
cars 0.824 0.904 0.934 0.931 0.912 0.920 0.907
nursery 0.924 0.951 0.969 0.970 0.948 0.967 0.969
tae 0.6 0.6 0.6 0.613 0.613 0.613 0.6
monksl 1 0.991 1 1 1 1 0.977
monks2 0.741 0.734 0.766 0.773 0.766 0.773 0.762
monks3 0.866 0.919 0.947 0.947 0.944 0.947 0.928
means 0.826 0.850 0.869 0.872 0.864 0.87 0.857

Figure 5. Effect on combination accuracy depending on several second tree opening methods

60

Again the best results are obtained with TopMost and, again, the required time is much higher
than random. In fact, we have only been able to arrive to 10.000 for all datasets with the random
option. However, the accuracy has not been increased further.

A more technical discussion about how all these methods work and more results can be
found at [27].

4.8 Archetype Expertise

The archetype is one of the new and innovative features in SMILES that better take advantage
of the multi-tree structure. With it, SMILES is able to obtain a highly accurate and, at the same
time, comprehensible hypothesis.

We are going to illustrate how to generate good archetypes. For the experiments, we used
GainRatio as splitting criterion. We chose a random method for populating the shared ensemble
(after a solution is found, a suspended OR-node is woken at random) and we used the
maximum fusion strategy for combination. As usual, we used several datasets from the UCI
dataset repository. The following table shows the dataset name, the size in number of examples,
the number of classes, the nominal and numerical attributes.

7 Dataset Size |Classes |[Nom.Attr.|Num.Attr.
1 monks1 566 2 6 0
2 monks2 601 2 6 0
3 monks3 554 2 6 0
4 tic-tac 958 2 8 0
5 house-votes | 435 2 16 0
6 ||post-operative| 87 3 7 1
7 || balance-scale | 625 3 0 4
8 [|soybean-small| 35 4 35 0
9 || dermatology | 358 6 33 1
10 cars 1728 4 5 0
11 tae 151 3 2 3
12|| new-thyroid | 215 3 0 5
13 ecoli 336 8 0 7

Since there are many sources of randomness, we have performed the experiments by averaging
10 results of a 10-fold cross-validation. This makes a total of 100 runs (each one with a different
multi-tree construction, random dataset and hypothesis selection process) for each pair of
method and dataset.

In the experiments, we will use the following notation:

First Solution: this is the solution given by just one hypothesis (the first hypothesis
that is obtained). This is similar to C4.5.
Combined Solution: this is the solution given by combining the results of the
ensemble (in our case, the multi-tree, as described in the previous section).
Archetype Solution: this is the single solution which is most similar to the
combined solution.
Occam Solution: this is the single solution with the lowest number of rules, i.e., the
shortest solution.
It is not our purpose now to evaluate the improvement of the Combined Solution over the First
Solution using shared ensembles. We have done that in previous section. We have not included

the results using post-pruning because it does not improve the performance of any of the four
kinds of solutions. Our goal is to show that a significant gain can be obtained from the First

61

Solution to the Archetype and Occam methods as long as the size of the ensemble increases.
Another question to be answered is to determine which method to extract a single solution from
an ensemble is better: Archetype or Occam.

The first thing we are going to study is the similarity metric. As we saw, there are three
possibilities:
simlarity method for comnbination to single=kappa
%imlarity nethod for comnbination to single=kappal
%imlarity nethod for comnbination to single=gstat

The next table shows the accuracy for each pair composed of a dataset and a method and the
geometric means for each method. The methods studied are First, Combined and Archetype.
The latter uses three different similarity metrics kappa, theta (kappa2) and Q (gstat). The multi-
tree has been generated exploring 100 suspended OR-nodes.

1st |Comb|Arc. k[Arc. 6|Arc. Q
92.3 | 100 100 100 100
74.8 | 774 | 76.1 | 76.2 | 75.8
97.5| 97.5 | 97.6 | 97.6 | 97.6
78.2 | 82.7 | 78.2 | 7T8.3 | 78.5
93.6 | 96.0 | 94.4 | 93.9 | 94.2
60.9 | 66.3 | 63.8 | 64.3 | 61.9
76.8 | 83.1 | 80.1 | 80.1 | 79.8
97.3] 96.5 | 96.5 | 91.0 | 47.0
89.8 1 93.6 | 90.6 | 89.9 | 74.3
10 89.0 | 91.0 | 89.6 | 89.6 | 89.3
11 62.9 | 64.5 | 61.9 | 62.9 49.8
12 92.6 | 92.6 | 92.8 | 92.9 91.4
13 775|799 | 79.4 | 7T8.9 | 76.7
gmeans||82.41|85.45| 83.78 | 83.45 | 76.24

© 00~k w3

As expected, hypothesis combination improves the accuracy w.r.t. the first single tree. The use
of the archetype method also obtains good results. On the other hand, the results show that the
Archetype method is very dependent on the measure of similarity used: kappa seems to be the
best metric and Q the worst (it even obtains lower accuracy than the first single hypothesis).

The next thing we are going to study is the size of the invented dataset. Similarity is
approximated through the use of an invented dataset. Let us study the influence of its size,
varying from 10 to 100,000 examples. The similarity metric and the size of the multi-tree are
fixed to kappa and 100 alternative opened OR-trees, respectively.

62

10 100 | 1000 |10000]|100000
Comb|| Arc | Arc | Arc | Arc Arc
99.8 (| 72.3193.3[99.8 | 100 99.9
77.3 || 64.6 | 61.0| 75.2 | 76.1 | 76.2
97.6 || 82.9|94.5]|97.6 | 97.6 97.6
82.9 (1 65.9|70.3|78.0| 78.2 78.6
95.8 || 73.7(192.4194.4| 94.4 | 93.8
67.5 || 69.1 | 63.6 | 63.9 | 63.8 63.5
83.0 ||62.5 | 75.4 | 79.4 | 80.1 79.9
95.0 || 68.8 193.3[95.0(96.5 96.5
93.6 || 45.6 | 84.7 | 90.5 | 90.6 89.9
10 91.0 ||71.0 | 75.4 | 88.1 | 89.6 89.8
11 63.7 ||44.3 | 54.3 |1 59.1 | 61.9 61.2
12 92.5 (| 73.8 | 89.3[91.3] 92.8 92.6
13 80.0 ||46.8 | 73.9 | 77.9 | 79.4 79.0
gmeans|| 85.36 |[63.57|77.40|82.88|83.78 | 83.57

© 00~ oUW R

The previous table shows that in order to obtain a good archetype hypothesis, the similarity
metric has to be computed as accurately as possible. Although it depends on the dataset, a size
of 10,000 invented examples seems to be sufficient.

Now, we are going to study the influence of the size of the multitree. The effect of the size
of the multi-tree is evaluated in the following table.

1 10 100 1000

1st |[[Comb| Arc | Occ |#Sol||Comb| Arc | Occ #5Sol Comb| Arc | Oce #Sol

923 ([96.1 [96.0[96.5] 107 || 100 | 100 | 100 [8.7 x 10¥ || 100 | 100 | 100 [1.6 x 10™°
74.8 || 74.9 | 74.3 | 74.3 | 148 || 77.4 | 76.1 | 72.5 |2.6 x 100 82.3 | 82.1 | 70.4 [3.2 x 1020
97.5 || 97.7 |97.7 |97.6 | 46 || 97.5 | 97.6 |97.5| 80 x 10* || 97.7 | 97.7 [97.6 |7.1 x 10**
78.2 || 79.0 [78.1 | 78.3 | 257 || 82.7 | 78.2 | 78.6 [2.7 x 10'?|| 84.6 | 79.8 | 79.5 [3.1 x 10%®
93.6 | 94.9 | 942939 | 63 || 96.0 |94.4 [93.6 | 26 x 10° || 95.7 [94.1 | 93.9 [5.6 x 10!
60.9 || 63.8 |61.8|60.0| 55 || 66.3 |63.8|62.3| 59674 68.5 | 65.9 | 62.1 | 2.1 x 10°
76.8 || 77.9 | 77.2 | 76.8 | 131 || 83.1 | 80.1 | 76.7 | 3.4 x 10° || 88.0 | 83.5 [76.8 |1.2 x 10'%
97.3 || 97.0 |98.0 |97.5| 23 || 96.5 | 96.5 | 96.8 | 38737 95.0 [93.3]96.3 [1.8 x 10'®
80.8 || 91.3 [90.6 [90.1| 92 [93.6 | 90.6|90.2 3.3 % 107 || 93.8 [91.1 | 90.8 [1.2 x 10'°
10 (| 89.0 || 89.6 | 89.1 | 89.0 | 151 || 91.0 [89.6 [89.1 [1.7 x 10° || 91.6 | 90.0 | 89.1 |2.8 x 10**
11 || 62.9| 62.5 [62.3|61.9| 97 || 64.5 [61.9|62.1 |1.5 x 10° || 64.5 | 60.9 [61.1 |4.6 x 10'*
12 ||92.6 | 932 926|926 | 26 || 92.6 [92.8|93.0| 3392 90.7 | 92.6 | 93.7 | 6.1 x 107
13 || 775 79.1 | 77.6 |77.8 | 57 || 79.9 | 79.4|78.4| 1134750 | 80.3 | 78.2 | 77.0 | 3.8 x 10°
gm.|[82.41]83.49 [82.85[82.55(78.31]/ 85.45 [83.78[82.01[1.3 x 107 || 86.44 [84.49[82.65]6.2 x 10™*

Do oUW =3

In this table, we show the accuracy of the first single solution and the accuracy of the
combination, the archetype solution and the Occam solution for multi-trees created by
exploring 10, 100, and 1000 alternative OR-nodes!. We also include the geometric average
number of solutions in the multi-tree (#Sol). Note that with 100 OR-nodes, we obtain millions of
solutions with much less required memory than 100 non-shared hypotheses.

The results are quite encouraging: by simply exploring 10 OR-nodes, the archetype solution
surpasses the first solution and the Occam solution. This difference is increased as long as the
multi-tree is populated. This is mainly due to the improvement in the accuracy of the combined
solution and the fact that the archetype hypothesis can actually get close to it. The Occam
solution does not seem to be improved by larger multi-trees. Nevertheless, the Occam

1 The experiments for datasets 9 and 13 have been performed exploring only 300 and 500 alternative OR-
nodes, respectively.

63

hypothesis can also be regarded as a way to obtain more and more compact solutions without
losing accuracy.

Finally, it should be said that we can combine the archetype with occam and with testcost
criteria. This possibility has not been fully evaluated.

4.9 Forgetting Suspended Nodes

As we introduced in section 3.5, SMILES presents “suspended nodes forgetting” methods:
% - suspended nodes forgetting: nust al
suspended nodes forgetting=maintain al

Y%suspended
Y%suspended
Y%suspended
Y%suspended
Y%suspended

nodes
nodes
nodes
nodes
nodes

forgetti ng=mai ntain
forgetti ng=mai ntain
forgetti ng=mai ntain
forgetti ng=nmai ntain
forgetti ng=mai ntain

const
| og random
| og random wi th depth
| og random wi th squared depth
|l og random wi th depth adj usted

random

suspended nodes mai nt ai ned?

The following table shows how the previous methods affect on accuracy, time and memory (all
results are with C4.5 splitting criterion with smoothing, 100 trees and 10x10 cross-validation):

CONST LOG | LOGWITH | LOGWITH LOG WITH
DATASET | MAINTAIN: | ALL | pANDOM (2) | RANDOM | DEPTH | DEPTHSQRT | DEPTH ADJ. (+8)
MONKS2 | Memory 3900K | 2400K 2300K | 450K 850K 2500K
Time (sec) | 0.38 0.27 0.36 0.095 0.17 0.43
First Sol. 7483 | 74.83 74.83 74.83 74.83 74.83
Comb 7715 | 7687 77.47 75.85 76.2 77.83
Best 72.8 72.47 72.67 74.88 74.68 72.8
WINE Memory 32000K | 2100K 300K 1800K 2100K 1800K
Time (sec) | 3.30 2.43 0.83 0.84 2.91 3.25
First Sol. 9312 [9312 93.12 93.12 93.12 93.12
Comb 9253 | 92.76 93.05 92.77 92.35 93.17
Best 9329 | 9324 93.12 93.53 93.29 93.24
BALANCE | Memory 10000K | 3000K 3000K | 4500K 3700K 3800K
Time (sec) | 1.30 0.52 72.07 2.2 1.56 1.65
First Sol. 7682 | 76.82 76.82 76.82 76.82 76.82
Comb 8301 | 8147 82.14 85.24 84.92 85.03
Best 76.87 | 76.55 76.55 76.76 76.79 76.72
POSTOPER | Memory 3500K | 1800K 1800K | 400K 1300K 2000K
Time (sec) | 0.33 0.19 0.24 0.12 0.36 0.46
First Sol. 60.88 | 60.88 60.88 60.88 60.88 60.88
Comb 67.0 66.25 66.88 65.25 67.63 67.5
Best 60.88 | 60.88 60.88 60.75 62.75 62.75
GEOMEAN | Memory 8130 2284 1389 1099 1712 2418
Time (sec.) | 0.86 0.5 151 0.38 0.73 1.01
FirstSol. | 7556 | 75.56 75.56 75.56 75.56 75.56
Comb 7938 | 78.76 79.33 79.09 79.73 80.32
Best 7508 | 74.91 74.94 75.6 76.12 75.61

According to these experimental results, LOG WITH

64

DEPTH is the most economical option,
either in memory and in time, and results are not significantly deteriorated. If time is not a

problem (and just memory), LOG WITH DEPTH ADJUSTED is also a good option because it
even increases accuracy in some cases. However, more datasets and types of combination
should be studied in order to make a more reliable conclusion about these options.

4.10 Comparison with other systems

To conclude this section we compare the more popular thing of machine learning algorithms:
their top accuracy. Although we have argued that comparing AUC, comprehensibility, test
costs or other issues is at least equally important, accuracy and resources are usually used in the
literature to compare some systems.

The following results use SMILES with a C4.5 splitting criterion, random population of the
multi-tree, original + max fusion and no pruning.

Bagging Boosting Multi-tree
10 100 300 10 100 | 300 10 | 100 | 300
balance-scale |[82.24| 82.76 | 82.87 (|78.72|76.00|75.60(|77.89|83.02| 85.50
cars 93.89(94.36 | 94.29 ||95.92(97.07|97.15(|89.34|90.90(91.53
dermatology (|96.40(897.19 | 97.30 [|96.62]|96.51|96.65((91.43[94.00| 95.71
ecoli 83.90(85.15 | 85.56 ||83.66(84.29|84.20(|78.58|80.09(79.64
house-votes |(|95.40| 95.73 | 95.77 ||95.19]|95.24(95.42(|94.56]|95.93| 96.21
1ris 94.20(94.27 | 94.53 ||94.20(94.53|94.53||94.27|94.47| 94.47

monksl 99.95(100.00|100.00|(99.46]|99.46|99 .46||96.45|99.89|100.00
monks?2 65.52| 67.51 [67.94 |[76.67(82.17|83.40||75.33|77.15(79.37
monks3 98.76| 98.88 [98.88 |[97.96(97.92|97.92|(97.84|97.62| 97.65
new-thyroid [|94.33| 94.66 | 94.81 ||94.98|95.31(95.22(|93.43|92.57| 92.71
post-operative|[63.11| 64.89 | 64.78 ||59.67]59.00|59.00|(|63.00|67.00| 67.75
soybean-small ||97.75| 97.95 | 97.95 ||97.95|97.95(97.95||96.00(94.75| 95.75

tae 60.10{ 61.11 | 61.05 ||64.81|64.81|64.81|(65.00(65.13| 65.40
tic-tac 83.06| 84.05 [83.91 |[82.11(82.62|82.55|(79.23|82.68| 83.72
wine 94.90| 95.90 [96.35 |[95.90(96.85|96.57|(93.29|92.53(91.94

GeoMean 85.77| 86.59 | 87.03 [|86.61(86.99(86.70(|84.91(86.49| 87.16

Accuracy comparison between ensemble methods.

The previous table presents a comparison of accuracy between our system (multi-tree), boosting
and bagging, depending on the number of iterations. We have employed the Weka
implementation (http://ww. cs. wai kat 0. ac. nz/ ~m / weka/) of these two ensemble
methods.

For all the experiments we have used GainRatio as splitting criterion, and we have chosen a
simple random method for populating the multi-tree and a fusion strategy based on selecting
the branch that gives a maximum cardinality for the majority class.

The datasets have been extracted from the UCI repository [2]. The experiments were
performed with a Pentium 111-800Mhz with 180MB of memory running Linux 2.4.2. Since there
are many sources of randomness, we have performed the experiments by averaging 10 results
of a 10-fold cross-validation (1500 runs in total). The results present the mean accuracy for each
dataset, and finally the geometric mean of all the datasets. Although initially our method
obtains lower results with a few iterations, with a higher number of iterations it surpasses the
other systems.

A similar portrait is shown graphically below. The fusion method is “original + max”:

65

Accuracy

87,5

87

86,5 -

[e-]
(=2}
|

® Boosting
¢ Bagging
v Multitree

% Accuracy
[«-]
[+-] o
[#)] [#)]

84,5

83,51~ . i ‘ . .

T T T T T T T T T
1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

lterations
Accuracy comparison between ensemble methods

Nevertheless, the major advantage of the method is appreciated by looking at the consumption
of resources. We have argued that a multitree has a great advantage over a forest because the
former shares the common parts between several trees whereas the latter codes and stores the
several trees separately. This, in theory, must have consequences on both space and time
requirements. As we will see in the following graphs, this is the case.

The following figure shows the average training time depending on the number of
iterations (1-300) for the three methods. Note that the time increase of Bagging is linear, as
expected. Boosting behaves better with high values because the algorithm implemented in
Weka trickily stops the learning if it does not detect a significant increasing of accuracy. Finally,
SMILES presents a sub-linear increase of required time due to the sharing of common
components of the multi-tree structure.

Time

B Boosting
¢ Bagging
v Multi-tree

0 T T T T T T T T T T T T T T T
1 20 40 60 80 100 120 140 160 180 200 220 240 260 230 300

[terations

Time comparison between ensemble methods

66

We have performed the comparison where this can be done. There are lot of features in SMILES
that do not exist in other systems: archetype, size minimisation, misclassification cost
minimisation, test cost minimisation, ROC analysis, ROC-inspired splitting criteria, etc.

5 Short Programmer’s Manual

SMILES has been implemented on the C++ Programming Language [60][31]. There are some
reasons for this: C++ is a powerful language, standardised and portable, efficient and with a lot
of mathematical and ML-related software.

5.1 Summary of source files: classes and functions
The following table shows the different files that compose the system:

file description classes or structs functions
components | .h | .cpp | for constructing and handling component component_matrix get_partition
matrices
cost .h | .cpp | for computing MDL-related measures vindex, tindex compute_cost,
calcula_partv
criteria .h | .cpp | for computing some criteria and defines split_selection_criteria,
structures related to these options split_partition, ...
estructures | .h some basic definitions about types argument, variable,
discrete, numeric
evaluate .h | .cpp | for the statistics for evaluating trees including | class_matrix,
cost and confusion matrix evaluation_statistics
exemples | .h for defining and handling (sampling) datasets | example, dataset randomGenerator
getopt h part of the GNU C library for handling
command-line arguments
main .Cpp | main program: reads options and arguments, main
creates the multitree, learns and evaluates
results.
options .h | .cpp | defines many options and the options class | options default_options,
hardwired_options,
trau_opcions
options-file | .h | .cpp | for parsing the option file ompli_options
parser .h | .cpp | parser for the dataset files ompli_memoria
roc .h | .cpp | ROC facilities compute_ROC_points,
compute_ROC_AREA,
genera_ps
rules .h | .cpp | defines basics of rules condition, rule
temps .h | .cpp | utilities for handling time start_st, stop_st,
pulsos_a_segs, vore_st
trees .h | .cpp | largest source file with the main learning tree, and_tree,
functions or_tree, multi_tree
utils .h | .cpp | some utilities: mathematical and output Pause, log2, logbase, Sqr,
functions RandUniform, RandNormal

5.2 Main source files
The most basic definitions and types are in the file “estructures.h”

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

unsi gned char byte

unsi gned short int word;
unsi gned | ong wor d4;
float nureric;
byt e di screte;
int variabl e;

/1 used for nunerical
/1 used for nomi nal
/1 used for variables

67

attributes
attributes

typedef word4 indext; /1 used for indexes in datasets

typedef enum { EMPTY, CONST_EQ CONST_NEQ VAR EQ VAR NEQ NUM LT, NUM GE } cond_op
/1 kind of operators in conditions

typedef enum { NUMERI C KI ND, DI SCRETE KI ND, VARI ABLE KIND } ki nd;

/1 kinds of argunments

typedef vector <string> argtable; /1 argunent val ues nane

typedef vector <argtable> exetablet; // table of several arguments val ues nanes
typedef byte indargtable

typedef word argoffsetyv; /1 offset of argunents in tables
typedef argoffsetv argoffsett

typedef word sizeexanpl et; /1 size of exanple

t ypedef vector<i ndext> vdistt; /1 class distribution

typedef vector<kind> typest; /1 vector of Kkinds

cl ass argumnent; /1 argunent

From these definitions the main components of a solution (conditions and rules) can be easily
defined:

class condition {

/1 constructs a condition with an operator and an argunent
condi tion(cond_op o, argunment v)

/1 checks if two conditions are added over the sane argunent
bool Speci alises(const condition &2) const;

b

class rule {
/1 constructs a rule of n argunents (n+l if we consider the class)
rule(int n);

/1 copy constructor
rul e(const rule &r)

/1 adds a condition to argunent a of the rule
bool Add_Condition(int a, const condition &c)

/1 converts the rule to string (to be shown, for instance)
string ToStringUnfol ded(char * FNanme, const dataset & DataSet, bool Short= false)
}

In the files “examples.h” and “examples.cpp” the class dataset is implemented. These are the

main methods:
/1 constructs a training set froma file
dat aset (const string & file)

/1 constructs a test set froma file and naintaining the structure of a training set
dat aset (const string & ile, const dataset &dtrain)
cvdi st (dtrain. NunC asses())

/1 shows a dat aset
voi d show()

/1 shows class distribution
voi d show_vdi st ()

/1 Returns the nth argunent (narg) of exanple nex
argunent Nth_arg(indext nex ,int narg) const

/]l Qotains a set of the real values (nuneric). Used for intervals in partitions
void OrderedSet Of Real sOF (i nt narg, set<nuneric> &, const vector<indext> &Cover ed)
const

/1 Conputes if argunent i of exanple e follows condition ¢
bool FollowsCondition(int i, const condition & c, indext e) const

/1 Qbtains the classes of all exanples in a vector
voi d Obtai n_Results(vector<di screte> & esults)

/1 Returns the class of exanple
inline discrete ClassO (indext i) const

/1 Returns the kind (nuneric, discrete) of an argunent.
ki nd Ki ndOf (i nt a) const

68

/1 Returns the type of an argunent
int TypeO'(int a) const

/1 Return the nunber of argunents of the dataset (wi thout including the class)
int NumArgunents() const

/1 Returns the nunber of constants of argunent a
di screte NunConstants(int a) const

/'l Returns the nunber of classes of the dataset
di screte NunC asses() const

/1 Returns if rule r covers exanple e
bool Covers(const rule & r, indext e) const

/!l Returns the cardinality of the dataset
i ndext Cardinality() const

/!l Returns the class distribution of the dataset
vdi stt O assDistribution() const

/1 Returns the majority class of the dataset
di screte MajorityC ass() const

/! Returns the frequency of class C
float FregOd ass(int C) const

/1 Returns the nane of value v of argunent a
string NaneArgunentVal ue(int a, discrete v) const

/1 Returns the nane of class with value v
string NanmeC assVal ue(di screte v) const

/! Returns the name of class with value v
string Get Nane(discrete v) const

/1 Returns the weight of class v
nuneric Get Wei ght (di screte v) const

/1 Set weights of classes to 1
voi d Set Wi ght sTol()

/1 Set weights to inverse frequency of the classes using Param
voi d Set Wi ght sTol nvFreq(fl oat Param

/'l Recovers the value of an argunent fromthe argunent and the nane
di screte Getlndex(word numarg, char * arg) const

/1 Extracts a % of the exanples randominly putting themin a new dataset New

voi d RandonExtract (nuneric pcn, dataset & New)
From here, learning structures can be further constructed. In this sense, probably the most
important and complex source file is “trees.h”. A lot of methods of the tree, and_tree, or_tree
and multitree classes are defined in this file because they are inline.

The structure of the multitree is defined in the files “trees.h” and “trees.cpp”. The trees can
be traversed bi-directionally. The classes “and_tree” and “or_tree” are specialisations of tree
such that the parent and children of an and_tree are or_trees and the parent and children of an
or_tree are and_trees. With this construction, a multitree is a class that contains a root node that
isan and_tree.

Let us take a look to the public methods of the multitree:

/1 Constructs the multitree
mul titree(const dataset & Train, options &Opt)

/1l Learns the multitree
voi d Learn(const dataset &Train,const dataset &Validation_Test)

/] Obtains N solutions: a vector of vector of nodes
void Qbtai nNBestDifferent(int n, vector<vector<and_tree *> > &Sol uti ons)

/1 Unmarks and marks a nultitree according to a solutions (set of |eaf nodes)
voi d Mark(const vector<and_tree *> Sol)

/1 Shows the solutions of a nultitree given as argunent
voi d Show(const vector<and_tree *> Sol, char *Functi onNane)

69

/] Ootains a vector of class results using the marks in the OR nodes
voi d Resul t _as_Marked(const dataset &Test, const options &ptions, vector<discrete>
&Resul t s)

/1 Predict the class using the marks in the OR nodes
di screte PredictMarked(and_tree *Actual _AND Node, indext i, const dataset & Test)

/1 Fill all leaf nodes with their "TestDistribution"
void Fill TestDistribution(const dataset &Test)

/1 Show all Rules of Miltitree
string ShowAl | Rul es(char *Functi onName, const dataset &DataSet, bool Short) const;

/1 Show tree in the formof rules. Obsolete
string ShowTreeBest (char *Functi onNane, const dataset &DataSet, const dataset
&Val i dati on_Dat a, bool Short) const

// Qbtains the prediction of the best tree for exanple i of dataset Test
di screte PredictBest(indext i, const dataset & Test)

/] Qotain the prediction of a conbined solution with for exanple i of dataset Test
/1 Three function with three different conbination nethods

di screte PredictConb(indext i, const dataset & Test)

di screte Predict ConbVect (i ndext i, const dataset & Test)

di screte Predict CrossCoverage(indext i, const dataset & Test)

/1 Evaluates the best solution. Cbsolete
voi d Eval uat e(const dataset & Test, evaluation_statistics & Eval,options &Opti ons)
From here, the mai n function in “mai n. cpp” just reads options and arguments, creates the
multitree, learns and evaluates results. The main file has the following (simplified) structure:
Reads Options
Begi ns Loop for Cross-Validation
Reads Trai ni ng Set
Splits Training Set (if cross-validation or sanpling)
Reads Cost Information
Creates and Learns Miultitree
Shows Rul es (optional)
Prepares (or reads) Test Set
Eval uat es Conbi ned Results
Begi ns Loop for Different k Single Solutions
Ootains 1 Sol ution
Eval uates it
Shows it (optional)
ROC Anal ysi s (optional)
Ends Loop
Conputes Means for Different k Single Solutions
Accunul ates Sone Results
Destroys Dataset and Miultitree
Ends Loop
Conput es and Shows Cross-Validation Results (optional)

5.3 Default and hardwired options

Options structures and attributes (some of them defined in options.h and others in criteria.h)
are grouped together in a structure named “options”. The most important attributes of this
structure are:
struct options {
m ssi ng_nuneri c_val ues M ssi ngNuneri cVal ues;
reliability_calculation ReliabilityCalculation;
class_probability_vector_cal cul ati on C assProbabilityVectorCal cul ati on;
show_munber _sol uti ons ShowNunber Sol uti ons;

70

expected_error_options ExpectedError;

snmoot hi ng_opti ons Snoot hi ng;

snmoot hi ng_opti ons NodeSnoot hi ng;
probability_in_splitting_criteria ProbabilitylnSplittingCriteria;
out put _options Qutput;

nmultitree_options Miltitree;

sol uti on_conbi nati on Conb;
split_selection_criteria SSC

pruning_criterion PC

post _pruni ng_net hod Post Pruni nghMet hod;

nunerical _interval _criterion Interval Criterion;
vect or <bool > Enabl ed_Partitions;

wei ght s_opti ons Wi ghts;

cost_derived_probability_nmethod Cost_Derived_Probability_ Method;
class_matrix CostMatrix;

vect or <doubl e> Wi ght Vect or;

vect or <doubl e> Test Cost Vector; // vector of attribute test costs.
test_cost _nmet hod Test Cost Met hod;

test _cost_use Test Cost Use;

doubl e Test Cost Rel evancel nSplitting; // must be fromO0 to infinite.
doubl e Test Cost Rel evancel nSel ectBest; // nust be fromO to 1.

conponent _matrix Conmponents;

conponent _matri x AccConponents;

conponent _matri x RandonConponents;

bool Conponents_Reckoning; // if this is true the previous matrices are conputed
components_in_split_criterion Conponents_In_Split_Criterion;

fl oat Conponent sRandonfact or;

k_best _sel ecti on Sel ect KBest ;

sanpl e_traini ng_set Sanpl eTrai ni ngSet ;
cross_val idation CrossValidation;

fl oat Sanpl eTrai ni ngSet Proporti on;

i nt kFol dval i dati on;

i nt Repeat KFol d;

bool Al | owTest Wt hout Oned ass;

}

These options are assigned default values by the function “def aul t _opti ons” in “options.h”.
In case that the options file (usually called “options.cfg”) does not contain any entry about a
particular option, this default option will be used in SMILES.

However, not every option can be modified through the options file, especially some
parameters and the enabled partitions. In this case, only by modifying the program it is possible
to change one of these options. These options can be recognised in the function
“har dwi red_opti ons”. It is not difficult to change them by changing the sources, even with
little idea of C++ programming. The file to be modified is “options.cpp”. This is an excerpt of

this function which gives an idea of how easy it can be to modify one option:
voi d hardwi red_opti ons(options & ptions) {
Opt i ons. Conponent sRandonfact or = 0. 5;

Opt i ons. Snoot hi ng. n= 5;
Opti ons. Conponents_In_Split_Criterion. Met= NO USE_OF COVPONENT_I N_SPLIT;
Opt i ons. Sel ect KBest . Fact or For RandonConponent s= 0. 25;

71

vect or<bool > Part(4); // ACO SERIA M LLOR UN CONJUNT.

Par t [PARTI TI ON_MANY_CONST_EQ = true; /1 Partition X=a, X=b, X=c...
Par t [PARTI TI ON_ONE_CONST_EQ = fal se; [/l Partition X=a, Xl =a

Par t [PARTI TI ON_ONE_VARI ABLE_EQ = true; /1 Partition X=Y, Xl =Y

Par t [PARTI TI ON_ONE_CONST_DI SEQJ = true; /] Partition X<c, X>=c

Opti ons. Enabl ed_Partitions= Part;
}

The following section presents a summary of all the options and distinguish between the ones
that can be modified through the options file and the hardwired (only modifiable by program).

6 Options Summary

The following table shows all the options that the current system has, their description, whether
they are implemented or not, if there are some additional parameters and if they can be

modified through the options file (Y:yes, P:partially, N:no).

Issue Variants Impd | Parameters

NO_COMPUTE: It doesn't compute it. Best option if the Expected
Error is not going to be used.
RELATIVE_FREQUENCY_WITH_MAJORITY_CLASS: Expected
Error just as 1-freq of majority class.
RELATIVE_FREQUENCY_WITH_FREQ_PROB: Expected Error just

Expectgd Error Method. as = S(p)(1-p).

T,*]jf's option selects between [cost wiTH MINIMUM_CLASS: Computing the cost instead of

drl erent wazs 0 COMPUEE | oo by assuming that the class with minimum cost has been

the expected error. . assigned to the node.

Izee di):jpﬁcr:gi(:hirrrornljsni?t nor COST_WITH_FREQ_PROB: Computing the cost instead of error by

the selection critefion (sglit multiplying the probability of assigning a class with the cost

. P associated to that case. The probability is based on frequency.

and best solution) are based : -

onit. COST_WITH_COST_PROB: Computing the cost instead of error by
multiplying the probability of assigning a class with the cost
associated to that case. The probability is based on costs.
COST_WITH_COST_PROB_REL_FREQ_SECOND: The same as | NO
before but in case that two or more classes have the same cost use
the one with less expected error.
NO_SMOOTHING: the probability of a class is just computed as the
frequency of the examples of that class under a particular node.

_ LAPLACE: Laplace correction of relative frequency, i.e.,

Frequency Error Smoothing: p(c) = (n(c) + 1) / (n + NumClasses)

Use smoothing or not for K-ESTIMATE: aberration of Laplace correction:

every calculation of _

frequencies. pE) =(n(©) + k) /(n+k)

There are two options: M_ESTIMATE: M-estimate correction of relative frequency using the m

. . o frequencies of dataset, i.e.,

smoothing method” (for _

frequencies of each class). p(©) = (n(c) + fregem) / (n + m)

where freqc is the frequency of class ¢ for all the dataset.
“node smoothing” (for M_ESTIMATE_UNIFORM: M-estimate correction of relative m
frequencies of each node). frequency assuming uniform distribution of dataset, i.e.,
p(c) = (n(c) + freqm)/(n + m)
where freq = 1/ NumClasses.

If m=NClasses then M-ESTIMATE = LAPLACE.

72

MAJORITY_CLASS: the class with more instances in a node is
selected. When two or more classes have the same number of
instances, the most common one in the dataset is selected. If the
node has cardinality zero, then the majority class of the dataset is
selected.

MAJORITY_CLASS_WITH_SMOOTHING: With Laplace smoothing it | NO
is the same to use smoothing or not, but with other smoothing
methods may be different.

Class Selection Method: MIN_COST_CLASS: the class which minimises the cost is selected. | YES,

How the class of a leaf node | When two classes have the same cost, the majority class is selected. | but

is selected When cardinality is zero the one which minimises the cost (assuming | check
a uniform distribution) is selected.
MIN_COST_CLASS_WITHOUT_SMOOTHING: the same as before [NO
but does not use smoothing (in the case it is activated).
STRATIFICATION_CLASS: the class which maximises the benefit | YES,
(using the weight vector) is selected. When two classes have the | but
same benefit, the majority class is selected. When cardinality is zero, | check
the one which maximises the benefit (assuming a uniform
distribution) is selected.

Prediction reliability FREQUENCY RELIABILITY

calculation methods: LAPLACE RELIABILITY

Now this reliability is not

shown.

vector calculation methods

(this is used for the AUC LAPLACE CLASS PROBABILITY VECTOR

example by example)
PARTITION_MANY_CONST_EQ
/I Partition X=a, X=b, X=c...
PARTITION_ONE_CONST_EQ

Partitions: which partitions /[Partition X=a, X!=a

are active in the learning PARTITION_ONE_VARIABLE_EQ

process. Il Partition X=Y, X!=Y
PARTITION_ONE_CONST_DISEQ
/I Partition X<c, X>=c
PARTITION_BACKGROUND NO
Il Partition X=f{(...), X !=f(..)

" FIXED: Generate all the possible nodes using the active partitions.

Best_Partition_Set: way of : — - -

using the partitions. ADJUST. selgcts_ the partitions acp_ordmg to the problem by using a | NO
first round adjusting the active partitions.

Partitions Restriction / ASSOCIATION-CORRELATION NO | SUPPORT /

Priorisation: methods on how CONFIDENC

to restrict some partitions on E

some attributes using

association or correlation

information.

Numeric Interval Criterion: NO_LIMIT: all intervals given by the middle points of the values

how continuous attributes falling under the node.

are handled in each node in | L ASS_INTERVAL (C4.5). It just differs in efficiency with NO_LIMIT. | NO

order to generate the
thresholds (and how many)

Doesn't generate a threshold if the classes on both sides are the
same.

MAX(a): maximum number of intervals. It just orders the values and
splititin a segments...

LOG(a,b): like the previous one but the number of intervals is
obtained by: (a + logp n).

73

Discretisation based on reduction on Variance NO N
(see “Investigation and reduction of discretization variance in
decision tree induction” P. Geurts, L. Wehenkel. Proc. of ECML2000,
Barcelona, Spain, May 2000, @springer-verlag)
Classical (C4.5)
Kolmogorov-Smirnov (J.H. Firedman “A recursive
partitioning decision rule for nonparametric classifier)
|IEEE Transactions on Computers, C-26:404-408, 1977.
Median. (implemented MAX(1))
FROM_FREQUENCY NO_SMOOTHING Y
Pr_?babllltylm splllﬂ'”gl t FROM FREQUENCY SMOOTHING Y
criteria: only applicable to
GAIN and derivatives, GIN| FROM_FREQUENCY_FROM_COSTS Y
and DKM. FROM_FREQUENCY_WITH_STRATIFICATION Y
FROM_FREQUENCY WITH STRATIFICATION NO SMOOTHING Y
LEFT FIRST: Selects the first node. Y
GAIN: Entropy. Quinlan’s Gain. Y
GAIN RATIO: Quinlan’s Gain Ratio. Y
C4.5: Quinlan's Gain Ratio for those with gain greater than the Y
mean.
ADJGAIN : C4.5 but with numerical splits improvement. NO N
CART: Simplified Breiman et al. GINI heuristic. Y
MGINI: Correct Breiman et al. GINI heuristic. Y
DESC_MDL: The description cost of the examples following under Y
the split nodes + the cost of the partition.
PRED_MDL: Just the class of the examples are described. NO N
DKM: Kearns & Mansour modification of CART. Y
SPLIT_EXPECTED_ERROR: Uses expected error (and its selected Y
method to compute it, maybe using cost).

S o WEIGHTED_GAIN: to be defined how to combine it with costs. NO N
Sp[lttlng Criterion: criterion WEIGHTED_MDL: to be defined how to combine it with costs. NO N
which is used to select the —
best split. LOCAL_ROC_AREA: Selects the split with greatest area under the Y
This sets the ROC curve. Only takes into account the nodes in that split.

SPLIT OPTIMALITY value | GLOBAL_ROC_AREA: Selects the split with greatest area under the | NO N
used by other issues. ROC curve. Takes into account all the open nodes in the tree.
ONE_POINT_LOCAL_ROC_AREA: simplification of “local ROC Y
area”. Just computes the are with one point.
MSE: minimum squared errror. Y
LOGLOSS: logloss metric. Y
SQDIFF: computed as the square of the difference between Y
probability for class a and probability for class b. Only valid for two
classes
GENENTROPY: gain and gini can be seen as special cases of a Y
generalised entropy function depending on a power. This is a
parametrised split criterion where this exponent can be modified (by
program).
ROCV: another (not very successful) extension to the roc split for Y
more than 2 classes.
AUCH: Based on Hand and Till's extension of Area Under the ROC Y
Curve for more than two classes
AUCS: Fawcett's variant of AUCH. Y

74

Components in Split
Criterion: use of a
component matrix (reflecting
the partitions and attributes

NO_USE_OF _COMPONENT_INFORMATION

ADAPTATIVE COMPONENT: use an accumulative component
matrix to avoid components (partitions and attributes) that have been
used in previous solutions in order to obtain different solutions.

that have been used). RANDOM_COMPONENTS: generate the component matrix alpha
randomly also in order to obtain different solutions.
NO_PRUNING
PROPORTIONAL: prune when the number of examples under a alpha + beta
node are less than alpha and the proportion of correctly classified is
greater than beta.
EXPECTED ERROR: prune using EXPECTED ERROR (and its alpha
associated method that may take cost into account). The parameter 1 is the
alpha is used as a factor between the expected error of the parent default and as
and the expected error of the children. greater it is
the more it
Pre-pruning: criterion for prunes).
pruning when constructing SIGNIFICANCE NO |alpha:
the tree. significance
degree
MDL_PRUNING: prune if the description cost of children (and
partition) is greater than the parent node.
STUMP_PRUNING: prune the tree at a constant depth. Stump
Pruning Limit
(depth)
PEP-pruning: Uses “Pessimistic Error Pruning”:
MDL_PRUNING2: as MDL_PRUNING but measuring exceptions | NO
separately.
NO_POSTPRUNING: doesn't use post-pruning
Post-pruning PEP_PRUNING: Uses “Pessimistic Error Pruning”: This pruning is
based on marking nodes as pruned, but doesn’t delete them.
ONE_ONLY: just generate the first tree. (Greedy search). Never
used. If MaxNumTree=1 then ONE_AND_FORGET is used.
ONE_AND_FORGET: just generate the first tree. However, unused If
Multitree: h d or nodes are deleted when constructing the tree. This is the option MaxNumTree
utiree. now marny an that requires lower memory resources. =L
how the several trees are —
MANY_AND_MAINTAIN: generate and maintain MaxNumTrees. MaxNumTree
generated .
MANY_AND_FORGET: when only one solution is required, bad [NO
solutions can be forgotten. A h() function is necessary as a A* search
algorithm.
CONSTANT: The algorithm stops when NumTree OR-nodes have
been explored.
. . MAXTIME: The algorithm stops when time is finished. NO
Stopping Criterion for the -
overall algorithm. STALLED: The algorithm stops when accuracy has not been [NO
incremented in the last m iterations.
HEURISTICALLY: The number of iterations is guessed accordingly to | NO

number of attributes, types and number of examples.

BestTree Selection Criterion:
How to select the best
solution if only one of all has
to be shown
(comprehensible model)

OCCAM_BEST: the one with lower number of rules.

TEST COST BEST: the one that minimises testcost.

OCCAM_AN_TEST_COST_BEST: a combination of the preceding
two. The relevance of each one through internal option
TestCostRelevancelnSelectBest that must be from 0 to 1

75

EXPECTED_ERROR_BEST: the one with lower expected error (or
cost if it is included).

COVERAGE BEST:

CROSS_COVERAGE: The training set is split in two parts. Only one
is used for learning and the other one is used for selecting the best
tree (the one with more accuracy).

SPLIT_OPTIMALITY_BEST: the one with higher optimality (using the
optimality as is computed by the splitting criterion).

NO

MDL_BEST: the one with lower description cost.

SelectkBest: how the k best
solutions are seleted.

K_Best_Less_Visited: from all the possible solutions, selects the best
according to the “BestTree Selection Criterion”. For the second tree,
tries to avoid the branches selected by the first and so on.

K Best Less Visited Plus.

NO

K_Best_Less_Visited_Different_Components from all the possible
solutions, selects the best according to the “BestTree Selection
Criterion”. For the second tree tries to avoid the branches selected by
the first and so on. When the same branch has to be passed again,
the one with different components (according to the accumulated
component matrix).

K_Best_Different_Components: tries to select solutions with
components different to the reference component matrix. In case of
tie then the “besttree selection criterion is used”.

K_Best_Random: selects each solution randomly combining the all
possible branches. Note that repeated solutions might be obtained.

K Best Component
Generation: how the
reference component
matrices are generated.

Components_Accumulate: the reference component matrix
accumulates the resulting component matrix of previous solution
matrices. Initially the matrix is filled with 0s.

Components_Random_Generated_From_Start: the reference matrix
is generated randomly.

Components_Random_Generated_From_Second: This is a variant
of the previous one that ensures that the first solution is always the
same as if only one solution (the best one) were generated.

K Best Number of Solutions:

How many solutions are generated from the multitree.

Second Tree Opening
Criterion: once the first
solution is found, how to
select a second node to
explore for the second
solution.

SPLIT_OPTIMALITY: the node with best absolute splitting optimality
of all the tree structure.

OPTIMALITY_RIVAL_RATIO: the node with best relative absolute
splitting optimality of all the tree structure.

OPTIMALITY_RIVAL_RATIO_DEPTH: balancing
optimality_rival_ratio with the depth of the node.

alpha

OPTIMALITY_RIVAL_WITH_COMPONENT: balancing
optimality rival_ratio with an accumulated component matrix.

OPTIMALITY_RIVAL_WITH_COMPONENT_RANDOM: balancing
optimality rival_ratio with a random component matrix.

SECOND BOTTOMMOST: the bottommost node is selected.

SECOND_TOPMOST: the topmost node is selected.

SECOND_FRONT: the node most time suspended is selected. A
FIFO order.

SECOND_BACK: the node most time suspended is selected. A LIFO
order.

SECOND_RANDOM: selects a node pseudo-randomly with a
uniform distribution.

76

SECOND_RANDOM_DEPTH: selects a node pseudo-randomly with weight to| P
a distribution that takes also into account the depth of the node. ponder the
random result
and depth
ROC-DISTANCE NO N
ROC-SAMPLING NO N
MAINTAIN ALL
MAINTAIN CONST RANDOM The const is| Y
specified
through the
Suspended Nodes option
forgetting: suspended
must all suspended nodes noqes .
maintained? maintain
const value”
MAINTAIN LOG RANDOM Y
MAINTAIN LOG RANDOM WITH DEPTH %
MAINTAIN LOG RANDOM WITH SQUARED Y
MAINTAIN LOG RANDOM WITH DEPTH ADJUSTED %
Change of dataset weights | NO_CHANGE NO N
between different solutions: | BOOSTING_ADJUST_OF COST_MATRIX NO | alpha N
NO_COSTS / UNIFORM_WEIGHTS: don't use cost information (or Y
just construct the matrix with all values equal).
.) WEIGHTS_FROM_FILE: get a weight vector from the dataset file | NO Y
Weights (Cos_t) .MEthOd‘ How and convert it into a cost_matrix, understanding the vector as a
the cost matrix is stratification
constructed. - -
INVERSE_FREQUENCY_WEIGHTS: assume the weight vector as | NO Y
the inverse of the frequencies on the dataset.
COST_FROM_MATRIX: cost matrix given by the user. Cost_Matrix Y
Cost Derived Probability DIRECT: no use smoothing to compute cost derived probability. Y
Method WITH VECTOR SMOOTHING: use somoothing. Y
TESTCOST: how the vector | "° €StCosts Y
of attribute test costs is uniform test costs Y
constructed test costs from file Y
TEST COST USE: how the | test costs no use Y
vector of attribute test costs | tes costs linear plus1 without repeition Y
is used ("without repetition” - [eqt costs linear plus1 with repetition Y
better than "with repetition")
TestCostRel InSplitt In the case that TEST COST USE is different from “no use” then the N
estostrelevanceinopitiin option TestCostRelevancelnSplitting can be used to give it more or
9 less importance. Its value must be from 0 to infinite.
Combination: how to NO COMBINATION: no combination is used. Y
combine several solutions | \AJORITY CRISP: when an OR node is found, just assign the Y
majority class of the children.
MAJORITY ABSOLUTE STOCHASTIC (CLASS DISTRIBUTION): Y
Instead of propagating the assigned class, a class distribution is
propagated. At root, the majority class of that vector is selected.
MAJORITY RELATIVE STOCHASTIC (CLASS DISTRIBUTION): [NO Y
Instead of using a class distribution.
CROSS_COVERAGE_COMBINATION: Using the partition of the test Y

set into two datasets (one for training and one for combining). Uses
the same technique as “Absolute Stochastic”.

7

MINIMAL COST: selects the OR with less cost. NO N
MAJORITY COST STOCHASTIC Y
COMPREHENSIBLE RULE SELECTION: tries to select a set of rules | NO [MaxNumRules | N
from all the possible solutions. MinAccuracy
Min%WholeAc
curacy
MDL NO N
Combination smoothing. Use | YES/NO Y
smoothing before
combination
Allow post-pruning in YES/NO \%
combination (in post-prune
enabled)
Combination vector: ABSOLUTE/RELATIVE \%
absolute (n. of examples) or
relative (frequency)
ORIGINAL Y
o GOOD LOSER Y
Comblnatlc_m vector method: BAD LOSER v
how to derive the vector
DIFFERENCE Y
MAJORITY Y
SQUARED Y
SUM Y
PROD Y
Combination fusi hod ARITHMEAN Y
ombination fusion method:
how to combine the vectors Al Y
MAX Y
MIN Y
MEDIAN Y
ARCHETYPE: Similarity KAPPA Y
functl(_)n used fqr the _ KAPPAL Y
selection of a single solution
from the combination QSTAT Y
o) NO EXTRACTION Y
Combination to Single
Solution Method
INVENTED DATASET Y
Length of the invented \%
random dataset
Combination to Single ARCHETYPE SIMILARITY IMPORTANCE FACTOR Y
Solution (Archetype) Use of '\ g pETypPE OCCAM IMPORTANCE FACTOR Y
Other Criteria. These factors
affect how the Archetype is ARCHETYPE TEST COST IMPORTANCE FACTOR Y
extracted. If all the factors
except similarity are left to 0,
then it is just a semantic
extraction. 15, 4, 1 are
compensated values.
SAMPLE_TRAINING: splits | NO_SAMPLE / SAMPLE: whether or not to generate a percentage of Y

the training set into a
subtraining set and a
validation (fake) test.

the training set to use it for pre-pruning, selection criteria and so on. It
depends on the following options.

78

SAMPLE TRAINING SET Proportion of the training set to be used (the_ rest is fqr validation if Y
Cross coverage options are active or the rest is simply ignored). The
PROPORTION oo
selection is made randomly.
CROSS_VALIDATION: splits the training set into two sets: one for Y
learning (real training set) and other for validation (test set)
CROSS VALIDATION: use USE_SEPARATE_TEST: reads two different tests: training set file Y
separate files for train/test or and test set fle. — -
. o KFOLD CROSS VALIDATION: uses the same partition several times, Y
split the training set) S
until all the combinations have been used.
REPEATED KFOLD CROSS VALIDATION: repeats the experiments Y
n times (as option REPEAT KFOLD below).
KFOLD OF Times that the cross validation is to be performed. Y
CROSSVALIDATION:
REPEAT KFOLD how many times (if cross validation) we repeat the experiment Y
allow (if cross validationya | YES/NO Y
test dataset with one class
without examples
FUNCTIONAL LOGIC: Functional Logic Programming without Y
simplification of conditions (constraints).
OUTPUT OF RULES SIMPLE FLP: Functional Logic Programming but simplifies the [NO N
constraints and eliminates empty rules.
IF-THEN-ELSE NO N
SHOW CLASS SHOW: show the proportion of each class (for the training set). NO Y
DISTRIBUTION NO SHOW Y
SHOW ALL MULTITREE | NO SHOW Y
RULES: show all rules of the | SHOW Y
muttitree (used or not) TO FILE: outputs them to a file. NO Y
SHOW ALL K BEST NO SHOW Y
SOLUTIONS: show the rules | SHOW Y
of the k best solutions TO FILE: outputs them to a file. NO Y
SHOW COMPONENT SHOW/NO SHOW: whether or not to show the component matrix Y
MATRIX OF SOLUTIONS corresponding to each solution.
NO SHOW: Never shows the confusion matrix. Y
SHOW CONFUSION SHOW ONLY IF COSTS: Only if costs are used. Y
MATRIX SHOW: Shows the confusion matrix for combined solution and for K Y
best solutions.
ABSOLUTE STATISTICS: Shows results per class and total, in an Y
absolute way (number of examples).
SHOW STATISTICST RELATIVE STATISTICS: Shows results per class and total, in a Y
MODE relative way (proportion of examples).
BOTH STATISTICS: absolute and relative statistics. Y
JUST ACCURACY: Just shows accuracy. Y
TRAINING SET (YES/NO) N
ROC AREA WITH TEST SET (YES/NO) N
TRAINING ORDER TEST NO N
COMPUTE ROC POINTS YES/NO Y
SHOW ROC POINTS YES/NO Y
COMPUTE ROC AREA YES/NO Y
GENERATE ROC CURVE | YES/NO Y
FILE

79

show nurr_]ber of pos_sible YESINO \%
solutions in the multitree

HOW TO HANDLE IGNORE EXAMPLES WITH MISSING NUMERIC VALUES Y
MISSING VALUES SUBSTITUTE MISSING NUMERIC VALUES Y
Use Fake Test for Future feature. NO N
Combination

Use Fake Test for Second Future feature. NO N
Tree Opening

Use Fake Test for Selecting | Future feature. NO N
the Best Solution

Null-argument and missing | Future feature. NO N
argument treatment

Post-pruning Future feature. NO N

As we can see in the previous table, some options are not yet implemented. These were once
considered as imminent future work to be done and, jointly with the issues discussed in the
next section.

7 Future work

In this section, we describe some improvements or new things that could be added in new
versions of SMILES.

A first thing strongly related to implementation is that the second tree opening criterion
looks into a list of suspended nodes to see which one has the highest optimality to be opened.
This requires the traversal of the entire list every time a new second tree is required. One
alternative could be to insert in an ordered way into the list of suspended nodes. This has
advantages and disadvantages: faster retrieval but slower insertion of new suspended nodes
that are found throughout the multitree construction.

Another relevant thing would be to extend the stop criteria. Now the number of multitrees
just depends on a constant. It would be better to make some mechanism in order to detect when
further trees are not improving significantly the solution. This could be done through the use of
an additional validation set, a reserved part of the training set or an invented dataset.

At the current implementation, partitions cannot be activated or deactivated through the
“options.cfg” file. The intention was to include options to make this automatic, i.e. the system
should have heuristics to use the appropriate ones for each problem, but at the moment it can
only be done modifying the source code. Moreover, new partitions are envisaged and
optionally a types file. Consequently, all this could vary a great deal in the future. This is also the
reason why the directive ! NAMES in the training set file has not been implemented either.

Related to the previous extension, it would be interesting to accept ordered nominal values
such as {low, medium, high}. There is also a restriction in the number of different possible
values for a nominal attribute: 256. Although this is maintained in this way to reduce space, it
precludes SMILES from handling some datasets. In a similar way, a further treatments of
unknown numerical values (now denoted by ‘?’) could be implemented. Currently there are
two things to be done: to ignore the examples or to consider an additional branch (X="?"), whose
appropriateness has not been analysed.

One important thing to improve user friendliness is to improve the outputs. The output of
rules is in if-then-else form, not showing rules with 0 coverage, etc, would be interesting.

80

Outputs to file should also be improved: such as saving and loading the entire multi-tree, best
k-solutions, ROC points, etc. In the future, inputs and outputs should be in XML standards.

Moreover, now SMILES integrates the generation of the multi-tree structure (the real
learning stage) and the combination and the extraction of solutions. It would be very interesting
to run both parts independently, and to be able to export and import multi-trees, to extract
archetypes, to apply them, to visualise them, etc.

The handling of testcosts now does not take into account “test groupings”, i.e. that two or
more attributes can be obtained in the same real tests, e.g., the concentration of sugar in blood
and the leucocytes level can be performed by the same real test (a blood analysis) and its cost
should only be reckoned once. The best form to do is through the modification of the “.testcost”
files, through additional information for the joining of attributes. For instance,

3,50, 3,50,1,0,50,4

1->3

2->7

2->4
Means that tests on attributes 1 and 3 should be added only once, and tests on attributes 2, 4
and 7 should be added only once.

Now SMILES learns models but doesn’t give any additional support to apply them. In fact,
SMILES can compute the reliability of each prediction, but this reliability is not shown. SMILES
(or an additional application) should be able to open existing models, apply them, even edit
them, change their format, etc.

The pre-pruning methods are quite limited and are hardwired with quite arbitrary
parameters. More standard pre-pruning and, especially, post-pruning methods should be
implemented.

Some other things of a more novel hue that could be implemented are:

New Occam fusion method: weight each of the hypotheses to be combined
depending on their size. Reorganise all the “MAJORITY” fusion options, because in
practice just one is used.

New fusion method and splitting criterion based on the measure of confidence
(support/confidence), which are closely related to the AUC measure.

Now the archetype just uses an invented dataset. Make it possible to use part of the
training dataset or an additional external dataset. Allow that the archetype would
be constructed with an external Oracle (just an additional training set) instead of
the combination.

Design a kind of pruning based in combination.
Design a kind of pruning based in AUCH, MSE and LogLoss.
Study cross-coverage again and compare with archetype.

Pursue with the suspended or forgetting methods: add a children limit per node, a
global limit, new forget method (forget the similar ones).

Use of background knowledge and more expressiveness.

Finally, other more ambitious extensions may include a visual interface and a modification to
convert SMILES in a regression system, a clustering system or even an association rules
discoverer.

81

Acknowledgments

The name of the system has been borrowed from “Smiles Brewery” (http://www.smiles.co.uk),
a famous Bristol brewery.

References

1. Berkman, N.C.; Utgoff, P.E.; Clouse, J.A. “Decision tree induction based on efficient tree
restructuring” Machine Learning, 29(1):5--44, 1997.

2. Blake, C.; Merz, C. “UCI repository of machine learning databases” (http://www.ics.uci.edu/
~mlearn/MLRepository.html). University of California, Dept of Computer Science, 1998.

3. Blockeel, H.; Struyf, J. “Frankestein classifiers: Some experiments on the Sisyphus data set”,
ECML/PKDD2001 Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-
Learning, 2001.

4. Boissonat, J.D.; Yvinec, M. Algorithmic Geometry. Cambridge University Press, 1998.

5. Bradford, J.; Kunz, C.; Kohavi, R.; Brunk, C; and Brodley, C. “Pruning decision trees with
misclassification costs™ in Proc. of the European Conference on Machine Learning, pp. 131-136, 1998.

6. Breiman, L.; Friedman, J.H.; Olshen, R.A. and Stone, C.J. Classification and regression trees, Belmont,
CA, Wadsworth, 1984.

7. Clementine Data Mining System, http://www.spss.com/clementine.

8. Dean, T.; Boddy, M. “An analysis of time-dependent planning” Proc. of the 7th National Conference
on Artificial Intelligence, pp. 49-54, 1988.

9. Domingos, P. “Metacost: A general method for making classifiers cost-sensitive” Proc. of the Fifth
International Conference on Knowledge Discovery and Data Mining, pp. 155-164, New York, ACM, 1999.

10. Drummond, C.; Holte, R.C. “Exploiting the cost (in)sensitivity of decision tree splitting criteria”, Proc.
of the Seventeenth International Conference on Machine Learning, pp. 239-246, 2000.

11. Elkan, C. “The Foundations of Cost-Sensitive Learning”, Proc. of the Seventeenth International Joint
Conference on Artificial Intelligence, JICAI’01, 2001.

12. Esposito, F., Malerba, D. & Semeraro, G. (1997). A Comparative Analysis of Methods for Pruning
Decision Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 5.

13. Estruch, V. Ferri, C.; Hernadndez-Orallo, J.; Ramirez-Quintana, M.J. “SMILES. A Multi-purpose
Learning System” 8th European Conference on Logics in Artificial Intelligence” JELIA, Lecture Notes
in Computer Science (LNCS) , to appear, 2002.

14. Estruch, V. Ferri, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “Share Ensembles using Multi-
trees” 8th |[b. Conf on A.l., Iberamia 2002.

15. Estruch, V. Ferri, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “Re-designing Cost-Sensitive
Decision Tree Learning” Workshop on Learning and Data Mining, 8t Ib. Conf on A.l., Iberamia 2002.

16. Estruch, V. Ferri, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “Making Combination Methods
Comprehensible and Cost-Sensitive using Shared Ensembles. Applications in Medicine” Submitted to
Atrtificial Intelligence in Medicine 2002.

17. Fan, W.,; Stolfo, S.; Zhang, J. and Chan, P.H. "AdaCost: Misclassification Cost-sensitive Learning"
Proceedings of the Sixteenth International Conference on Machine Learning (ICML'99), pp.97-105,
Bled, Slovenia, June 1999.

18. Ferri-Ramirez, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “Learning MDL-guided Decision
Trees for Constructor-Based Languages”, in WIP track of 11t Intl. Conf. on Inductive Logic
Programming, ILP01, pages 39-50, 2001.

19. Ferri-Ramirez, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “FLIP: User’'s Manual” Technical
Report, Dpto. de Sistemas Informaticos y Computacion, Valencia, TR: 11-DSIC-24/00, pp. 8, 2000.

20. Ferri-Ramirez, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “Incremental Learning of Functional

Logic Programs” in Kuchen, H.; Ueda, K. (eds.) "Fifth International Symposium on Functional and
Logic Programming", Lecture Notes in Computer Science (LNCS) series, Vol. 2024, pp. 233-247,
Springer, 2001.

82

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,

Ferri-Ramirez, C.; Hernandez-Orallo, J. ; Ramirez-Quintana, M.J. “AND/OR Trees for the Learning of
Functional Logic Programs” in 2001 Joint Conference on Declarative Programming,APPIA-GULP-PRODE
2001, pages 329-341, 2001.

Ferri-Ramirez, C.; Hernandez-Orallo, J. ; Ramirez-Quintana, M.J. “Induction of Decision Multitrees
using Levin Search”, International Conference on Computational Science, ICCS2002, Amsterdam,
April 2002, Springer LNCS.

Ferri-Ramirez, C.; Hernandez-Orallo, J.; Ramirez-Quintana, M.. “From Ensemble Methods to
Comprehensible Models”, Discovery Science 2002, Springer LNCS, to appear.

Ferri-Ramirez, C.; Flach, P. Hernandez-Orallo, J. “Learning Decision Trees using the Area Under the
ROC Curve” Intl. Conf. On Machine Learning, ICML’ 2002.

Ferri-Ramirez, C.; Flach, P. Hernandez-Orallo, J. “Multi-class Decision Tree Splitting Criteria for
Maximising the Area under the ROC Curve” Technical Report 2002.

Ferri-Ramirez, C.; Flach, P. Hernandez-Orallo, J. “Multi-dimensional ROC Analysis with Decision
Trees” Technical Report, Dep. of Computer Science, University of Bristol, 2002.

Ferri-Ramirez, C.; Flach, P. Hernandez-Orallo, J. “Learning Multiple and Different Hypotheses”
Technical Report, Dep. of Computer Science, University of Bristol, 2002.

Freund, Y. ; Schapire, R.E. “Experiments with a new boosting algorithm” Proceedings of the Thirteenth
International Conference on Machine Learning (ICML'1996), pages 148--156. Morgan Kaufmann, 1996.
Hand, D.J. Construction and assessment of classification rules. Chichester: Wiley, 1997.

Hand, D.J,; Till, RJ. “A Simple Generalisation of the Area Under the ROC Curve for Multiple Class
Classification Problems” Machine Learning, 45, 171-186, 2001.

Hernandez, E.; Hernandez, J.; Juan, M.C. “C++ Estandar” Paraninfo Thomson Learning 2001.
Hernandez-Orallo, J.; Ramirez-Quintana, M.J. “A Strong Complete Schema for Inductive Functional
Logic Programming” in Dzeroski, S.; Flach, P. (eds) “Inductive Logic Programming” Lecture Notes in
Atrtificial Intelligence (LNAI) series, Vol. 1634, pp. 116-127, Springer 1999.

Kearns, M. and Mansour, Y. “On the boosting ability of top-down decision tree learning algorithms”
Proceedings of the Twenty-Eighth ACM Symposium on the Theory of Computing, pp. 459-468, New York,
ACM Press, 1996.

Knoll, U.; Nakhaeizadeh, G.; Tausend, B. “Cost-sensitive pruning of decision trees” Proc. of the Eight
European Conference on Machine Learning, ECML-94, pp. 383-386, Berlin, Germany, Springer-Verlag,
1994.

Kukar, M.; Kononenko, |. “Cost-sensitive learning with neural networks” Proc. of the Thirteenth
Conference on Artificial Intelligence, Chichester, NY, Wiley, 1998.

Lane, T. “Extensions of ROC Analysis to Multi-Class Domains”, ICML-2000 Workshop on cost-
sensitive learning, 2000.

Lavrac, N., Gamberger, D. and Turney, P. “Cost-sensitive feature reduction applied to a hybrid
genetic algorithm.” In Proc. Seventh International Workshop on Algorithmic Learning Theory, pp.
127-134, Springer, Berlin, 1996.

Levin, L.A. “Universal Search Problems” Problems Inform. Transmission, 9:265--266, 1973.

Margineantu, D.; Dietterich, T.G. “Learning Decision Trees for Loss Minimization in Multi-Class
Problems”, Technical Report 99-30-03, Department of Computer Science, Oregon State University,
1999.

Margineantu, D.; Dietterich, T.G. “Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers”,
Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000), pp.583-
590, Morgan Kaufmann, San Francisco, CA, 2000.

Mehta, M.; Rissanen, J.; Agrawal, R. "MDL-Based Decision Tree Pruning" Proceedings of the First
International Conference on Knowledge Discovery and Data Mining (KDD'95)}, pages 216--221, 1995.
Nilsson, N.J. “ Artificial Intelligence: A New Synthesis” Morgan Kaufmann 1998.

Pazzani, M. J., Merz, C. J., Murphy, P., Ali, K., Hume, T., and Brunk, C. “Reducing Misclassification
Costs” In Proceedings of the 11th International Conference of Machine Learning, Morgan Kaufmann,
217-225, 1994,

Pearl, J. Heuristics: Intelligence search strategies for computer problem solving, Addison-Wesley, 1985.

83

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

Pfahringer, B. “A new {MDL} measure for robust rule induction” In N. Lavra¢ and S. Wrobel, editors,
Proceedings of the 8th European Conference on Machine Learning, volume 912 of LNAI, pages 331--
334, Berlin, 1995. Springer.

Pfahringer, B. “Compression-based discretization of continuous attributes” in Proc. 12th International
Conference on Machine Learning, pages 456--463. Morgan Kaufmann, 1995.

Provost, F.J. “Goal-directed inductive learning: Trading off accuracy for reduced error cost” AAAI
Spring Symposium on Goal-Driven Learning, 1994.

Provost, F. and Fawcett, T. “Analysis and visualization of classifier performance: Comparison under
imprecise class and cost distribution” in Proc. of The Third International Conference on Knowledge
Discovery and Data Mining (KDD-97), pp. 43-48, Menlo Park, CA: AAAI Press, 1997.

Quinlan, J.R. “Induction of Decision Trees” Readings in Machine Learning, Morgan Kaufmann, 1986.
Quinlan, J.R. « Simplifying Decision Trees”. International Journal Man-Machine Studies, vol. 27, pp. 221-
234, 1987.

Quinlan, J.R. “Learning Logical Definitions from Relations” Machine Learning, 5(3):239--266, 1990.
Quinlan, J.R. C4.5. Programs for Machine Learning, San Francisco, Morgan Kaufmann, 1993.

Quinlan, J.R. “Improved use of continuous attributes in C4.5” Journal of Artificial Intelligence Research,
4, 77-90, 1996.

Quinlan, J.R. “Bagging, Boosting and C4.5” in Proc. of the Thirteenth Nat. Conf. on A.l. and the Eighth
Innovative Applications of A.l. Conference, pages 725--730. AAAI Press / MIT Press, 1996.

Quinlan, JR.; Rivest, R.L. “Inferring Decision Trees Using The Minimum Description Length
Principle” Information and Computation, 80:227--248, 1989.

Rissanen, J. “Modelling by shortest data description” Automatica, 14:465--471, 1978.

Schmidhuber, J.; Zhao, J. and Wiering, M. “Shifting Inductive Bias with Success-Story Algorithm,
Adaptive Levin Search, and Incremental Self-Improvement”, Machine Learning, 28:105--130, 1997.
Smith, S. P., and Jain, A.K. “Testing for Uniformity in Multidimensional Data” IEEE Trans. on Pattern
Analysis and Machine Intelligence, 6 (1984), pp. 73-81.

Srinivasan, A. “Note on the Location of Optimal Classifiers in N-dimensional ROC Space” Technical
Report PRG-TR-2-99, Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford.

Stroustrup, B. “The C++ Programming Language” Third Edition, Addison-Wesley 1997.

Swets, J., Dawes, R., and Monahan, J. “Better decisions through science” Scientific American, October
2000, 82-87.

Turney, P.D. “Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm”, Journal of Artificial Intelligence Research 2, pp. 369-409, 1995.

Turney, P.D “Types of Cost in Inductive Concept Learning”, Workshop on Cost-Sensitive Learning at
the Seventeenth International Conference on Machine Learning (WCSL at ICML-2000), pp 15-21, 2000.
University of California, UCI Machine Learning Repository Content Summary,
http://www.ics.uci.edu/~mlearn/MLSummary.html.

Weiss, G. and Provost, F. "The Effect of Class Distribution on Classifier Learning: An Empirical Study"
Technical Report ML-TR-44, Department of Computer Science, Rutgers University, 2001.

84

Appendix A: Program History

v.0.1
v.0.5
v.0.6
v.0.7
v.0.9
v.1.0

v.1.1
v.1.2
V.1.25
v.1.3
v.14
v.1.4.1
v.1.4.2
v.15

v.1.6

v.1.6.1
v.1.6.2
v.1.6.3

v.1.6.4
v.1.6.5
v.1.6.6
v.1.6.7
v.1.6.8
v.1.6.9
v.1.7.0
v.1.7.1
v.1.8.0

v.1.8.1

v.1.8.2
v.1.9.0
v.1.9.1
v.1.9.2
v.1.9.3
v.1.9.4

October 2001:

November 2001:
November 2001:
December 2001:
December 2001:

January 2002:

January 2002:
January 2002:
January 2002:
January 2002:
January 2002:
January 2002:
January 2002:
January 2002:

February 2002;
February 2002;
February 2002:
February 2002:

February 2002:
February 2002;
February 2002;
February 2002:
February 2002:
February 2002;
March 2002:
March 2002:
March 2002:

March 2002:

March
March
March
March
March
April

2002:
2002:
2002:
2002:
2002:
2002:

New system design begins as a successor of FLIP (FLIP3.0)
Basic Facilities: multi-tree structure, parsing utilities
First Evaluation measures: testset
Cost-sensitive facilities: Use of cost and confusing matrices
Different Solutions: component matrices
Options file. General improvement of inputs and outputs
The system receives its current name: SMILES
FIRST RELEASED VERSION.
ROC Facilities
Cross-validation and basic missing numeric values handling
K-Fold Cross-validation implemented
First Post-pruning method implemented (PEP Method)
Classes can be made equivalent in order to reduce no. of classes
Repeated k-fold cross-validation
Some memory leaks are fixed.
When only one tree is learnt the new option "ONE_AND _FORGET" is used.
This options deletes or_nodes that are not further used and memory is freed.
SECOND RELEASED VERSION.
MSE measure and MSE split criterion implemented
LogLoss split criterion implemented
All memory leaks corrected.
Some correlations are computed using the Compute_Correlation function.
The new source file "utils.cpp" is added to the project.
SqDiff split criterion implemented
MGINI_SPLIT and GENENTROPY_SPLIT criteria implemented
Split Nodes Smoothing implemented (with new option "Nodes Smoothing")
New Smoothing Method: k-estimate
GINI Criterion fixed (CART) for more than 2 classes.
MSE_SPLIT remade with better results!
M AUC measure (Hand's measure) called AUCH implemented.
New split criterion: AUCH_SPLIT using Hand's measure.
Invented Datasets created. "Comb2Single" option with Kappa similarity method.
Two bugs fixed: SECOND_RANDOM sometimes selected NULL or_trees and
Setvdist() in "exemples.h" used word instead of long and caused problems with
long datasets;
Combination Accuracy and Comb2Single Accuracy (means and StdDev)
are computed when cross-validation.
First Solution is also shown when combination is enabled.
Combination Methods: majority crisp and majority absolute stochastic corrected
New Combination Methods: MAX, MIN, GEOMEAN, ...
Smoothing in Combination
Postpruning now enabled also for combination (a new function PostPrune)
Combination options arranged.
First Solution (shown when combination) corrected.
However, it doesn't work with post-pruning.

85

v.1.95
v.1.9.6
v.1.9.7
v.1.9.8
v.1.9.9
v.1.9.10
v.1.9.11
v.1.9.12
v.2.0B

v.2.0
v.2.l

v.2.1.1
v.2.1.2
v.2.1.3
v.2.1.4
v.2.1.5
v.2.1.6

v.2.1.7

v.2.1.8

v.2.2

v.2.2.1
v.2.2.2

v.2.2.3

v.2.2.4

v.2.2.5

v.2.2.6

v.2.2.7

April
April
April
May
June
June
June
June

June

June
June

July
July
July
July
July
July

July

July

July

July
July

July

July
July

July

July

2002:
2002:
2002:
2002:
2002:
2002:
2002:
2002:
2002:

2002:
2002:

2002:
2002:
2002:
2002:
2002:
2002:

2002:

2002:

2002:

2002:
2002:

2002:

2002:

2002:

2002:

2002:

New options: PrunelnCombination, SIMILARITY MEASURES for Comb2Single
and AllowTestWithoutOneClass
Mean NumRules are also output of each kind of solution.
The memory of the random datasets were not freed. Two bugs: A temp object
delete missing in the dataset constructor and no delete in main.
There was also a similar memory link bug in "tracta_exemple".
Computed the number of possible solutions of the multitree
The AUC value can be computed by Hand or by our way.
Treat missing numeric values using 'TYPES directive, '0U' or '0u’
(extend numeric partition with an extra leaf for unknown value)
Now SMILES ignores some attributes when an 'l or 'i' is put in the ITYPES.
New vector combination method: squared.
Suspended Nodes Forgetting. New options enabled to free memory from
suspended nodes that probably will never be woken.
Version 2.0 Beta release.
THIRD RELEASED VERSION.
Version 2.0 stable release.
New way to compute AUC for more than 2 classes: Fawcett's method.
New splitting criterion AUCS
Reliability is now calculated for each prediction. Two ways are implemented:
Reliability is used to compute 2-class AUC for combined and other solutions!!!
Now SMILES accepts a ".testcost" file
AUC of comb. for 2 classes fixed. Now it matches AUC computed with nodes.
AUC of combination for more than 2 classes is implemented.
Prediction now works better for combination that uses "DIFFERENCE"
or other methods that mangle the probability vector.
AUC by Hand (computed by nodes) is now implemented in a way that
this measure is independent of the casual ordering of two or more nodes
that have the same ratio.
In "roc.cpp" a double type is used for cardinalities and now smoothing works better.
This has the following consequences: MSE and LogLoss can be slightly different if
Options.ProbabilitylnSplittingCriteria == FROM_FREQUENCY_SMOOTHING.
AUC by nodes with LAPLACE SMOOTHING and AUC by examples with LAPLACE
SMOOTHING now match.
testcost learning (modification of optimality measure implemented).
For computing the total test cost, we check the repeated use of the same
argument, and it is not reckoned, giving an exact measurement of testcost.
new way of selecting the Best Tree from the multitree; TEST _COST_BEST
the way in which TEST_COST_BEST now is weighted with the cardinality of each
node. Now it computes the real TEST_COST
A new Best Tree Method: OCCAM_AND_TEST COST BEST that combines
both OCCAM and TEST_COST through the use of a factor.
The weight of each is determined by the new value
TestCostRelevancelnSelectBest that must be from 0 to 1.
A new weight that tells how much TEST_COSTS are used to modify splitting
criteria. TestCostRelevancelnSplitting that must be from 0 to infinite.
Two bugs fixed: "test cost method=no test costs" didn't work and there was a
problem with numeric attributes with unknown values.
More friendly messages are output when the cost and testcost files are not
provided correctly. The good way is something such as:

JIsmiles samples/liver.all.train - - liver.testcost
Some minor improvement in the parser.
Now if a line doesn’t contain the class, SMILES gives a proper message and exits.

86

v.2.2.8

v.2.2.9

v.2.3.0
v.2.3.1
v.2.3.2

August 2002:
August 2002:

August 2002:

August 2002:
September 02:

The standard deviation of kfold crossvalidation for FirstAUC fixed.

Testcost is also shown for Archetype solution.

There was a bug in the archetype extraction. Suspended Nodes were considered.
Although it seems it didn't affect on results, it did on efficiency.

Implementation of the Archetype Use of Other Criteria.

Minor improvements to the interface.

Test Costs not shown in statistics if they don't exist.

Now AUC computed and shown for archetype.

FOURTH RELEASED VERSION

87

Appendix B: Datasets in SMILES format

Along with the SMILES distribution, a lot of datasets can be downloaded from the SMILES
webpage. These datasets are mostly taken from the UCI repository [2] and they are by no means
an alternative repository but just a format adaptation. Some of them have been partially
modified, so users of other systems should use the original datasets.

In the following pages we show the following information:
name of the dataset
usability (whether it is fast, modifications performed, ..)

whether AUC calculation is feasible (there are a minimum of examples for each
class)

the name of the file without numeric missing treatment and with numeric missing
treatment (when there are no numerical missing values, just the name in the first
column is shown),

whether or not is about medical domain,

whether misclassification cost and test cost files are provided,

the number of classes

the size of all the examples and the percentage of the least frequent class,

the size of all the examples without missing values and the percentage of the least
frequent class only for the examples without missing values,

the number of nominal and numerical attributes.
The experiments performed and shown in this manual have been done with these datasets.

88

DATASET USABILITY AUC |Miss| FILEWITHOUT NUMERIC | FILE WITH NUMERIC MISSING | ME| MisCL Test |#c| Size |[%MINC| SizE |%MINC| ATTRIBS
CaLC| VAL MISSING TREATMENT TREATMENT D? |CosTFILE| COSTFILE ALL ALL | NO-MISS [NO-MISS|NOM | NUM
Monks1 Fast OK | No | monksl.al + .train+ .test No| .cost |.TESTCOsT| 2 | 566 50 566 50 6 0
MONKS2 Fast OK | No | monks2.all + .train + .test No 2| 601 [3428| 601 3428 | 6 0
MONKS3 Fast OK | No | monks3.al + .train + .test No 2| 554 |48.01| 554 48.01 | 6 0
Tic-TAC Fast OK | No | tictacall + .train+ .test No 2| 958 |34.66| 958 3466 | 8 0
HOUSE-VOTES Fast OK | No |house-votes.all +.traint+.test No 2| 435 [38.62| 435 3862 |16 | O
AGARICUS-LEPIOTA Fair OK | No agaricus.al No 2| 8124 | 482 | 8124 482 | 22| 0
BREAST-WDBC Fair OK | No breast-wdbc.all YES 2| 569 [37.26| 569 3726 | 0 | 30
BREAST-WPBC Fair OK | Yes breast-wpbc.all breast-wpbc-UM .all YES 2| 198 2374 | 194 2371] 0 | 33
BREASTCANCERWISC Fast OK | Yes breast-cancer-wisc.all breast-cancer-wisc-UM.all |YES| 2| 699 |3448| 683 3499 | 0 9
| ONOSPHERE Fair OK | No ionosphere.all No 2| 351 | 359 351 359 0|34
LIVER-BUPA Fast OK | No liver.all YES TESTCOST| 2 | 345 |42.03| 345 4203 | 0 6
PiMA DIABETES Fast OK | No pima.al YES TESTCOST| 2 | 768 | 34.9 768 34.9 0 8
CHESS-KR-VS-KP Fair OK | No chess-kr-vs-kp.all No 2| 3196 |47.78| 319 | 4778 | 36 | O
SONAR Slow OK | No sonar.all No 2| 208 |46.63| 208 46.63 | 0 | 60
HEPATITIS Fast OK | Yes hepatitis.all hepatititissUM.all YES .TESTCOsT| 2 | 155 | 20.65 83 1807 | 14 | 5
THYROID-HYPO Slow OK | Yes thyroid-hypo.all thyroid-hypo-UM .all YES 2| 3163 | 463 | 2012 606 | 19 | 6
THYROID-SICK-EU Slow OK | Yes thyroid-sick-eu.all thyroid-sick-eu-UM.all |YES 2| 3163 | 926 | 2012 | 1183 | 19| 6
TAE[{0}] Fast. Reduced to 2 classes. | OK | No tag2c.all No 2| 151 |3245| 151 3245 2 | 3
cARs[{uNAcc}] | Fast. Reducedto 2 classes. | OK | No cars2c.al No 2| 1728 [29.98| 1728 | 2998 | 6 0
NURSERY [{NR}] Fair. Reduced to 2 classes. | OK | No nursery2c.all No 2 | 12960 | 33.33| 12960 | 3333 | 8 0
PENDIGITS[{0}] | Slow. Reduced to 2 classes. | OK | No pendigits2c0.all No 2110992 | 104 | 10992 | 104 | 0 | 16
PAGE-BLOCKS[{0}] | Slow. Reduced to 2 classes. | OK | No page-blocks2c0.all No 2| 5473 [10.23| 5473 | 1023 | 0 | 10
YEAST [{ ERL}] Fair. Reduced to 2 classes. | OK | No yeast2c.al No 2| 1484 | 31.2 | 1484 31.2 0 8
LETTER[{A}] Slow. Reducedto 2 classes. | OK | No letter2c.all No 2 | 20000 | 3.95 | 20000 | 3.95 0 |16
opTDIGITS[{0}] | Very Slow. Reducedto2c.| OK | No optdigits2c0.all No 2| 5620 | 9.86 | 5620 9.86 0 | 64
SPECT Fast OK | No spect.all No 2| 267 [2594| 267 2594 122 | 0
SPeCTF Slow OK | No spectf.all No 2| 349 |2722| 349 2722 | 0 | 44
BALANCE Fast OK | No balance-scale.al No 3| 625 | 784 625 784 | O 4
CARS Fast OK | No carsall No| .cost 4| 1728 | 3.76 | 1728 3.76 5 0
DERMATOLOGY Fast OK | Yes dermatology.all dermatology-UM .all YES 6| 366 | 546 358 559 |33 1
ECHOCARDIOGRAM Fast OK | Yes echocardiogram.all echocardiogram-UM.all |YES 3| 132 |18.18| 107 1682 | 1 6
THYROID-NEW Fast OK | No new-thyroid.all YES 3| 215 | 465 215 4.65 0 5
NURSERY_4cC Fast. Reduced to 4 classes. | OK | No nursery4c.al No 4 | 12957 | 253 | 12957 | 2.53 8 0
PAGE-BLOCKS Slow OK | No page-blocks.all No 5| 5473 | 5.12 5473 5.12 0 | 10
PENDIGITS Slow OK | No pendigits.all No 10| 10992 | 9.60 | 10992 | 9.60 0 | 16
TAE Fast OK | No teeadl + .train+ .test No .TESTCOST| 3| 151 |3245| 151 3245 | 2 3
IRIS Fast OK | No irisal No 3| 150 |3333| 150 3333]| 0 4
OPT-DIGITS Very Slow OK | No optdigits.al No 10| 5620 | 9.80 | 5620 9.80 0 | 64
SAT Very Slow. No cross-valid! | OK | No sat.all No 6| 6435 | 9.73 | 6435 9.73 0 | 36
IMAGE-SEGMENT Fair OK | No segmentation.all No 7| 2310 | 1429 | 2310 | 1429 | 0 | 14
WINE Fast OK | No wine.all No 3| 178 |2697| 178 2697 | 0 | 13
PosT-OPERATIVE Fast NO | Yes post-operative.all post-operative-UM.all |YES| 3 90 2.22 87 1.15 7 1
HEARTDIS-CLEVE Fast Diff | No | heart-disease-cleveland.all YES .TEstcost| 5| 303 | 4.29 303 4.29 8 5

89

HEARTDIS-LONG Fast VDiff| Yes | heart-disease-longbeach.all ..-UM.al YES .TESTCOST| 5 | 200 5.00 137 4.38 8 5
HEARTDIS-HUNG Fast OK | Yes | heart-disease-hungarian.all ..-UM.al YES TEsTCOST| 2 | 294 |36.05| 270 3741 | 8 5
HEARTDIS-SwITZ Fast NO | Yes |heart-disease-switzerland.all .-UM.al YES Testcost| 5| 123 | 4.07 117 427 | 8 5
HEARTDIS-ALL Fair OK | Yes | heart-disease-alltogether.all ..-UM.al YES .TEsTCosT| 5 | 920 | 3.04 827 2.90 8 5
SOYBEAN-SMALL Fast Diff | No soybean-small.all YES 4 47 121.28 47 2128 35| 0
AUTOSDRIVEWHEELS Fast VDiff.| Yes autos-drivewheels.all autos-drivewheelssUM.all | No 3| 205 | 439 160 5 9 | 16
ANNEALING Fast Diff | No anneal .all No 5| 898 0.89 898 089 | 32| 6
GLASS Fast VDiff| No glassall No 6| 214 | 421 214 421 | O 9
CONNECT4 Very very slow. OK | No connect-4.all No 3| 67557 | 955 | 67557 | 955 |42 | O
SOLAR FLAREC Fast NO | No flarec.dl No 3] 323 217 323 217 10| O
SOLAR FLAREM Fast NO | No flarem.all No 4| 323 | 0.62 323 062 10| O
HAYES-ROTH Fast OK | No hayes-roth.all No 3| 160 |19.38| 160 1938 | 4 0
WAVEFORM Slow OK | No waveform.al No 3| 5000 [3294| 5000 | 3294 | 0 | 21
CMC Fast OK | No cmec.al YES 3| 1473 | 2261 | 1473 | 2261 | 7 2
EcoLi4c Fast. Similar classesjoined. | OK | No ecoli4c.all No 4| 336 | 744 336 744 | O 7
PAGE-BLOCKS Slow OK | No page-blocks.all No 5| 5473 | 051 | 5473 0.51 0|10
YEAST Fair. NO | No yeast.all No 10| 1484 | 0.34 | 1484 03 | O 8
YEAST-ERL Fair. Y east except ERL class Diff | No yeast-noERL .all No 9| 1379 | 145 | 1379 1.45 0 8
LETTER Very very slow. OK | No letter.all No 25| 20000 | 3.67 | 20000 | 3.67 0 |16
THYROID-ALLBP Slow Diff | Yes thyroid-allbp-UM .dl YES 3 0 - 3772 037 | 22| 7
THYROID-ALLHYPER Slow NO | Yes thyroid-allhyper-UM.all |YES 5 0 - 3772 003 | 22| 7
THYROID-ALLHYPER |Slow, “Second” cl. removed| Diff | Yes thyroid-allhyper-sec-UM.all| YES 4 0 - 3771 027 |22 | 7
THYROID-ALLHYPO Slow NO | Yes thyroid-allhypo-UM.all |YES 4 0 - 3772 005 | 22| 7
THYROID-ALLHYPO | Fair, “Second” cl. removed | OK | Yes thyroid-allhypo-sec-UM.all |YES 3 0 - 3770 252 | 22 | 7
THYROID-ALLREP Slow OK | Yes thyroid-alrep-UM.all |YES 4 0 - 3772 090 | 22| 7
THYROID-ANN Fair OK | No ann-thyroid.all YES .TEsTcosT| 3 | 7200 | 2.31 | 7200 231 |15] 0
LUNG-CANCER Fast NO | No lung-cancer.all YES 3 32 2813 32 2813 |56 | O
HRrs-coLIc-ouTcomE| Fair. With Outcome asclass| OK | Yes horse-colic-outcome-UM.all| YES| 3| 366 |14.21 20 2000 | 14 | 8
HRs-coLIC-SURGICAL| Fair. With Surgical asclass| OK | Yes horse-colic-surgical-UM.all | YES 2| 366 | 5.46 20 20.00 | 14 | 8
ARRHYTMIA2C | Slow. ClassNormal vs. rest| OK | Yes arrhythmia2c.all arrthythmia2c-UM.al |YES| 2 68 |29.41| 452 45.80 | 212 | 67
HABERMAN-BREAST Fast OK | No haberman-breast.all YES 2| 306 |26.47| 306 2647 | O 3
PosT-OPERATIVE-2 Fast. Class | removed OK | Yes post-operative-l.all post-operative-lI-UM.al |YES 2 7 1
EcoLl Fast NO | No ecoli.al No 8] 336 | 0.60 336 060 | O 7
EcoLi16c Fast. 3lessfregcl. joined |VDiff| No ecoli6e.all No 9| 336 | 2.68 336 2.68 0 7
NURSERY Fast NO | No nursery.data No 5112960 | 0.02 | 12960 | 0.02 8 0
SPAM Very slow OK | Yes spam.all No 2| 4601 |[39.40| 4601 | 39.40 | 0 | 57
ADULT Very slow OK | No adult.all No 2| 48842 | 23.93 | 48842 | 2393 | 8 6
CyL-BANDS Fair. Twoid valuesignored.| OK | Yes cyl-bands.all cyl-bands-UM.all No 2| 365 [36.99| 540 4222 | 17 | 19
PLAYTENNIS Very Fast. Toy Problem No | No playt.train + playt.test No 2 4 0
INVENTED Very Fast. Toy Problem No | No invented.train +.test No 2 5 0
WATER Very Fast. Toy Problem No | No water.train + water.test No 3 1 1
DRUG Fast. From Clementine | Diff | No drug.train + drug.test YES 5| 1100 | 7.00 | 1100 7.00 3 3

90

