
 1 

 
SMILES v.2.3 

A Multi-purpose Learning System* 
 

Technical Report 5-Sep-2002 
 
 
 
 

C. Ferri-Ramírez             J. Hernández-Orallo             M.J. Ramírez-Quintana 
 

 

Dep. Sistemes Informàtics i Computació, Univ. Politècnica de València (Spain) 
{cferri, jorallo, mramirez}@dsic.upv.es 

 
 
 
 
 
 

Abstract 
 
In this paper we describe SMILES, a Stunning Multi-purpose Integrated LEarning System. A 
machine learning system is useful for extracting models from data and hence it can be used 
for many applications such as data analysis, decision support or data mining. SMILES is a 
machine learning system that integrates many different features from other machine 
learning techniques and paradigms and, more importantly, it presents several innovations 
in almost all of these features.  This report contains four major parts: a description about the 
system architecture, a user’s manual, a more advanced section on how to take the most of 
the system and, finally, some brief programmer’s guidelines. A complete table of all the 
options provided in the system is also included. 
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1   Introduction 
SMILES (Stunning Multi-purpose Integrated LEarning System) is a machine learning system 
that integrates many different features from other machine learning techniques and paradigms 
and presents several innovations in almost all of these features. In particular, it extends classical 
decision tree learners in many ways (new splitting criteria, non-greedy search, new partitions, 
extraction of several and different solutions), it has an anytime handling of resources, and has a 
sophisticated and quite effective handling of costs. In this way, SMILES combines and improves 
the recent interest in hypotheses combination (e.g. boosting[54]) and cost-sensitive learning (a 
priori and a posteriori class assignments [11], ROC analysis [48]) outperforming previous 
systems in many situations.  

The origin of SMILES dates back to our previous system FLIP (Functional Logic Inductive 
Programmer) developed from 1998 until 2001 [32][19][20] with the goal of inducing declarative 
models from evidence in the form of functional logic programming. The paradigm was called 
Inductive Functional Logic Programming (IFLP) [31]. As a successful extension of ILP 
techniques to functional logic programs, it inherited some of the limitations of ILP systems: 
poor scalability and poor accuracy results with respect to other more general machine learning 
algorithms. 

With the goal of broadening the applicability of machine learning for functional logic 
programming and other declarative paradigms, we endeavoured the construction of a new 
system based on a more scalable, flexible and efficient basis, with the premise of generating 
highly expressive and comprehensible models from data. Although at the present moment the 
models induced are just a slight extension of classical decision trees, they can still be 
represented as a restrictive kind of functional logic programs. The next stage that must logically 
follow this work is the inclusion of more partitions in order to make SMILES more expressive, 
capable of using background knowledge and capable of generating full functional logic 
programs with possible higher-order features. It is this long-term goal that shapes the 
continuity between our previous system FLIP and SMILES (in fact, previous versions of 
SMILES were called CDTL or FLIP 2.0/3.0) and not the implementation, because, as we will see, 
they differ drastically in architecture and learning techniques.  

This paper tries to present the system in its present form, serving as a short technical 
description from the machine learning point of view and also as a user’s and programmer’s 
guide, which can accompany the source in case that someone wants to use or extend the system. 

The paper is then organised as follows. In section 2 the structure of the system is described 
in a practical and succinct way. SMILES user’s manual is presented in section 3, describing 
separately the general inputs/outputs of the system, the general options, the multitree features, 
the different ways to extract several solutions, the cost-sensitive and ROC features, the 
archetype procedure and other facilities. In section 4 we include several results and plenty of 
know-how about how to take the most from SMILES. Section 5 describes how the system is 
implemented and how the source code is structured, resembling a very brief programmer’s 
manual. Due to the large number of options that SMILES has, section 6 includes a table with all 
the system options. Finally, section 7 presents possible future work. 
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2   The Structure of the System 
In this section we briefly present the main algorithm and underlying methods of SMILES. For 
more details on the structure, we refer to [18][21][22]. 

Decision tree learning is a very popular kind of machine learning technique. In a decision 
tree, each node contains a test on an attribute, each branch from a node represents a possible 
outcome of the test, and each leaf contains a class prediction. A decision tree is usually induced 
by recursively replacing leaves by test nodes, starting at the root. Classic decision-tree learners 
such as CART [6], ID3 [49], C4.5 [l] or FOIL [51] have given very good results and are currently 
used in many applications; however, they do not have flexibility with respect to trading result 
quality for computational resources. 

The main algorithm of SMILES is also based on a greedy search in the decision tree space, 
such as CART, ID3 or C4.5. However, SMILES is able to obtain more than one solution, looking 
for the best one or combining them in order to improve the overall accuracy or minimise the 
classification cost. To do this, once a node has been selected to be split (an AND node) the other 
possible splits at this point (OR nodes) are suspended until a new solution is required. In this 
way, the search space is an AND/OR tree [44][42] which is traversed producing an increasing 
number of solutions for increasing provided time. Since each new solution is built following the 
construction of a complete tree, our method differs from other approaches such as the boosting 
method [28][54], which induces a new decision tree for each solution. The result is a multitree 
rather than a forest; with the advantage that a multitree shares the common parts and the forest 
does not. We perform a greedy search for each solution, but once the first solution is found the 
following ones can be obtained taking into consideration a limited computation time. Therefore, 
our algorithm can be considered anytime in a certain way [8]. 

Apart from the multitree (AND-OR) structure, our system extends the representation 
language by extending the possible partitions. The final goal, as we have stated in the 
introduction, is to induce functional logic programs with even higher-order characteristics. In 
the Functional Logic Programming (FLP) paradigm, conditional programs are sets of rules and, 
hence, they can also be represented as trees. This allows us to include the type information of 
the function profile in the split criterion.  

The types handled by SMILES are: 
Type Use 

Nominal For value sets, Booleans and any non-numerical attribute. 
Numerical For integers, real numbers and any numerical attribute. 

Ordered nominal attributes such as {low, medium, high} are 
not directly handled and should be substituted by integers. 

At the present moment, our system allows the following partitions, two of them using negation: 
Partition  

Partition X=a, X=b, X=c... Present in ID3, C4.5 
Partition X=a, X≠a  
Partition X=Y, X≠Y  
Partition X<c, X≥c Present in ID3, C4.5 

Note that the search of the decision tree space requires the use of several criteria. If the search 
can be re-activated to explore further solutions then more criteria are needed. The main criteria 
used by SMILES are: 

• Splitting Criterion: among all the possible partitions (split) which one is selected to 
open the tree. 
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• Traversal Criterion: from all the given nodes after a split, which nodes are explored first 
(the rest are suspended). 

• Suspended Nodes Forgetting: Should all the suspended nodes retained or some of them 
can be forgotten? 

• Second Tree Opening Criterion: specifies which node to explore for second-best 
solutions.  

• Best Tree Selection Criterion: specifies which of all of these solutions must be shown if 
the user wants just the best solution. 

• kBest Different Solutions Selection criterion: specifies how to select from the AND/OR 
tree a set of solutions. If k is equal to 1, then it just selects one solution according to the 
BestTree Selection Criterion. 

One important feature of the system is that many of the previous criteria can optionally be 
defined in terms of the Minimum Description Length (MDL) principle [56]. If all of these criteria 
are MDL-based then the decision tree is built in a short-to-long way. The MDL principle has 
previously been used in the induction of decision trees in the post-pruning phase [41] [55]. Also, 
the MDL principle has been used as a stopping criterion (pre-pruning) [45][51], as a measure for 
globally evaluating discretisations of continuous attributes [46], and for restructuring decision 
trees [1]. In our approach, the MDL principle is used at the generation phase which is justified 
because other quality criteria based on discrimination such as the information gain [52], the 
information gain ratio [52] or the Gini heuristic [6] are not useful for functions that have a 
recursive definition or that use concepts of the background knowledge. This was one of our 
premises and, although these functions cannot be learnt with the current version, future 
versions will hopefully be able to. Another reason is that the guidance of the search by the MDL 
principle ensures a better use of computational resources following a Levin search [38][57]. We 
can use the MDL principle as split criterion, as stopping criterion, as pre-pruning criterion and 
also as solution tree selection criterion. Finally, we derive a measure of confidence for 
combining multiple solutions. In this way, we can use a uniform framework based on the same 
measure for constructing the tree, selecting the split, selecting second-best trees to explore and 
selecting or combining hypotheses. 

3   User’s Manual 
SMILES source-code can be downloaded from http://www.dsic.upv.es/~flip/smiles/. The 
package includes the C++ sources and some sample datasets. Once the software downloaded 
and decompressed, follow the readme file and run the shell-script for installation on Unix-like 
machines.  

If the installation is successful, you can directly type:  
./smiles -?  

and you will have the following usage information: 
 
**** SMILES v.2.3.1 (Release Date: 23-August-2002) **** 
 
USAGE: 
./smiles file.train [file.test] [file.cost] [file.testcost] 

That means that the software has been correctly installed. 



 6 

3.1   SMILES Usage Basics 
The current SMILES version is a command-line batch application with little interaction during 
the learning stage. Almost all interaction is performed through the inputs (mainly the training 
set, the data set and the options) and the outputs (mainly solution trees and statistics). 

The previous usage information suggests that the system must be supplied with some files, 
at least a training set. 

We can run the system by using some of the examples that are provided with the 
distribution, e.g., the playtennis example. If we type: 

./smiles samples/playt.train samples/playt.test  

Using the simplest options (no combination) in the option file (we will discuss on this) the result 
may be something similar to this: 

 
**** SMILES v.2.3.1 (Release Date: 23-August-2002) **** 
 
ftrain: samples/playt.train 
ftest: samples/playt.test 
fcost:  
ftestcost:  
 
Training Set: "samples/playt.train" 
 
No. of Attributes: 4 
Cardinality: 14 examples  
Class: 0 ("yes"). Distribution: 9 
Class: 1 ("no"). Distribution: 5 
 
Valid options.  
 
Creating the multitree. 
Learning begins... 
 
The test set: "samples/playt.test" will be used to evaluate the results 
 
Predicting and preparing statistics 
 
Filling new test probabilities of the leaves of the multi-tree with the 
Test set 
  15 examples done.                      
 
Showing below the properties of the best single tree 
 
SOLUTION 0: 5 rules  
 
Statistics over test set of length: 15: 
Relative Accuracy: 1 
AUC Hand: 1 
 
END OF RESULTS 
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Test dataset destroyed successfully 
The multitree has been destroyed successfully 
 
====> Time used (for learning): 0.01 secs.  
 
**** Smooth end of SMILES execution **** 

If we take a look at the results we observe several parts. A first part informs us that the files 
have been read and tells us about their characteristics: number of attributes of the dataset, 
number of the examples and class distribution, in the previous example 4 attributes and 14 
examples. Finally, it includes statistics on the tree  

Let us use a different example: “house-votes”: 
./smiles samples/house-votes.train samples/house-votes.test  

If we use an option file that uses combination, the output varies slightly: 
**** SMILES v.2.3.1 (Release Date: 23-August-2002) **** 
 
ftrain: samples/house-votes.train 
ftest: samples/house-votes.test 
fcost:  
ftestcost:  
 
Training Set: "samples/house-votes.train" 
 
No. of Attributes: 16 
Cardinality: 217 examples  
Class: 0 ("democrat"). Distribution: 136 
Class: 1 ("repub"). Distribution: 81 
 
 
Valid options.  
 
Creating the multitree. 
Learning begins... 
 Last Opened Node #1000 learned of 1000 
MeanDepth of Second Solution Start Positions: 4.36837 
 
 
The test set: "samples/house-votes.test" will be used to evaluate the 
results 
 
Predicting and preparing statistics 
 
Showing first the results of the combination method of all branches:  
 
COMBINATION RESULTS:  
Statistics over test set of length: 218: 
Relative Accuracy: 0.963303 
AUC (example by example) in Hand & Till's way: 0.990568 
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Filling new test probabilities of the leaves of the multi-tree with the 
Test set 
 218 examples done.                      
 
FIRST SOLUTION: (solution as if 1 tree were generated).  
  Note: if postpruning is enabled this solution is not the same as with 1 
tree. 
Num. of Rules: 21 
 
Statistics over test set of length: 218: 
Relative Accuracy: 0.949541 
AUC Hand: 0.980477 
 
 
Showing below the properties of the best single tree 
 
SOLUTION 0: 21 rules  
 
Statistics over test set of length: 218: 
Relative Accuracy: 0.940367 
AUC Hand: 0.976968 
 
END OF RESULTS 
 
Test dataset destroyed successfully 
The multitree has been destroyed successfully 
 
====> Time used (for learning): 10.49 secs.  
 
**** Smooth end of SMILES execution **** 

Now, learning begins exploring not only the first splits but many others (# of opened OR-
nodes, in the previous example 1000), in order to obtain a good result. After the learning 
process, some statistics of the combination all the trees are shown (0.963 accuracy and 0.991 
AUC), statistics of the first solution as if the multitree would have only 1 solution (21 rules, 
0.950 accuracy and 0.980 AUC) and, finally, a solution which is extracted using a criterion from 
the multitree (21 rules, 0.940 accuracy and 0.977 AUC). 

3.2   Simple Input and Output Format 
Let us explain first the format of the training set file. The lines that begin with ! are meant to be 
directives to the parser. Only the “!TYPES:” directive is mandatory. After several lines of 
directives the dataset starts with the values of each argument separated by commas. Each 
example must be put in a different line. The last value of each line is the class of the example 
and must not be followed by comma. 

The meaning of the directives is given in the following table: 
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Directive Syntax Mandatory 
!TYPES: Natural numbers: for nominal types, each number ≥ 1 denotes a 

different type. For numerical types, a 0 must be used, (0u or OU if 
missing values are to be taken into account). 

Yes 

!NAMES: Argument names separated by commas. Only used for visualising the 
solutions. 

No 

!WEIGHTS: Set of pairs “classname = weight” where weight is a real number. Tries 
to give more relevance to some classes over others. This will be further 
explained along with the cost-sensitive options.  

No 

!RECLASSIFY Set of pairs “originalclassname>changedclassname;”. The semicolon is 
mandatory even for the last assignment. This options is to change the 
name of one or more class. This is used for joining two or more 
classes. 

No 

Let us illustrate this syntax with an example (playt.train): 
!TYPES:1,2,3,4,5 
!NAMES:sky,temp,humid,wind,play 
!WEIGHTS:yes=1,no=2 
overcast,hot,high,weak,yes 
rain,mild,high,weak,yes 
rain,cool,normal,weak,yes 
sunny,mild,normal,strong,yes 
overcast,mild,high,strong,yes 
overcast,hot,normal,weak,yes 
sunny,hot,high,weak,no 
sunny,hot,high,strong,no 
rain,cool,normal,strong,no 
sunny,mild,high,weak,no 
overcast,cool,normal,strong,yes 
sunny,cool,normal,weak,yes 
rain,mild,normal,weak,yes 
rain,mild,high,strong,no 

This is a dataset with two classes, where all the attributes are nominal and different (this is why 
all the integers of the directive !TYPES are different). This training set gives more relevance to 
class “no” (2)  than to class “yes” (1) by using the directive “!WEIGHTS”. 

Another example could be like this. 
!TYPES:1,2,2,0,3,0,4 
!NAMES:sex,fatherstudlevel,motherstudlevel,IQ,region,fameconlevel,studlev
el 
!RECLASSIFY:elementary>no-uni;secondary>no-uni;highschool>no-uni; 
university>uni;doctor>uni; 
female,secondary,highschool,120,Valencia,20000,doctor 
male,university,university,130,Madrid,50000,highschool 
female,secondary,elementary,150,Berlin,30000,doctor 
male,elementary,elementary,90,Bretagne,40000,secondary 
female,secondary,elementary,105,Calabria,15000,university 
... 

In this case we have four nominal and two numerical attributes. Two attributes 
(“fatherstudlevel” and “motherstudlevel”) are of the same type. The class originally had five 
possible values from the datasets, but the !RECLASSIFY directive has joined the first three into 
a new class “no-uni” and the remainder two into a new class “uni”. This means that this 
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problem will be treated by SMILES as a two classes problem. Note that when the !RECLASSIFY 
option is used, the type for the class should not be used for any other attribute (using type 2 for 
the class in this case could produce some errors). 

We can ignore some attributes, either nominal or numerical, (if we think they are not useful 
for learning) when instead of the type, an 'I' or 'i' is put in the !TYPES directive. 

Nominal missing values are represented by “?” and are simply considered as an additional 
value for an attribute. Consequently, tree partitions may have “?” in some of the branches. 

For numerical missing values (which must also be represented by “?”), there are three 
possible options for handling them: ignore any example that contains numerical missing values 
(by using the value “0” in the !TYPES directive), treat them as a special value (by using the 
value “0U” or “0u” in the !TYPES directive) or substitute missing numeric values by a 0. We 
will see how to change this option later. 

For instance:: 
!TYPES:1,2,2,0,I,0U,4 
!NAMES:sex,fatherstudlevel,motherstudlevel,IQ,region,fameconlevel,studlev
el 
female,secondary,highschool,120,Valencia,20000,doctor 
male,university,university,?,Madrid,50000,highschool 
female,secondary,elementary,150,Berlin,?,doctor 
male,elementary,elementary,?,Bretagne,?,secondary 
female,?,elementary,105,Calabria,15000,university 
... 

Now we have some examples with missing numerical and nominal values. We also see that the 
“region” attribute is ignored and consequently not used for learning. Supposing we have set in 
the options file that missing values should be discarded and not substituted by zero (we will go 
back on this), the first example does not contain missing values; the second example is 
discarded as a missing value appears for an attribute (IQ) that does not accept it; the third 
example is taken into account because the missing value appears for an attribute (famconlevel) 
that accepts it; the fourth is discarded as a missing value appears for an attribute (IQ) that does 
not accept it; the fifth is taken into account and the second attribute (fatherstudlevel) would 
have an additional value “?”. 

Numerical partitions with missing values are “trios” of the form (X < a, X >= a, X = ?). 
Note: if two nominal arguments are set to be of the same type, it must be ensured that 

both of them have missing values or none of them. Otherwise, the types would not be 
identical and there may be an error. 

The test set has the same format as the training set, although directives are ignored. If the 
number or type of the attributes in the test set is different from the training set, an error is 
produced and SMILES exits. Moreover, it should be noted that in the current version if the test 
set presents for a nominal type an attribute value that was not present in the training set, an 
error is produced and SMILES exits. A very easy way to avoid this is to add a line like the 
following one in the training set: 

?,?,?,?,? 

which adds an unknown attribute value “?” for all types. Then the test dataset should be 
modified in order to substitute any new value by a ?.  
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3.3   Options File 
Before, we saw that the system options are not given through the command line. In order to 
specify the system options, a configuration system is used, called “options.cfg”. 

In this file, comment lines begin with ‘%’. The rest are pairs “option=value”, where spaces 
should not be placed around the symbol “=”. Most of the options are not mandatory but the file 
“options.cfg” must be placed in the same directory SMILES is.  

The syntax of the options file is illustrated by the following excerpt: 
%--Expected error method: ways to compute expected error 
expected error method=no compute 
% 
%--frequency error smoothing:use smoothing or not 
smoothing method=no smoothing 

As we have said before, lines that begin with ‘%’ are considered comments and are ignored. The 
options file is then constituted by assignments, where the left hand side is the option name and 
the right hand side is the value given to the option. Both the option name and the option value 
side have a strict syntax and no spaces can be inserted on either side of the ‘=’ sign. A complete 
list of the available options is given in section 6. 

Let us make a change in the options file. If we open it with an editor and modify the “show 
all k-best solutions” option as follows: 

%--show all k-best solutions 
show all k-best solutions=show 

and now, following with the playtennis example, we run SMILES again with the same training 
set and test set, we have that now the output includes one solution in form of rules: 

 
**** SMILES v.2.3.1 (Release Date: 23-August-2002) **** 
 
... 
 
Let us show the solution: 0 
f(X0, X1, X2, X3) = R :- X0=overcast. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X3=strong. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X2=high. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X2=normal. [class: yes] 
  
... 
  
**** Smooth end of SMILES execution **** 

This shows the solution in the form of conditional rules of the type Head :- Body. 

3.4   General Options 
Given the basics of the system, now we are going to describe some other main features and 
options. All of them are described in Section 6. 

One of the first things to choose in a decision tree learning algorithm is the splitting 
criterion. Different splitting criteria have been implemented: Left first, Gain (entropy), 
Gain_Ratio and C4.5 [53], CART [6], MDL, DKM [33], Expected_Error and Area Under the ROC 
Curve [24].  
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In the options file, the user can choose among all of these: 
%--splitting criterion: criterion which is used to select the best split 
%splitting criterion=left first  
%splitting criterion=gain 
%splitting criterion=gain ratio 
%splitting criterion=c4.5 
%splitting criterion=cart 
%splitting criterion=mgini 
%splitting criterion=desc mdl 
%splitting criterion=dkm 
%splitting criterion=split expected error 
%splitting criterion=local roc area 
%splitting criterion=one point local roc area 
splitting criterion=mse 
%splitting criterion=logloss 
%splitting criterion=sqdiff 
%splitting criterion=genentropy 
%splitting criterion=rocv 
%splitting criterion=auch 
%splitting criterion=aucs 

Their description is as follows: 
• left first: just chooses the first split.  
• gain: Quinlan’s information gain [49]. 
• gain ratio: Quinlan’s information gain ratio. [52][55] 
• c4.5: same as gain ratio but splits with gain lower than the mean are discarded [52]. 
• cart: simple implementation of GINI criterion of CART system [6]. 
• mgini: true implementation of GINI criterion [6]. 
• desc mdl: a criterion based on MDL (see [18] for more information). 
• dkm: An optimisation of mgini [33]. 
• split expected error: The split with lowest expected error. 
• local roc area: the split with greatest area under the ROC curve. Only valid for 2 

classes. 
• one point local roc area: simplification of “local ROC area”. Just computes the are 

with one point. 
• mse: minimum squared errror. It will be explained in section 3.14. 
• logloss: It will be explained in section 3.14. 
• sqdiff: computed as the square of the difference between probability for class a and 

probability for class b. Only valid for two classes. 
• genentropy: gain and gini can be seen as special cases of a generalised entropy 

function depending on a power. This is a parametrised split criterion where this 
exponent can be modified (by program). 

• rocv: another (not very successful) extension to the roc split for more than 2 classes. 
• auch: Based on Hand and Till’s extension of Area Under the ROC Curve for more 

than two classes [30]. It will be further explained in section 3.14. 
• aucs: Fawcett’s variant of AUCH. 
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The best results are usually obtained with the mse, auch and c4.5 criteria. CART only works 
well for two classes, and MGINI should be used instead. MGINI works well for two classes, so 
never use CART. 

Another important feature to be considered in a decision tree learning algorithm is pruning. 
Currently, SMILES includes pre-pruning methods and post-pruning. The available pre-pruning 
criteria can be chosen in the options file as follows: 

%--pre-pruning method: criterion for pruning when constructing the tree 
pre-pruning method=no pruning 
%pre-pruning method=proportional 
%pre-pruning method=expected error pruning 
%pre-pruning method=MDL pruning 
%pre-pruning method=stump pruning 
%pre-pruning method=pep pruning 
% 
%--only for stump pruning. Depth Limit.  
%--If stump pruning is not active, this option is ignored 
stump pruning limit=3 

It is advisable to use some kind of pruning when some noise is expected in the data. Many of 
these criteria have some parameters although currently only the stump pruning (depth limit) is 
modifiable through the options file, whereas the rest of them can be modified in the source 
code. The effectiveness on accuracy of these criteria is very variable. The MDL pruning criterion 
can only be used if the MDL splitting criterion has also been selected.  

Post-pruning is less efficient (because the entire tree is populated before pruning) but it is 
easier to use and more effective. Currently, the only post-pruning method implemented is the 
“Pessimistic Error Pruning” (PEP) introduced by [50] (Quinlan 1987). According to the study in 
[12], this is the best method that does not modify the tree structure (unlike C4.5 pruning). 
Although it has a tendency to underprune, we think that it is a quite simple and effective 
method. The way to activate it 

%--post-pruning method: criterion for pruning after constructing the tree 
(not used for combination) 
%post-pruning method=no pruning 
post-pruning method=pep pruning 

It is possible to combine pre-pruning and post-pruning. It could be good results to have a very 
strict pre-pruning criterion (only pruning very clear cases) and then post-pruning. We have not, 
though, performed any experiment about this. 

Additionally, numerical splits can also be particularised. The problem with numerical splits 
arises when a dataset has a great number of different values for an attribute. This happens very 
often with continuous values, such as real numbers. A dataset of thousands of examples and a 
single numerical attribute could generate a partition with thousands of children. Given n 
different values, after ordering them, we would have a middle value ai and a condition (x<ai) for 
each interval generated by two consecutive different values. This could slow down the system 
dramatically. For this reason there are some methods for reducing the number of intervals (also 
called discretisation methods): in a logarithmic way, with a maximum or with no limit. These 
options can be selected in the options file:  

%--numeric interval criterion: how numerical attributes are handled 
numeric interval criterion=log 
%numeric interval criterion=max 
%numeric interval criterion=no limit 
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Some of these options have parameters. Currently, these parameters cannot be specified 
through the options file and must be changed in the source code through program re-
compilation.  

Finally, the options that correspond to the handling of missing numeric values are: 
%-- how to handle missing numeric values 
missing numeric values=ignore examples with missing numeric values 
%missing numeric values=substitute missing numeric values 

The first one ignores any example that contains a value ‘?’ for a numerical attribute. The second 
option substitutes them by 0s. Both options are not applicable if we use the types “0U” or “0u” 
in the “!TYPES” directive of the training set. 

Until now, we have described the options that are common to many decision tree 
algorithms. In the next sections we describe more distinct and advanced features of SMILES. 

3.5   Multitree Options 
As we have discussed in the introduction, one way to overcome the greedy behaviour of 
traditional decision tree learning is to explore other splits. Once these alternative trees (OR 
trees) are grown, then the best tree can be selected from all the open branches or a combined 
solution of all of them could be built. 

The following figure shows a multitree for the playtennis example with a partial 
exploration of the entire search space: 

 
 Figure 1: Partial AND/OR tree for the playtennis example 

The first thing to specify is the number of trees in the multi-tree that are going to be explored. 
More precisely, the number correspond to how many different OR-nodes will be explored, 
which can give many more solutions (all their possible combinations). This is done in the 
options file as follows: 

%--multitree: construction: how many or-nodes are opened in the multitree 
multitree number of trees=1000 
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Additionally to the number of trees, the way in which second solutions are found has to be also 
specified. For instance, the following lines would select that the second solution would be the 
still unexplored node that is topmost. 

%--second tree opening:how to select the 2ond node to explore 
%second tree opening=split optimality 
%second tree opening=optimality rival ratio 
%second tree opening=optimality rival ratio depth 
%second tree opening=optimality rival ratio component 
%second tree opening=optimality rival ratio component random 
second tree opening=second topmost 
%second tree opening=second bottommost 
%second tree opening=second random 
%second tree opening=second random depth 

These options are more deeply explained in section 6. It is advisable to use topmost to improve 
accuracy, although it is the one that requires more resources. In case of resource limitations, a 
good option might be random. 

The number of trees (or-nodes) to be explored and how to select them determines the 
resulting multitree. Now, with all these open branches two things can be done: select a subset of 
solutions or combine them. 

If we decide to select one solution, then we have to choose a selection criterion to specify 
which of all the possible solutions must be shown. To do this, the options file includes the 
following alternatives: 

%--multitree: best tree selection criterion 
multitree best tree criterion=occam best 
%multitree best tree criterion=test cost best 
%multitree best tree criterion=occam and test cost best 
%multitree best tree criterion=coverage best 
%multitree best tree criterion=cross coverage 
%multitree best tree criterion=expected error best 
%multitree best tree criterion=split optimality best 
%multitree best tree criterion=mdl best 

For instance, “occam best” selects the shortest solution possible from the multitree. Others such 
“coverage best”, “expected error best” and “mdl best” choose the tree that gets best results with 
these measures. These options are explained in sections 3.15 and 6. Later on we will see another 
method for obtaining a single solution from the set (ensemble) of solutions.  

Taking into account alternative solutions provides better solutions than the first eager, 
greedy, single solution. This behaviour may require a lot of memory to store all the alternatives 
(used or not). In fact, most of the alternate trees (the OR nodes) that are suspended never are 
woken and, consequently, are never explored. A way to do a more efficient use of resources,  
can be based on not opening all the OR nodes or,  seen in other way, to forget part of the 
suspended nodes. Currently, SMILES presents “suspended nodes forgetting” methods: 

%--suspended nodes forgetting: must all suspended nodes maintained? 
suspended nodes forgetting=maintain all 
%suspended nodes forgetting=maintain const random 
%suspended nodes forgetting=maintain log random 
%suspended nodes forgetting=maintain log random with depth 
%suspended nodes forgetting=maintain log random with squared depth 
%suspended nodes forgetting=maintain log random with depth adjusted 
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The meaning of these options are: 

• “maintain all”: as before. Everything is kept in memory. 

• “maintain const random”: a constant number of children (randomly selected) is 
maintained. 

• “maintain log random”: only a log (number of children) are maintained. 

• “maintain log random with depth”: only a log(number of children/(depth+1)) are 
maintained.                         

•  “maintain log random with depth adjusted”: as  “maintain log random with depth” 
but a constant is added to the number of children. This constant is hardwired in the 
program. 

• “maintain log random with squared depth”:  similar to the preceding ones, but the 
formula is now: log(number of children/sqrt(depth+1)). 

With these methods, memory and time requirements for the multi-tree can be significantly 
improved. A compromise between memory and quality of results is obtained through the 
method “maintain log random with depth adjusted”.  As we have said, the method “maintain 
all” just maintains all the suspended nodes and it is the recommended option when there are 
not memory restrictions. 

Finally, although most of the methods maintain a logarithm proportion, in some cases the 
number of remaining nodes must be too low. In order to avoid this, a minimum number of 
nodes that must be preserved can be specified. This can be done through the following option. 

%--suspended nodes maintain const value 
suspended nodes maintain const value=2 

According to the experimental results shown in Section 4, LOG WITH DEPTH is the most 
economical option, both in memory and in time, and results are not significantly deteriorated. If 
time is not a problem (and just memory), LOG WITH DEPTH ADJUSTED is also a good option 
because it even increases accuracy in some cases. 

3.6   Combination and Fusion Options 
The other way to use the multiplicity in the multi-tree is to combine the results of different 
branches. There are also several methods to combine the different solutions that can be given in 
the multi-tree, and they can be selected using the option file. 

%-- Combination: How to combine several solutions 
%multitree solution combination=no combination 
%multitree solution combination=cross coverage combination 
%multitree solution combination=majority crisp 
multitree solution combination=majority absolute stochastic 
%multitree solution combination=majority relative stochastic 
%multitree solution combination=majority cost stochastic 

As we will discuss later, the “majority absolute stochastic” method gives the better results and 
can be combined with other more sophisticated options.  

In particular, a decision tree learner can be seen as a soft classifier, taking the proportion of 
examples that have fallen in each leaf as the probability that a new examples would be assigned 
to that class. 



 17

When we have multiple solutions the question is how these vectors can be “fusioned” in 
order to give a mixture or ensemble classifier. In our case the fusion is made whenever two or 
more OR-nodes are found and their predictions are weighted. 

At each leaf node, we have a cardinality vector that tells how many examples of the training 
set have fallen for each class. The first thing that we can decide is to work with the absolute 
vector or with the relative vector. For this we have the following options: 

%-- Combination vector: absolute (n. of examples) or relative (frequency) 
combination vector=absolute 
%combination vector=relative 

Let us see an example.  As we have said, the estimated probabilities assigned to each node 
depend on the proportion of training examples of each class that have fallen into each node 
during the training of the decision tree learning. The reliability of each node usually depends on 
the cardinality of the node. Consider three classes a, b and c and two nodes n1 and n2 with the 
following train distribution: 

n1= { 40, 10, 30 } 
n2= { 0, 2, 1 } 

If we convert this absolute values to relative values, we would have: 
n1= { 0.5, 0.125, 0.375 } 
n2= { 0, 0.667, 0.333 } 

The prediction of class a by n1 seems less reliable than prediction of class b by n2. However, 
node n1 has 40 examples supporting the prediction whereas n2 has only 2 examples. 
Consequently, in this case it seems that the absolute values provide more information. 

In either case, in some situations it may be convenient to perform a Laplace smoothing of 
these vectors. This can be enabled through the following option: 

%-- Combination smoothing. Use smoothing before combination 
%combination smoothing=true 
combination smoothing=false 

The vectors can be left as they are originally or they can be modified in several ways, so 
affecting the resulting fusion. 

%-- Combination vector method: how to derive the vector 
combination vector method=original 
%combination vector method=good loser 
%combination vector method=bad loser 
%combination vector method=difference 
%combination vector method=majority 
%combination vector method=squared 

The exact definition of these transformations is as follows. Consider a vector of values (either 
absolute or relative) that each classifier assigns for each class and example, vk,,j(x). The 
transformations are: 

original: )()(' ,, xvxv jkjk =  

difference: ∑
≠

−=
ji

jkjkjk xvxvxv )()()(' ,,,
 

good loser: ∑=
j

jkjk xvxv )()(' ,,
    if   ( ))(maxarg , xvj jk=     and 0 otherwise. 

bad loser: )()(' ,, xvxv jkjk =     if   ( ))(maxarg , xvj jk=     and 0 otherwise. 
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majority:  1)(' , =xv jk                if   ( ))(maxarg , xvj jk=     and 0 otherwise. 

squared: [ ]2
,, )()(' xvxv jkjk =  

Let us illustrate the previous transformation with an example. Consider four classifiers and 
three classes with the following values: 

v1,,j(x)= { 40, 10, 30 } 
v2,,j(x)= {   7,   2, 10 } 
v3,,j(x)= {   0, 10,   1 } 
v4,,j(x)= {   5,   6,   3 } 

These transformations would convert the initial vectors into these: 
Original: 

v1,,j(x)= { 40, 10, 30 } 
v2,,j(x)= {   7,   2, 10 } 
v3,,j(x)= {   0, 10,   1 } 
v4,,j(x)= {   5,   6,   3 } 

Difference: 
v1,,j(x)= {   0, -60, -30 } 
v2,,j(x)= {  -5, -15, 1 } 
v3,,j(x)= { -11,  9,  -9 } 
v4,,j(x)= {  -4,  -2,  -8 } 

Good loser: 
v1,,j(x)= { 80,   0,  0 } 
v2,,j(x)= {   0,   0, 19 } 
v3,,j(x)= {   0,  11,  0 } 
v4,,j(x)= {   0,  14,  0 } 

Bad loser: 
v1,,j(x)= { 40,  0,  0 } 
v2,,j(x)= {   0,   0, 10 } 
v3,,j(x)= {   0, 10,   0 } 
v4,,j(x)= {   0,   6,   0 } 

Majority: 
v1,,j(x)= {   1,   0,  0 } 
v2,,j(x)= {   0,   0,  1 } 
v3,,j(x)= {   0,   1,  0 } 
v4,,j(x)= {   0,   1,  0 } 

Squared: 
v1,,j(x)= { 1600, 100, 900 } 
v2,,j(x)= {   49,   4, 100 } 
v3,,j(x)= {   0, 100,   1 } 
v4,,j(x)= {   25,   36,   9 } 

Finally, with these vectors and each time two or more OR-nodes exist at the same level the 
following fusion methods can be chosen: 

%-- Combination fusion method: how to combine the vectors 
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%combination fusion method=sum 
%combination fusion method=prod 
%combination fusion method=arithmean 
%combination fusion method=geomean 
combination fusion method=max 
%combination fusion method=min 
%combination fusion method=median 

The meaning of these fusion strategies can be explained by the following definitions of fusion 
strategies that convert the K classifiers vectors into one combined vector Ωj(x): 

• sum:  =Ω ∑
k

jkj xvx )()( ,
 

• arithmetic mean: Kxvx
k

jkj /)()( ,  =Ω ∑  

• product:  =Ω ∏
k

jkj xvx )()( ,
 

• geometric mean:  =Ω ∏K
k

jkj xvx )()( ,
 

• maximum: ( ))(max)( , xvx jkkj =Ω  

• minimum: ( ))(min)( , xvx jkkj =Ω  

• median: ( ))()( , xvmedianx jkkj =Ω  

An important remark to mull over in shared ensembles is that the fusion points may be 
different. For instance, different predictions can be compared at the bottom of the tree where or-
nodes appear whereas this can also happen at the top of the multi-tree. Consequently, a great 
difference in combined prediction may come out between the sum and the average methods, for 
instance. 

Let us illustrate the application of these fusion methods with the previous example. The 
four original vectors were: 

v1,,j(x)= { 40, 10, 30 } 
v2,,j(x)= {   7,   2, 10 } 
v3,,j(x)= {   0, 10,   1 } 
v4,,j(x)= {   5,   6,   3 } 

Supposing they are at the same OR level, then we have the following fusioned vectors: 
sum:                   { 52, 28, 44 }    → a 
arithmean:         { 13,  7,  11 }    → a 
product:             { 0, 1200, 900 } → b 
geomean:           { 0, 5.89, 5.48 } → b 
maximum:         { 40, 10, 30 }    → a 
minimum:          {  0,   2,   1 }      → b 
median:              {  6,   8,   6.5 }   → b 

On the right we see which would be the class predicted if we would compute the maximum 
value of the resulting fusion vector, which is made at the top of the tree. 

We have seen transformation + fusion. Some combination give better results than other or 
correspond to classical combination politics. For instance, “majority + sum” would give the 
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typical majority selection. According to the results in [13][14][15], the best method is “absolute + 
no smoothing + original + max”, although this may depend on the examples. 

Another thing to take into account is that because of the very nature of combination 
(combination avoids overfitting and hence improves accuracy and other quality measures) , 
pruning is not beneficial. Consequently, pruning is not recommended to be used for 
combination. 

For this reason, since sometimes we may want post-pruning for the best single solution but 
not for the combination, there exists another option that disables post-pruning for combination 
despite it can be enabled for single solutions. This is obtained through the following option: 

%-- Allow post-pruning in combination (if post-prune enabled) 
%post-pruning in combination=yes 
post-pruning in combination=no 

Unless the option for combination is “no combination”, SMILES always gives statistics for the 
combination and statistics for the best single solution. In this way, SMILES tries to give the 
usually better accuracy results of the combination method jointly with the intelligible results of 
a single best solution. 

3.7   Showing Several Solutions 
Up to now we have always produced one best solution from the multi-tree (apart from the 
combination results that do not provide a comprehensible solution). However, there are some 
situations where it may be interesting to generate more than one solution. For this, we can 
determine the number of solutions output in the options file:  

%--k best: how many solutions are generated in the multitree 
k best number of solutions=3 

The interest in obtaining more than one solution is maintained only if the solutions are different 
between them. In order to ensure that the solutions are quite different and still are good, 
SMILES has several “k-best” methods. 

%--select k best method 
%select k best=k-best less visited 
%select k best=k-best less visited plus 
select k best=k-best less visited then different components 
%select k best=k-best different components 
%select k best=k-best random 

The previous methods are based on two main ideas: to avoid the use of the same branches that 
have been output for other solution (this is possible if several splits have been opened for an OR 
node), and secondly to avoid the use of the same partitions and attributes (herewith called 
components) in several solutions. In other words, these two ideas try to avoid repeated parts of 
solutions. For the second idea, a component matrix is used. 

A component matrix describes in a very concise way which components take part in a 
decision tree. For instance, if we have 3 possible partitions and 4 attributes then a component 
matrix could be like this: 

 
 At0 At1 At2 At3 
Part1 1.5 0 0.5 0.5 
Part2 0 0 0 0 
Part3 0 0 0 0 
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A component matrix ignores the values of the conditions. For instance, the previous matrix 
could represent the following tree: 

f(X0, X1, X2, X3) = R :- X0=overcast.  
f(X0, X1, X2, X3) = R :- X0=rain, X3=weak.  
f(X0, X1, X2, X3) = R :- X0=rain, X3=strong.  
f(X0, X1, X2, X3) = R :- X0=sunny, X2=high.  
f(X0, X1, X2, X3) = R :- X0=sunny, X2=normal.  

The values are obtained depending on the times an attribute is used and the depth at which it is 
used. For instance, 1.5 corresponds to 3/2 because the split with X0 has three children at depth 
1 (this gives the value 21 in the denominator). The value 0.5 corresponds to 2/4 because the split 
with X3 is used in two splits and at depth 2 (this gives the value 22 in the denominator). 

SMILES allows the user to see the component matrix of each solution, just by changing the 
corresponding option in the options file: 

%--show component matrix of solutions 
%show solutions components=no show 
show solutions components=show 

As we have said the component matrix is used for obtaining different solutions. For this reason, 
a reference component matrix has to be updated in order to reflect what kind of partitions and 
attributes have to be avoided. There are three different ways of how to generate this component 
matrix between several solutions: 

%--select k best components generation 
select k best components generation=component accumulate 
%select k best components generation=component random generated from 
start 
%select k best components generation=component random generated from 
second 

More detailed explanation on how this works can be shown in [27]. 
Let us show an example of how SMILES produces several solutions. If we use the 

playtennis dataset , 100 open or-nodes in the multi-tree, the “component random generated 
from second options” and “3 k-best solutions”, we obtain the following output:  

**** SMILES v.2.3.1 (Release Date: 23-August-2002) **** 
 
ftrain: samples/playt.train 
ftest: samples/playt.test 
fcost:  
ftestcost:  
 
Training Set: "samples/playt.train" 
 
No. of Attributes: 4 
Cardinality: 14 examples 
Class: 0. Distribution: 9 
Class: 1. Distribution: 5 
 
Valid options.  
 
Creating the multitree. 
Learning begins... 
Tree #100 learned of 100 
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MeanDepth of Second Solution Start Positions: 1.77778 
 
The test set: "samples/playt.test" will be used to evaluate the results 
 
Predicting and preparing statistics 
 
Showing first the results of the combination method of all branches:  
 
COMBINATION RESULTS:  
Statistics over test set of length: 15: 
Relative Accuracy: 1 
AUC (example by example) in Hand & Till's way: 1 
 
 
Filling new test probabilities of the leaves of the multi-tree with the 
Test set 
 15 examples done.                      
 
Let us select the 3 best trees. 
From 3 seeked, 3 solutions have been found. 
Showing their properties 
 
SOLUTION 0: 5 rules 
Component Matrix: 
P\R    C 0|  C 1|  C 2|  C 3| 
  C 0  1.5|    0|  0.5|  0.5| 
  C 1    0|    0|    0|    0| 
  C 2    0|    0|    0|    0| 
 
Statistics over test set of length: 15: 
 
Relative Accuracy: 1 
AUC (example by example) in Hand & Till's way: 1 
 
Let us show the solution: 0 
f(X0, X1, X2, X3) = R :- X0=overcast. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X3=strong. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X2=high. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X2=normal. [class: yes] 
 
SOLUTION 1: 10 rules 
Component Matrix: 
P\R    C 0|  C 1|  C 2|  C 3| 
  C 0 1.75| 0.75|    0| 1.75| 
  C 1    0|    0|    0|    0| 
  C 2    0|    0|    0|    0| 
 
Statistics over test set of length: 15: 
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Relative Accuracy: 1 
AUC (example by example) in Hand & Till's way: 1 
Let us show the solution: 1 
f(X0, X1, X2, X3) = R :- X0=overcast, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=sunny, X1=hot, X3=weak. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X1=mild, X3=weak. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X1=cool, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=overcast, X3=strong. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X3=strong. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X1=hot, X3=strong. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X1=mild, X3=strong. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=sunny, X1=cool, X3=strong. [class: yes] 
 
 
SOLUTION 2: 8 rules 
Component Matrix: 
P\R    C 0|  C 1|  C 2|  C 3| 
  C 01.125|    0|1.375|0.875| 
  C 1    0|    0|    0|    0| 
  C 2    0|    0|    0|    0| 
 
Statistics over test set of length: 15: 
 
Relative Accuracy: 1 
AUC (example by example) in Hand & Till's way: 1 
 
Let us show the solution: 2 
f(X0, X1, X2, X3) = R :- X0=overcast, X2=high. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X2=high, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X2=high, X3=strong. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X2=high. [class: no] 
f(X0, X1, X2, X3) = R :- X2=normal, X3=weak. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=overcast, X2=normal, X3=strong. [class: yes] 
f(X0, X1, X2, X3) = R :- X0=rain, X2=normal, X3=strong. [class: no] 
f(X0, X1, X2, X3) = R :- X0=sunny, X2=normal, X3=strong. [class: yes] 
  
  
END OF RESULTS 
  
Calculating mean differences between solutions 
Mean Discrepancy: 0.133333 
Mean Syntactic Euclidean Distance: 1.49475 
Mean Syntactic Manhattan Distance: 2.66667 
Mean Accuracy: 0.933333 
Maximum Accuracy: 1 
  
 
Test dataset destroyed successfully 
The multitree has been destroyed successfully 
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====> Time used (for learning): 0.03 secs. 
**** Smooth end of SMILES execution **** 

Three different solutions have been obtained, which have different components. At the end of 
the results, SMILES shows some statistics: mean discrepancy indicates the mean semantic 
difference between the solutions (i.e. the percentage of examples in which their predictions 
differ), two different syntactic distances which measure the difference in components between 
the solutions, the mean and maximum accuracy from all the solutions. More detailed 
explanation on these measures can be found in [27]. 

3.8   Validation Set and Cross-validation 
A validation set is a subset of the training set that is not used for constructing the model, but for 
selecting between or combining the constructed models. A typical use of validation sets is the 
technique known as cross-validation. 

In our case, if the training set is large enough we can “reserve” some part of it and use just a 
portion of it for training (we will call it subtraining set). This is especially useful with our 
multitree paradigm, since we can grow the multitree using the subtraining set as always, and 
then use the remaining dataset (the validation set) to select a good solution or combining 
between different solutions. 

At the present moment, this option can be selected as follows: 
%--sample training: whether or not a subset of the trainset is to be used 
%sample training set=no sample training set 
sample training set=sample training set 

Note that if the “cross coverage” option is selected as the option for the best tree selection or 
“cross coverage combination” is selected, then the sample training must be activated. 

Finally, the proportion (from 0 to 1) of the training set that is devoted for learning is 
specified through the following option: 

%--sample training set portion: the portion of the trainset to be sampled 
sample training set proportion=0.05 

In the previous case, 5% of the data would be used for training and 95% of the data would be 
used for validation. 

The use of a validation test can also be quite useful when the number of examples is too 
large to be handled by SMILES with a reasonable consumption of resources. Note that the 
sample is random and the rest is used for selection/combination. Consequently, this is better 
than making a manual sample before feeding the data to SMILES. 

Another important feature of SMILES is cross-validation. Cross-validation is a powerful 
method to evaluate the quality of a classifier in a more reliable way. Cross-validation is based 
on the idea of automatically splitting the whole dataset into two parts: training set and test set. 
However, this split can be done randomly several times and obtain the average of all the results. 
This can give a much more accurate result than just evaluating one split (either manually done 
into training set file and test set file, or automatically). 

In order to do cross-validation, the system should be supplied with a training set that 
contains all the data. In the smiles distribution, this kind of files can be found in the samples 
directory with names such as “/samples/monk2.all”. 

The options must be chosen in the following way to do cross-validation: 
%--sample training: whether or not using a subset of the training set 
sample training set=no sample training set 
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%sample training set=sample training set 
% 
%--sample training set portion: the proportion of the training set to be 
sampled 
sample training set proportion=0.50 
% 
%-- cross validation: use a different test set file for results or split 
the training set 
%cross validation=use separate test set 
cross validation=cross validation 
%cross validation=kfold cross validation 
%cross validation=repeated kfold cross validation 
% 
%-- how many times (if cross validation) the split has to be done 
k fold of cross validation=10 
% 
%-- how many times (if cross validation) we repeat the experiment 
repeat kfold=1 

Note that the “sample training” option must not be enabled. The “sample training set portion”, 
however, is necessary and tells SMILES that the input data file is going to be split into two 
datasets (training and test) of equal size (50% and 50%). The next option is the key one: “cross-
validation” that must be selected “cross validation”, in order to make SMILES not expect the 
test set, and let it extract its test set. Finally, the last option “k fold of cross validation” selects 
the times that different splits have to be done. Note that each fold performs a different and 
random split of the initial dataset into two different sets (training set and dataset) and learns the 
multitree, with all the associated process. 

For instance, if we use the file “samples/monks2.all” with MSE split and 100 trees, then we 
would have 10 runs of the algorithm. At the end, a summarised listing of the 10 runs is included 
and, ultimately, the mean and standard deviation of these 10 runs are computed, giving a 
portrait as follows: 

Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :  6.31864e+09 +/-  7.02266e+09 
 Results for 1st Solution:  
  Accuracy of 1st Solution   :     0.701667 +/-    0.0541203 
  AUC (by nodes) of 1st Sol  :     0.710585 +/-    0.0698885 
  Mean # Rules               :        286.9 
 Results for Combination:  
  Accuracy of Combination    :     0.768333 +/-    0.0677914 
  AUC of Combination         :     0.768977 +/-    0.0550205 
 Results for Best Solution:  
  Accuracy of Best           :     0.693333 +/-     0.073367 
  Mean # Rules               :        275.2 
  Accuracy class 0           :     0.756506 +/-    0.0753576 
  Accuracy class 1           :     0.566578 +/-    0.0963091 
  AUC by Hand                :     0.680732 +/-    0.0821538 
  MSE                        :     0.719583 +/-    0.0714988 
LogLoss                    :     0.740103 +/-    0.0827415 

 
 Time Used                   :        0.273 +/-    0.0498999 
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Mean results are computed for a lot of measures. First some statistics on the multitree are 
shown. Then, the mean results of the first solution are shown: its accuracy and its AUC (Area 
Under the ROC Curve), as well as the number of rules. Secondly, the same results for 
combination are shown (except, logically, the number of rules). Finally, for the best solution 
further measures are shown. The AUC, MSE and LogLoss measures will be discussed later. In 
the end the mean time used for each iteration is shown. 

3.9   k-fold Cross-Validation and repeated k-fold Cross-Validation 
K-fold Cross-Validation is the usual way to use cross-validation. The idea is to use all the 
possible combinations of a partition. For instance if k=10, we can partition the dataset into ten 
parts. Then, we can select ten different combinations of 9 parts for the training set and 1 part for 
the test set. 

The way to use k-fold Cross-Validation in SMILES is quite simple: 
%--sample training: whether or not a subset of the training set is to be 
used 
%sample training set=sample training set 
% 
%--sample training set portion: the proportion of the training set to be 
sampled 
sample training set proportion=0.90 
% 
%-- cross validation: use a different test set file for results or split 
the training set 
cross validation=repeated kfold cross validation 
% 
%-- how many times (if cross validation) the split has to be done 
k fold of cross validation=10 
% 
%-- how many times (if cross validation) we repeat the experiment 
repeat kfold=1 

The “sample training set proportion” (lets call it p) tells which proportion is used for training, as 
always. The difference is that now, each iteration a different subset of the same partition is used. 
Note that the meaning of any combination of p and k is clear when (1-p)*k <= 1. Other 
combinations are implementation dependent. 

Finally,  in some cases 10-fold validation could not give a quite reliable information about 
the quality of a hypothesis. A good idea is to augment k, even to match the number of 
examples, known as all-to-1 cross-validation. 

Another way to augment reliability of the means computed by SMILES is the use of 
repeated experiments. This option is called “repeated kfold cross validation”. For instance, if we 
use the previous options with these modifications: 

%-- cross validation: use a different test set file for results or split 
the training set 
cross validation=repeated kfold cross validation 
%-- how many times (if cross validation) we repeat the experiment 
repeat kfold=20 

Then the experiment will be repeated 20 times, i.e. we make 20 partitions and exploit each 
combination of each partition. In the previous case, we would have 20x10= 200 iterations, from 
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which the means are computed. For instance, the following output shows the results for 
monks2 with MSE split and 100 trees, and 10x10= 100 runs of the algorithm. 

Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :  8.07935e+10 +/-  4.18201e+11 
 Results for 1st Solution:  
  Accuracy of 1st Solution   :        0.683 +/-    0.0511364 
  AUC (by nodes) of 1st Sol  :     0.666375 +/-    0.0615097 
  Mean # Rules               :       282.79 
Results for Combination:  
  Accuracy of Combination    :     0.750167 +/-    0.0583391 
  AUC of Combination         :     0.741057 +/-    0.0611061 
 Results for Best Solution:  
  Accuracy of Best           :        0.692 +/-    0.0524634 
  Mean # Rules               :       270.71 
  Accuracy class 0           :     0.755819 +/-    0.0685639 
  Accuracy class 1           :     0.576554 +/-    0.0986817 
  AUC by Hand                :     0.669107 +/-    0.0568279 
  MSE                        :     0.712333 +/-    0.0493715 
LogLoss                    :     0.743794 +/-    0.0519433 

 
 Time Used                   :       0.2756 +/-    0.0591577 

As we can see the deviations are now lower than for just 10 cross-validation. 
When small datasets are used or low proportions are used for cross-validation, there is a 

higher possibility than in one partition of the dataset one class wouldn’t appear in any example 
of the validation test dataset. In this case, the evaluation results would not be as accurate, as if 
this happens. In order to avoid this there is simple (although inefficient) way: if a partition 
leaves the validation test dataset without examples of any class, than the partition is repeated. 
This can be enabled through the following options: 

%--allow (if cross validation) a test dataset with one class without 
examples 
%allow test without one class=yes 
allow test without one class=no 

3.10   Expected Error and Smoothing Options 
The current system includes several ways to compute the expected error. This value can be used 
or not depending on other options, especially if expected error pre-pruning is active or some 
other criterion is based on it (split criterion, best tree criterion). 

%--Expected error method: several ways to compute expected error 
%expected error method=no compute 
expected error method=relative frequency with majority class 
%expected error method=relative frequency with frequency probability 
%expected error method=cost with minimum class 
%expected error method=cost with frequency probability 
%expected error method=cost with cost probability 

Section 6 includes some details about these options. 
The relative frequency used for computing the expected error can be smoothed. Different 

smoothing criteria can be selected: 
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smoothing method=no smoothing 
%smoothing method=laplace 
%smoothing method=k-estimate 
%smoothing method=m-estimate 
%smoothing method=m-estimate uniform 

Smoothing can also be used for assigning the majority class when using cost information, as we 
will see in the next subsection, and it can be used in splitting criteria, as we describe next. 

The cardinalities of each node in a split are taken into account in some splitting criteria. The 
derived probabilities can be smoothed in different ways: 

%--frequency error smoothing:use smoothing or not for node probabilities 
in a split 
node smoothing method=no smoothing 
%node smoothing method=laplace 
%node smoothing method=k-estimate 
%node smoothing method=m-estimate 
%node smoothing method=m-estimate uniform 

According to our experiments, this smoothing does not improve in general. 
Similarly, many splitting criteria are based on the probabilities of the nodes under the split. 

This probability can be computed from the frequency directly or it can be computed in other 
more sophisticated ways. These are the current options: 

%--Probability in splitting criteria 
probability in splitting criteria=from frequency no smoothing 
%probability in splitting criteria=from frequency smoothing 
%probability in splitting criteria=from costs 
%probability in splitting criteria=from frequency with stratification 
%probability in splitting criteria=from frequency with stratification no 
smoothing 

None of these options is relevant to the Descriptive MDL Splitting Criterion, because this 
method does not use probabilities. For the Local ROC Splitting Criterion only the two first 
probabilities (with and without smoothing) can be used and are effective. 

Frequency smoothing is especially recommended for CART and DKM splitting criteria. 
Both of them do not work well for more than two classes. For more than two classes, if you 
want to use a similar criterion, use MGINI. 

3.11   Cost-sensitive and ROC Analysis Features 
In many previous sections we have seen some options related to costs. In this subsection we are 
going to briefly explain cost-sensitive learning [9] and ROC analysis [38] and which features 
SMILES provides around these items. 

Accuracy (or error), i.e., percentage of instances that are correctly classified (respectively 
incorrectly classified) has been traditionally used as a measure of the quality of classifiers. 
However, in most situations, not every misclassification has the same consequences. In fact, it is 
usually the case that misclassifications of minority classes into majority classes (e.g. predicting 
that a system is safe when it is not) have greater costs than misclassifications of majority classes 
into minority classes (e.g. predicting that a system is not safe when it actually is). Obviously, the 
costs of each misclassification are problem dependent, but it is almost never the case that they 
would be uniform for a single problem. Consequently, accuracy is not generally the best way to 
evaluate the quality of a classifier or a learning algorithm.    
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Although there can be other kinds of cost associated with predictions [63] (e.g. test cost that 
we will address later on), the most relevant ones are misclassification costs, i.e., the cost of 
classifying an instance of class a into class b. All these misclassification costs for a specific 
problem can be arranged in a c-dimensional matrix, with c being the number of classes. This 
matrix is called a cost matrix. 

A Cost Matrix (also known as Loss Matrix) indicates the costs for correct and incorrect 
classifications. An example of a Cost Matrix C for three classes {a, b, c} might be as follows: 

  Actual 
  a b c 

a -2.5 4 2 
b 2.1 -3.5 0 Predicted 
c 1.2 1.3 -4 

This example shows the usual portrait, the diagonal of the matrix shows the costs for correct 
classification (-2.5, -3.5, -4). These values are usually negative or zero, because a correct 
classification could have benefits instead of costs. The other values represent different cases of 
misclassification. For instance, the value 2.1 in cell (b,a) means that classifying incorrectly an ‘a’ 
instance as a ‘b’ instance has a cost of 2.1. 

The use of cost matrices for the generation of classifiers that minimise the resulting 
prediction cost instead of the prediction error has been incorporated in a few aspects of a few 
learning systems by changing some criteria or measures used by these methods [43][5][35]. 
Nonetheless, it is also common to use a learning system that is not cost-sensitive and to modify 
the class distribution of the training data set to obtain a classifier that adjusts itself to a specific 
cost matrix and the class distribution of the test set if known [37][17][9]. 

However, a change of class distribution is usually done by stratification (or re-balancing), 
i.e., either by under-sampling or by over-sampling. Stratification presents some problems 
though (lost of data or redundant data). 

The usefulness of cost-sensitive learning does not only apply when the cost matrix is known 
a priori. If the cost matrix is not known, one or many classifiers can be generated in order to 
behave well in the widest range of circumstances or contexts as possible. The Receiver 
Operating Characteristic (ROC) analysis [48][61] provides tools to select a set of classifiers that 
would behave optimally and reject some other useless classifiers. 

Finally, given a classifier, it is usual that its accuracy could be lower than 100%, let us say, 
for instance, 87,5%. In this case, it may be interesting to know to which class the misclassified 
12,5% goes and how this error is distributed. A Confusion Matrix is a very practical and 
intuitive way of seeing such a distribution. Given 100 test examples and a classifier, an example 
of a Confusion Matrix M for three classes {a, b, c} might be as follows: 

  Actual 
  a b c 

a 20 2 3 
b 0 30 3 Predicted 
c 0 2 40 

This matrix is understood as follows. From the hundred examples, 20 were of class ‘a’ and all 
were correctly classified, 34 were of class ‘b’ from which 30 were correctly classified as ‘b’, 2 
misclassified as ‘a’ and 2 misclassified as ‘c’. Finally, 46 were of class ‘c’ from which 40 were 
correctly classified as ‘c’, 3 misclassified as ‘a’ and 3 misclassified as ‘b’. The confusion matrix 
can be shown by SMILES if costs are active or by modifying an option (see section 3.17). 
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From the cost matrix and the confusion matrix it is very easy to compute the cost of a 
classifier for a given dataset, just as the 1 by 1 matrix product, given a Resulting Matrix: 

R(i,j) = M(i,j) · C(i,j) 

Our system SMILES incorporates many features that can handle cost information, either given 
as class weights or as a cost matrix. 

The first thing to tell SMILES is how the cost matrix is going to be specified. This once again 
can be done through the option file: 

%-- weights method:how the cost matrix is constructed 
weight method=no costs 
%weight method=uniform weights 
%weight method=inverse frequency weights  
%weight method=weights from file 
%weight method=costs from matrix 

The first three options do not need any additional information. The next two require some 
information, either a line in the training set file or a separate cost matrix file. 

The “no costs” option is the default option and it is equivalent to the use of “uniform 
weights”, which means a matrix with all equal costs. The difference is just in efficiency, since 
the first option does not force SMILES to do any cost calculation. 

The third option generates class weights according to the class distribution. For instance, if 
a training set of three classes has distribution (500, 2000, 2500) , then the following weights are 
generated (c/500, c/2000, c/2500) where c is a parameter that can be modified through program 
(hardwired option). This inverse class distribution assigned weights try to give more relevance 
to the classes with less cardinality in order to “compensate” the dataset. 

As we have discussed before, accuracy is frequently a much too simplified measure of the 
quality of a classifier. For instance, given a dataset whose distribution of classes is (pa= 0.85, pb= 
0.1, pc= 0.05), i.e., most of the examples are of the class ‘a’, a simple classifier predicting 
everything into class ‘a’ would have 85% of accuracy. 

The weight can also be read from the training file if the option “weights from file” is chosen. 
Then SMILES would look for a line as follows: 

!WEIGHTS:yes=1,no=2 

as we discussed in section 3.1. 
For this two latter options, we have talked about weights, whereas we talked about costs 

elsewhere. How is a weight vector converted into a cost matrix? 
For instance, from this weight vector: 

 a b C 
Weights 3 5 2 

If we could use over-sampling with these weights, then we would have that the frequency of 
class ‘a’ would be multiplied by 3/2, and the frequency of class ‘b’ by 5/2, by conveniently 
duplicating some of the examples. 

It is easy to show that the corresponding cost matrix to this over-sampling would be: 
  Actual 

  a b c 
a -3 5 2 
b 3 -5 2 Predicted 
c 3 5 -2 
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Moreover, for two classes it is easy to show (see [27]) that the resulting assignments will be 
exactly the same that if we put 0s on the diagonal. 

Finally, the easiest way to create a matrix is to set the “costs from matrix” option. In this 
case, SMILES will look for a cost file specified in the command line (the third file), as the usage 
shows: 

USAGE: 
./smiles file.train [file.test] [file.cost] [file.testcost] 

Otherwise this file will be ignored. If we do not want to specify the test set, we just place the 
symbol “-“. For instance, the following command line, would just look for a train set file and a 
cost file.          

  ./smiles samples/liver.all - liver.cost 

The format of the file is just a list of real numbers separated by commas. The last one must also 
have a comma, such in the following example: 

% Matrix 4x4 for cars problem 
0,     3.2,    1.1,    4.3, 
2.5,   0,      10.4,   8.2, 
3.2,   17.1,   0,      0.1, 
2.3,   8.2,    4.1,    0, 

As always, lines beginning with ‘%’ are ignored. 
Now that we know how to construct the cost matrix in several ways, what can we do with 

it? The first and most effective thing to do is to change the way in which the classes are assigned 
to each node. Instead of assigning the majority class (the default option), i.e. the most frequent 
class, we can label a node with the class that minimises the cost. The possible ways are as follows: 

%--class selection method: how the class of a leaf is assigned 
class selection method=majority class 
%class selection method=minimum cost selection 
%class selection method=minimum cost class without smoothing 
%class selection method=stratification class 
%class selection method=stratification without smoothing 

The “minimum cost selection” is the option that assigns the class taking into account the costs, 
i.e., if we have a leaf vector V(i) then we look for the class i such that: 

Assigned Class =  ∑ ⋅
ji

jVjiC )(),(minarg  

For instance, if a leaf node has V = {20, 10, 22} and we have the following cost matrix: 
  Actual 

  a b c 
a 0 10 5 
b 1 0 2 Predicted 
c 5 3 0 

If we assign class a to the node we have a cost of 20·0+10·10+22·5=210. If we assign class b to the 
node we have a cost of 20·1+10·0+22·2=64. If we assign class c to the node we have a cost of 
20·5+10·3+22·0=130. It turns out that despite that c is the majority class, b is the less costly class. 

Note that when pruning is not active all the leaf nodes are pure and hence, the options 
“minimum cost selection” and “minimum cost class without smoothing” are equal to the 
majority class provided the cost matrix is normalised (all values are positive and only 0s in the 
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diagonal). The stratification methods are usually worse because they use a simplified version of 
the cost matrix. They are useful for comparing with other methods and are not recommended. 

The class selection method is the most important option in the sense that it has a very 
effective impact on cost minimisation. Other less effective (or even with no provable good 
effects) are based on modifying some criteria used during learning. 

One first idea that turned out to be poorly successful was to modify the splitting criteria 
taking costs into account. Since most of them are based on probabilities, the idea was to modify 
these probabilities taking cost into account. Although we saw the probability in the splitting 
criteria before, the three last possibilities can now be understood as ways to compute this 
probability based on expected costs instead of expected frequencies.  

%--Probability in splitting criteria 
probability in splitting criteria=from frequency no smoothing 
%probability in splitting criteria=from frequency smoothing 
%probability in splitting criteria=from costs 
%probability in splitting criteria=from frequency with stratification 
%probability in splitting criteria=from frequency with stratification 
with stratification 

In the case that the third one is chosen (“from costs”), then there are two ways of deriving this 
probability, that can be selected through the option file: 

%--cost derived probability method 
cost derived probability=direct 
%cost derived probability=with smoothing 

These options are explained in Section 6. 
There are also cost-sensitive options in how to compute the expected error, which would 

turn into an expected cost. This would be used in any other option that uses expected error. 
Costs can also be used in “multitree solution combination” options. 

Finally, there are some facilities related to ROC analysis. These are possible for problems 
with 2 classes (in the following sections we will see measures that are applicable for more than 2 
classes). A ROC plot of several points is a convex hull as illustrated in the following figure: 
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Example of a ROC curve 

First of all we can compute and show the ROC points obtained by the optimal assignments of a 
classifier. Note that these points are obtained from a single “soft” classifier, not as usual, when 
we obtain a ROC curve from many classifiers. These points represent different assignments of 
the same trees, that, in fact, give different classifiers: 
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%--compute ROC points 
compute ROC points=no 
%compute ROC points=yes 
% 
%-- show ROC points 
show ROC points=no 
%show ROC points=yes 

From these points we can draw and compute the area by using these options: 
%-- compute ROC area 
compute ROC area=no 
%compute ROC area=yes 
% 
%-- generate ROC curve file 
%generate ROC curve file=no 
generate ROC curve file=yes 

The outputs of each solution are generated into a postscript file called “ROCtstN.ps” for the 
training set, “ROCtotN.ps” when the training set is used for ordering the nodes and the test set 
to compute the leaves probabilities, and “ROCtstN.ps” for the test set, where N is the number of 
the solution. If there is only one solution, then N is just 0. 

These ROC features are thoroughly explained in [24]. 

3.12   AUC Evaluation 
We have just described that different curves can be output: wrt. the training set, using the 
training set for the ordering and the test set to compute the leaves probabilities and the entire 
curve with the test set. From these curves we can compute the area under the ROC curve, which 
is very useful to estimate the quality of a classifier. In particular the AUC measures used and 
output by SMILES are: 

• AUC0: the curve is constructed with the order derived from the training set and 
with the node distributions given by the training set. If pruning is not active, it is 
usually 1. Consequently this measure is not much too informative. 

• AUC1: the curve is constructed with the order derived from the test set and with 
the node distributions given by the test set. This way to evaluate a classifier seems 
cheating, because the order is derived from the test, which could not be performed 
in general. What this measure tells is that if this value is high, there will be good 
labellings of the tree that could obtain high accuracies for different cost matrices, 
but it does not tell that we are necessarily going to be able to use these optimal 
labellings. 

• AUC2: the curve is constructed with the order derived from the training set and 
with the node distributions given by the test set. This is a very useful measure. 
What this measure tells is that if this value is high, there will be good labellings of 
the tree that could obtain high accuracies for different cost matrices, and since we 
are using the order from the training set, we can know that order and we will be 
able to use these optimal labellings. 

• AUC4 (1P-AUC): it is a simplification of AUC2 that only uses one point for 
computing the curve. The interest of this measure is that can be used for more than 
2 classes (currently it is not implemented for more than 2 classes).  
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All the AUC measures have singular values when FPR=0 or TPR=0. We have assumed the 
following assignments. If FPR=0 then AUC=TPR, and if TPR=0 then AUC=FPR. 

Theoretically, AUC1<AUC0, AUC2<AUC1 and AUC4<AUC1. These measures are shown 
with cross-validation when ROC options are active (option “compute ROC points=yes”). For 
monks2, for instance, this could be a possible result (only the excerpt for the best solution is 
shown): 

Results for Best Solution:  
  Accuracy of Best           :        0.692 +/-    0.0524634 
  Mean # Rules               :       270.71 
  Accuracy class 0           :     0.755819 +/-    0.0685639 
  Accuracy class 1           :     0.576554 +/-    0.0986817 
  AUC0 (train)               :     0.185172 +/-     0.014343 
  AUC1 (test)                :     0.991017 +/-   0.00788894 
  AUC2 (train-order + test)  :     0.669008 +/-    0.0594674 
  AUC4 (train-1-lab + test)  :     0.666187 +/-    0.0528094 
  AUC by Hand                :     0.669107 +/-    0.0568279 
MSE                        :     0.712333 +/-    0.0493715 
LogLoss                    :     0.743794 +/-    0.0519433 

If possible, AUC2 should be used instead of accuracy to evaluate classifiers when class 
distributions or costs might change when the model were to be applied. This is the one that is 
shown by default (computed in Hand and Till’s way) and shown as “AUC by Hand”.  AUC by 
Hand and AUC2 are not exactly the same because of the ordering functions. When two or more 
nodes have the same ratio, then their precise order is not defined, and hence small variations 
can occur if both methods order them differently (this is solved since version 2.1.7) he next 
section we better explain how AUC2 is computed in Hand and Till’s way. 

3.13   Multi-class AUC Evaluation. AUCH, MSE and LogLoss Measures 
The problem of previous AUC measures and ROC analysis is that they are only applicable to 
problems with two classes and not valid for multi-class problems. Only the 1-point AUC 
measure is extensible. However this measure does not take into account the possible labelling 
that can be done in a decision tree, turning it into a soft classifier. 

Fortunately there are some extensions and approximations of the AUC measure for more 
than two classes. The first one is the Hand and Till M Function (that we will call AUCH), which 
is the most popular extension, and the other two are traditional measures adapted for this 
purpose. All of them try to consider that not all the errors have the same consequences and that 
more compensated solutions are preferable from those that would be selected by using 
accuracy. 

3.13.1   Hand and Till M Function 
Hand and Till present a generalisation of a particular AUC measure [30]. It has been shown that 
for two dimensions the AUC measure is equivalent to the GINI measure (not that the GINI 
measure is not the GINI splitting criterion used in the CART algorithm). 

The idea is that in the AUC measure for 2 dimensions, they use the estimated probabilities 
of an example xi pertaining to the class 0, denoted by p0(·), (estimated from the training set), to 
rank the pairs {gk, fk} where gk and fk are defined as gi = p0 (x1i) and fj = p0 (x0j) where x1i are the 
examples from the test set of class 1 and x0j are the examples from the test set of class 0. Note 
that instead of ordering nodes they order examples. 
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For instance consider the following two nodes for the training set: 
Node 1: (4,1)  --> class 0 with prob= 4/5 = 0.8 
Node 2: (2,3)  --> class 1 with prob= 2/5 = 0.4 

And now consider that the test set is distributed in the following way over the decision tree: 
Node 1: (6,4)   
Node 2: (4,11)  
with n0= 10 elements of class 0 and n1= 15 elements of class 1. Then we have: 

• 6 of class 0 with p0(·) = 0.8 
• 4 of class 1 with p0(·) = 0.8 
• 4 of class 0 with p0(·) = 0.4 
• 11 of class 0 with p0(·) = 0.4 

From here, we can rank them as described in [30]. Let us denote with ri the rank of the ith class 0 
test set point. Let us denote S0 = Σri. The they derive the area as: 
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This area, although is an AUC (and it has the equivalence Gini + 1 = 2 × A), has two main 
differences with respect to usual ROC curves and also to a similar proposal in [18]: 

• It is a step-like (or a stairs-like) area (no diagonals between the points are 
computed)).  

• It is not convex, because the order is given by the training set and the examples are 
given by the test set. 

Apart from this, the most relevant novelty of Hand and Till paper is that they understand A as 
“an overall measure of how well separated are the estimated distributions of p0(·)  for class 0 
and class 1”, i.e., A(i,j) could be computed for whatever pair of classes i and j. 

This interpretation allows what they call “a simple generalisation of the AUC for multiple 
class classification problems”.  They define a new measure M as: 
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3.13.2   Other Measures MSE and LogLoss 
The AUC measure tells “how well separated are the estimated distributions of p(x) for class 0 
and class 1” (Hand & Till 2001). Why do not we develop other measures that try to approximate 
how well separated two distributions are?  

One measure of this kind is the well-known Mean Squared Error measure. 
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Where f(i,j) is the actual probability of example i to be of class j and p(i,j) is the estimated 
probability of example i to be of class j. The denominator gives a normalised MSE between 0 
and 1. For classification problems, f(i,j) will be always 0 or 1, depending on the class. 

Another measure is the log-loss, which is claimed to be a measure of the goodness of 
probability estimates (Bernardo & Smith 1993) (Mitchell 1997). 
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In the case p(i,j)=0, we use a forced smoothing in order to avoid a negative infinite value. 
Note that these two measures are closely related to AUCH. As we have said, the AUCH 

measure tells “how well separated are the estimated distributions of p(x) for class 0 and class 1” 
(Hand & Till 2001). This is quite the same of what is measured by the expression (f(i,j)−p(i,j))2 or 
by the expression (f(i,j)log p(i,j)). 

These two measures have the advantage that are much easier to be understood and 
computed. Obviously, they have no problems of generalisation for more than 2 classes. 

3.14   ROC-based Splitting Criteria 
In [24], the first ROC-based splitting criteria was defined as follows: 

AUCsplit: Given several splits sj, each one formed by nj leaves {lj1, lj2,..., ljnj}, then the best 
split is the one that maximises: 
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where the points Pi j are obtained in the usual way (sorting the leaves of each split by local 
positive accuracy), and A(p1, p2) means the area of the trapezoid between these two points. 

The first question that arises with a new splitting criterion is how it differs from other 
criteria previously proposed. To answer this question, let us review the general formula of other 
well-known splitting criteria, such as Gini [6], Gain, Gain Ratio and C4.5 criterion [52] and DKM 
[33]. These splitting criteria find the split with the lowest I(sj), where I(sj) is defined as: 
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where pj is the probability of being sorted into that node in the split (cardinality of child node 
divided by the cardinality of parent node). Using this general formula, each splitting criterion 
implements a different function f, as shown in the following table: 

CRITERION f(a,b) 
ACCURACY (EERROR) min(a,b) 

GINI (CART) 2ab 
ENTROPY (GAIN) a·log(a)+b·log(b) 

DKM 2(a·b)1/2 

These functions f(a,b) are impurity functions, and the function I(s) calculates a weighted average 
of the impurity of the children in a split. In general, we need to compare this weighted average 
impurity of the children with the impurity of the parent, if we are comparing different splits of 
different nodes.  

Consider for instance the following two splits: 
 [a+b,a+b] 

[a,b] [b,a] 
 

 [2a,2b] 

[a,b] [a,b] 
 

The children have the same weighted average impurity in both cases. In order to see that the 
left is a better split than the right (assuming a?b), we need to take the impurity of the parent into 
account. In contrast, AUCsplit evaluates the quality of the whole split (parent + children) and 
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cannot be reduced to a difference in impurity between parent and children. The left split has 
AUCsplit=a/(a+b) (assuming a>b), while the right split has AUCsplit=0.5, indicating that 
nothing has been gained in ROC space with respect to the default diagonal from (0,0) to (1,1). 

An interesting relationship can be established with the Gini index. Consider the following 
binary split: 

 [p,n] 

[p1,n1] [p2,n2] 
 

If the left child has higher local positive accuracy, then we have: 
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It is interesting to note that the denominator of this expression is the Gini index of the parent, 
and the enumerator could be called a mutual Gini index of the children given the parent. 

This splitting criterion should be used when we want to maximise AUC instead of 
maximising accuracy. 

In the previous section we have discussed that this measure can only be applied to 
problems with two classes, and, consequently, so can the splitting criterion. Nonetheless, in the 
previous section, we have presented measures that are valid for more than two classes. Let us 
see the corresponding splitting criteria. These are developed in [25]. Let us begin with Hand 
and Till’s M function (AUCH). 

The first problem is that the previous formulation of Hand and Till’s M function is based on 
a ranking of examples. Consequently it has cost O(m·logm), where m is the number of examples. 
If this has to be done for the c classes, this can be intractable. This high computational 
complexity would become an important hindrance for using it as splitting criterion. 

Fortunately, this complexity could be reduced if we know that for all the examples under 
the same node the rank would be the same. Consequently, we only have to rank the nodes, as 
we made in the two-classes case, and the complexity of the ordering would be O(n·logn) where 
n is the number of nodes. Given a set of nodes S, let us define the area just considering two 
classes a and b: 
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where the points Pi ab are obtained in the usual way (sorting the leaves of each split by local 
positive accuracy, just taking into account classes a and b). 

And now, we can redefine the M function as M-AUC in the following way: 
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Finally, we can easily define the splitting criterion in the following way: 
M-AUCsplit. Given several splits sj, each one formed by nj leaves {lj1, lj2,..., ljnj}, then the best 
split is the one that maximises MAUC(sj). 

The other two measures MSE and LogLoss are much easier to be used as splitting criteria.  
Consider a partition with n nodes. Since for classification problems, f(i,j) will be always 0 or 1, 
depending on the class, we have the following equation: 
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where card(i,j) is the number of examples of class j in the node i, and p(i,j) is the estimated 
probability of class j for the node i. 

The formula for logloss is simpler, because many cases are just removed when f(i,j)=0. 
Consequently, we have: 
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The cost is just O(n·c). Finally, it is important to note that, in the same way expected error is not 
a very good splitting criterion for obtaining low global errors, it is possible that M-AUCsplit is 
not the best formulation for minimising M-AUC, MSEsplit is not the best formulation for 
minimising MSE and LogLossSplit is not the best formulation for minimising LogLoss.  

According to our experiments (which we will show in section 4), the best criterion seems to 
be MSE. 

3.15   Test Cost 
Apart from misclassification costs, there is another kind of costs that can be extremely 
important in some applications, especially in medical diagnosis. Consider an imaginary 
diagnosis problem for three different diseases (DISEASE1, DISEASE2 and DISEASE3) as 
follows: 

BP-Min (Minimum Blood Pressure): numerical. 
BP-Max (Maximum Blood Pressure): numerical. 
Div_End (Diverticulities_through_Endoscopy). Nominal: pos / neg. 
Cysts_Scopy (Cysts through Colonoscopy) . Nominal: pos / neg 
Meningitis_Lumbar (Meningitis through Lumbar Puncture). Nominal: pos / neg 
Cysts_Echo (Cysts through Echography). Nominal: pos / neg 
Glucose_BA (Glucose concentration through Blood Analysis): numerical 
Leucocytoses_Urine (Leucocytoses through Urine Analysis) Nominal: pos / neg 

The test costs (taking into account economic, risk and pain issues) have been determined as 
follows: 

BP-Min: 1 cost units. 
BP-Max : 1 cost units.  
Div_End: 30 cost units. 
Cysts_Scopy: 50 cost units. 
Meningitis_Lumbar: 200 cost units. 
Cysts_Echo: 15 cost units. 
Glucose_BA: 15 cost units. 
Leucocytoses_Urine: 10 cost units. 

And now consider that we have three decision trees for this problem: 
DECISION TREE 1: 
Disease (BP-Min, BP-Max, Div_End, Cysts_Scopy, Meningitis_Lumbar, Cysts_Echo, Glucose_BA, Leucocytoses_Urine) = R 
    {DT1-Node1} :- Cysts_Scopy=neg, Glucose_BA>=120 [class: DISEASE1] 
    {DT1-Node2} :- Cysts_Scopy=neg, Glucose_BA<120, Leucocytoses_Urine=neg [class: DISEASE1] 
    {DT1-Node3} :- Cysts_Scopy=neg, Glucose_BA<120, Leucocytoses_Urine=pos [class: DISEASE2] 
    {DT1-Node4} :- Cysts_Scopy=pos [class: DISEASE3] 
 
DECISION TREE 2: 
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Disease (BP-Min, BP-Max, Div_End, Cysts_Scopy, Meningitis_Lumbar, Cysts_Echo, Glucose_BA, Leucocytoses_Urine) = R 
    {DT2-Node1} :- BP_Min >= 100, Cysts_Echo = pos [class: DISEASE3] 
    {DT2-Node2} :- BP_Min >= 100, Cysts_Echo = neg, Meningitis_Lumbar=neg [class: DISEASE1] 
    {DT2-Node3} :- BP_Min >= 100, Cysts_Echo = neg, Meningitis_Lumbar=pos [class: DISEASE2] 
    {DT2-Node4} :- BP_Max >= 150, Cysts_Echo = pos [class: DISEASE3] 
    {DT2-Node5} :- BP_Max >= 150, Cysts_Echo = neg, Meningitis_Lumbar=neg [class: DISEASE1] 
    {DT2-Node6} :- BP_Max >= 150, Cysts_Echo = neg, Meningitis_Lumbar=pos [class: DISEASE2] 
    {DT2-Node7} :- BP_Min < 100, BP_Max < 150, Div_End = pos [class: DISEASE3] 
    {DT2-Node8} :- BP_Min < 100, BP_Max < 150, Div_End = neg [class: DISEASE1] 
 
DECISION TREE 3: 
Disease (BP-Min, BP-Max, Div_End, Cysts_Scopy, Meningitis_Lumbar, Cysts_Echo, Glucose_BA, Leucocytoses_Urine) = R 
    {DT3-Node1} :- Leucocytoses_Urine=neg, Cysts_Echo = pos [class: DISEASE3] 
    {DT3-Node2} :- Leucocytoses_Urine=neg, Cysts_Echo = neg [class: DISEASE1] 
    {DT3-Node3} :- Leucocytoses_Urine=pos [class: DISEASE2] 

The three previous trees use different attributes to make a diagnosis. If we do not have any 
additional information apart from their accuracy we would have to select the most accurate one 
or the one with highest AUC. 

However, let us consider that we have determined, by using e.g. the training set, what is the 
frequency that an example falls into each node: 

DECISION TREE 1: 
    {DT1-Node1}   (0.2) 
    {DT1-Node2}   (0.3) 
    {DT1-Node3}   (0.1) 
    {DT1-Node4}   (0.4) 

 

DECISION TREE 2: 
    {DT2-Node1}   (0.1) 
    {DT2-Node2}   (0.03) 
    {DT2-Node3}   (0.05) 
    {DT2-Node4}   (0.15) 
    {DT2-Node5}   (0.02) 
    {DT2-Node6}   (0.05) 
    {DT2-Node7}   (0.15) 
    {DT2-Node8}   (0.45) 

DECISION TREE 3: 
    {DT3-Node1}   (0.4) 
    {DT3-Node2}   (0.5) 
    {DT3-Node3}   (0.1) 

 

From the previous information we can compute the mean test cost of an example. 
MEAN TEST COST DECISION TREE 1: 
    {DT1-Node1}   0.2 · [50 +  15] = 12 
    {DT1-Node2}   0.3 · [50 + 15 + 10] = 22.5  
    {DT1-Node3}   0.1 · [50 + 15 + 10] = 7.5 
    {DT1-Node4}   0.4 · [50] = 20 
    TOTAL:           62 cost units. 
DECISION TREE 2: 
    {DT2-Node1}   0.1 · [1 +  15] = 1.6 
    {DT2-Node2}   0.03 · [1 +  15 +  200] = 6.48 
    {DT2-Node3}   0.05 · [1 +  15 +  200] = 10.8 
    {DT2-Node4}   0.15 · [1 +  15] =  2.4 
    {DT2-Node5}   0.03 · [1 +  15 +  200] = 6.48 
    {DT2-Node6}   0.05 · [1 +  15 +  200] = 10.8 
    {DT2-Node7}   0.15 · [1 +  1 + 30] = 4.8 
    {DT2-Node8}   0.45 · [1 +  1 + 30] = 14.4 
    TOTAL:           57.76 cost units. 
DECISION TREE 3: 
    {DT3-Node1} :- 0.4 · [10 + 15] = 10 
    {DT3-Node2} :- 0.5 · [10 + 15] = 12.5 
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    {DT3-Node3} :- 0.1 · [10] = 1 
    TOTAL:           23.5 cost units. 

As we can see the third decision tree has an average test cost quite lower than the other two 
trees, and in this regard, it is preferable over the rest. We can also see that the frequency of each 
node is very relevant. For instance, decision tree 2 uses the most expensive test 
(Meningitis_Lumbar). However, it uses it quite infrequently and turns out to be, in overall 
terms, a decision tree which is less expensive than the first one. Note that a combination of the 
three trees, by using any fusion method, would have a cost of ths um of all the single costs, i.e.:  
143.26. 

Provided that the three decision trees have similar accuracy, it is then much more preferable 
to use the third decision tree, because test cost would be minimised. Consequently, economic, 
risk and pain issues are minimised. 

SMILES provides tools to compute test cost and to use it in a reasonable way, in order to 
obtain trees with less cost or to select from a pool of trees (the multitree) the tree with less test 
cost. Let us review the facilities that SMILES offers in this regard. 

The first obvious thing to be done is to allow SMILES to read the test cost information. From 
this there is an optional additional file that can be specified through the command line: 

USAGE: 
./smiles file.train [file.test] [file.cost] [file.testcost] 

If we do not want to specify neither a test set nor a cost matrix, we just place the symbol “-“. For 
instance, the following command line, would just look for a train set file and a testcost file.          

  ./smiles samples/liver.all - - liver.testcost 

The format of the file is just a list of real numbers separated by commas. The last one must also 
have a comma, such in the following example: 

% Test costs from UCI liver bupa problem 
7.27, 7.27, 7.27, 7.27, 9.86, 1 

As always, lines beginning with ‘%’ are ignored. However, if this file is specified in the 
command line we must also enable one option in the options file, that tells SMILES to read test 
costs from files. 

%--test cost method: how the vector of attribute test costs is 
constructed 
%test cost method=no test costs 
%test cost method=uniform test costs 
test cost method=test costs from file 

SMILES shows the information has read. For instance, for the following command line: 
  ./smiles samples/liver.all - - liver.testcost 

SMILES outputs the following after reading the training set: 
... 
Test Cost Vector to be used: 
Argument 0: 7.27 
Argument 1: 7.27 
Argument 2: 7.27 
Argument 3: 7.27 
Argument 4: 9.86 
Argument 5: 1 
... 
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As we can see there are two other options: “no test costs” which does not take this kind of cost 
into account and “uniform test costs”, which, when we do not know any information about the 
test costs, we can assume that these are uniform, and SMILES will look for trees that minimise 
the average number of tests per example, in a similar way as is made in ROC analysis. In other 
words, if AUC can be computed when the real cost matrix is not know, the uniform test cost 
vector can be used when the test cost vector is not known. 

Now that we know how to read a particular test cost vector or to assume a uniform one, let 
us explain how SMILES can take advantage of it. 

When constructing each tree, a splitting criterion is used to assign different degrees of 
optimality to each split. This optimality can be modified taking testcost into account. The 
testcost is computed using the cardinality of each node, i.e., multiplying the examples that fall 
into each branch by the cost of the tests (attributes) used until that node. Once the testcost is 
computed, there are three ways of treating test cost information for modifying splitting criteria: 

%--test cost use: how the vector of attribute test costs is used 
test cost use=test costs no use 
%test cost use=test costs linear plus1 without repetition 
%test cost use=test costs linear plus1 with repetition 

The first option logically makes no use of this information. The second and third options use 
this formula to modify the existing splitting optimality (Opt): 

Opt / (testcost + 1) w 

A new weight that tells how much the testcost is used to inversely modify splitting criteria. The 
exponent w is used to give more relevance to the testcost. This factor is 1 by default and can 
only be modified in the program sources through the TestCostRelevanceInSplitting option that 
must be between 0 and infinite. Note that the relevance of testcost can also be modified quite 
easily by augmenting the absolute value of the testcost vector file. 

The difference between the two last options (without or with repetition) is that numerical 
attributes can be used more than once in the same branch. Consider e.g. a condition X < 3.2; this 
could be followed by an additional partition below on the same attribute in the same branch suc 
as X < 1.3 and X >= 1.3. It is not sensible to compute the test cost of attribute X more than once. 
For this reason, it is more accurate the use of the option “without repetition” that only takes into 
account this cost once. This gives an exact measurement of testcost. 

This modification provides a way to construct trees and muli-trees that have lower average 
testcosts per example. Obviously, if testcost is given too much importance then accuracy can be 
affected. For a deeper explanation of this effect and some results, we refer to [16]. 

Despite the effect and good results of the previous approach, it is not much wise to use a 
testcost sensitive criterion and then select the best tree using non-testcost sensitive criteria. For 
this, SMILES also includes two methods for extracting the best solution from the tree taking 
testcosts into account. 

%--multitree: best tree selection criterion 
%multitree best tree criterion=test cost best 
%multitree best tree criterion=occam and test cost best 

Apart from the “occam best” and others, SMILES provides “test cost best” and “occam and test 
cost best”. The first method selects the tree with the lowest testcost (repeated use of the same 
attribute in the same branch are discarded). The “occam and test cost best” combines “occam 
best” and “test cost best” through the use of a weight factor. The weight of each is determined 
through the following formula: 

)1(cos αα −⋅numrulesttest  
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Where α is a factor modifiable by program by the new option value 
TestCostRelevanceInSelectBest that must be from 0 to 1. 

More information of how effective this selection methods are can be found in [16]. 
Finally, testcost vectors can be used to give more relevance to some attributes than others, 

e.g. when the user thinks that some attributes can be more useful or comprehensible than 
others. 

Let us see an example with monk2. Its test costs are given in the file “monks.testcost”: 
% Test costs for monks problems 
1.0, 0.0, 10.0, 5.0, 0.0, 100.0 

If we run SMILES with MSE splitting criterion, and a multi-tree with 100 open nodes and with 
10x10 cross validation, but without using testcost, we have: 

Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :  8.07935e+10 +/-  4.18201e+11 
 Results for 1st Solution:  
  Accuracy of 1st Solution   :        0.683 +/-    0.0511364 
  AUC (by nodes) of 1st Sol  :     0.666375 +/-    0.0615097 
Mean # Rules               :       282.79 
Test Cost per Example      :       96.038 +/-      9.27396 

Results for Combination:  
  Accuracy of Combination    :     0.750167 +/-    0.0583391 
  AUC of Combination         :     0.741057 +/-    0.0611061 
 Results for Best Solution:  
  Accuracy of Best           :        0.692 +/-    0.0524634 
Mean # Rules               :       270.71 

  Accuracy class 0           :     0.755819 +/-    0.0685639 
  Accuracy class 1           :     0.576554 +/-    0.0986817 
  AUC by Hand                :     0.669107 +/-    0.0568279 
  MSE                        :     0.712333 +/-    0.0493715 
LogLoss                    :     0.743794 +/-    0.0519433 
Test Cost per Example      :      103.333 +/-      8.65866 

 
 Time Used                   :       0.2765 +/-    0.0581599 

As we can see now, we have “Test Cost per Example” information for the 1st solution and for 
the Best Solution. For the first solution we have 96.038 testcost units, and for the best solution 
we have 103.333. 

Now we can see the results if we enable 
test cost use=test costs linear plus1 without repetition 

Then we have: 
Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :   1.2661e+14 +/-   6.4715e+14 
 Results for 1st Solution:  
  Accuracy of 1st Solution   :     0.687667 +/-    0.0535297 
  AUC (by nodes) of 1st Sol  :     0.607398 +/-    0.0676029 
  Mean # Rules               :       324.36 
  Test Cost per Example      :      46.2625 +/-      6.58806 
 Results for Combination:  
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  Accuracy of Combination    :     0.736667 +/-    0.0566558 
  AUC of Combination         :     0.671598 +/-    0.0699609 
 Results for Best Solution:  
  Accuracy of Best           :     0.682667 +/-    0.0624922 
  Mean # Rules               :       309.23 
  Accuracy class 0           :      0.74696 +/-    0.0755163 
  Accuracy class 1           :     0.566277 +/-    0.0993084 
  AUC by Hand                :     0.648622 +/-    0.0827158 
  MSE                        :     0.689375 +/-    0.0669407 
  LogLoss                    :       0.8372 +/-    0.0476209 
  Test Cost per Example      :      77.3888 +/-      17.9072 
 
 Time Used                   :       0.2716 +/-    0.0625344 

We can see that testcost is dramatically reduced, with a slight loss in accuracy. We see that the 
best solution has greater cost than the first solution. This is so because the best solution is 
defined “Occam best”, in order to obtain the shortest one, not the one with lowest testcost. 

We can even reduce the test cost of the best solution by using the option: 
multitree best tree criterion=test cost best 

And now we have: 
Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :   1.2661e+14 +/-   6.4715e+14 
 Results for 1st Solution:  
  Accuracy of 1st Solution   :     0.687667 +/-    0.0535297 
  AUC (by nodes) of 1st Sol  :     0.607398 +/-    0.0676029 
  Mean # Rules               :       324.36 
  Test Cost per Example      :      46.2625 +/-      6.58806 
 Results for Combination:  
  Accuracy of Combination    :     0.736667 +/-    0.0566558 
  AUC of Combination         :     0.671598 +/-    0.0699609 
 Results for Best Solution:  
  Accuracy of Best           :     0.685667 +/-    0.0546399 
  Mean # Rules               :       323.39 
  Accuracy class 0           :     0.753444 +/-    0.0629829 
  Accuracy class 1           :     0.561628 +/-    0.0993743 
  AUC by Hand                :     0.610403 +/-    0.0687935 
  MSE                        :     0.685792 +/-    0.0541103 
  LogLoss                    :     0.845749 +/-    0.0451748 
  Test Cost per Example      :      46.6472 +/-       6.5868 
 
 Time Used                   :       0.2716 +/-    0.0648654 

We see that the test cost for the best solution is now significantly lower than before. Unlike this 
example, in general, with these options is usually lower than the one for the first solution. 

3.16   Archetype Solution 
The use of a multi-tree allows combination to obtain more accurate results. However, 
comprehensibility is lost with combined hypothesis. Moreover, combined solutions explored 
many alternatives and, consequently, they have an extremely high test cost. Consequently they 
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are not useful when “test-cost” is to be taken into account. This makes combination methods 
useless for many applications, such as medicine, where test are expensive, and may also be 
risky and painful. It is not sensible to make all the existing tests to a patient, because a machine 
learning algorithm requires a multiplicity of different solutions. 

But we have described before that a single solution can be extracted from the pool of 
solutions (with several best single solution methods), the solution is usually not as good (by far) 
as the combined solution.  

An original idea introduced in SMILES is the notion of “archetype” or “representative”. 
Combined solutions are usually much better than single solution. Combined solutions have a 
behaviour that is different from any single solution, but, in many cases, one or more solutions 
are quite closer (in a semantic way) to the combined solution. Why not choosing the single 
solution that is semantically closer to the combined solution? This is the idea of the archetype or 
representative of a group: the individual that best represents the group. 

Another original idea of SMILES is that it does not require an additional dataset to compute 
which is the solution that is most similar to the combined one. SMILES can construct an 
invented dataset for this. The first thing we must tell SMILES is to extract this archetype to the 
use of an invented dataset. This is done through the “combination to single solution”: 

%-- Combination to Single Solution Options 
%combination to single solution method=no extraction 
combination to single solution method=invented dataset 

Once determined the construction of an invented dataset, we must tell the size of this invented 
dataset. 

%-- Length of the invented random dataset 
invented dataset length=10000 

The greater the invented dataset the better the estimation of the archetype will be (and it will be 
slower too). Finally, the last thing to specify is how the similarity is to be computed. For this 
SMILES provides three similarity functions to be applied to the invented dataset. 

%-- Similarity function used for the selection of a single solution from 
the combination 
similarity method for combination to single=kappa 
%similarity method for combination to single=kappa1 
%similarity method for combination to single=qstat 

According to our experiments in [23], the best similarity method is “kappa”. 
Let us see an example. If we run “monks2” in SMILES with MSE splitting criterion, and a 

multi-tree with 100 open nodes and with 10x10 cross validation, and select the previous options, 
as well as the use of the testcost (“monks2.testcost”), the option that restricts archetype criteria 
to just similarity, i.e.: 

%-- Combination to Single Solution (Archetype) Use of Other Criteria 
archetype similarity importance factor=1.0 
archetype occam importance factor=0.0 
archetype test cost importance factor=0.0 

Then we would have: 
Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :  4.12571e+15 +/-  3.88401e+16 
 Results for 1st Solution:  
  Accuracy of 1st Solution   :     0.687667 +/-    0.0535297 
  AUC (by nodes) of 1st Sol  :     0.607398 +/-    0.0676029 
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  Mean # Rules               :       324.36 
  Test Cost per Example      :      46.2625 +/-      6.58806 
 Results for Combination:  
  Accuracy of Combination    :     0.737833 +/-    0.0522155 
  AUC of Combination         :     0.676091 +/-    0.0692213 
 Results for Archetype:  
  Accuracy of Archetype      :     0.720333 +/-    0.0520392 
  AUC (by nodes) of Archetype:     0.670872 +/-    0.0742581 
  Mean # Rules               :       321.89 
  Test Cost per Example      :      63.6257 +/-       16.246 
 Results for Best Solution:  
  Accuracy of Best           :     0.685167 +/-    0.0593121 
  Mean # Rules               :       308.93 
  Accuracy class 0           :      0.75152 +/-    0.0752203 
  Accuracy class 1           :     0.564675 +/-    0.0977124 
  AUC by Hand                :     0.648288 +/-    0.0775428 
  MSE                        :     0.692875 +/-    0.0626703 
  LogLoss                    :      0.83394 +/-    0.0513109 
Test Cost per Example      :      77.5215 +/-      17.3678 

 
 Time Used                   :       0.2738 +/-    0.0758358 

As we can see the combination has an accuracy and AUC of 0.738 and 0.676 respectively, which 
are significantly higher than the accuracy and AUC of the First and Best Solutions. However, 
we have obtained an archetype whose accuracy and AUC are quite closer to the combination, 
and is a single solution.  

Finally, we have seen several methods to extract a single solution from the multi-tree: 
Occam-best, Testcost-best, a combination of both, and, finally, we have just seen the semantic 
archetype. It makes sense to be able to obtain a single solution that combines the Occam 
criterion, Testcost criterion and the semantic criterion. SMILES allows this through three 
options: 

%-- Combination to Single Solution (Archetype) Use of Other Criteria 
archetype similarity importance factor=15.0 
archetype occam importance factor=4.0 
archetype test cost importance factor=1.0 

Considering these factor f1, f2 and f3, the exact formula for this combination is: 
( )( )32

1

cos
1·1

ff
f

ttestnumrules
similarity ⋅  

These factors affect how the Archetype is extracted. If all the factors except similarity are left to 
0, then it is just a semantic extraction 

But if these factors are used, then we can extract an archetype taking into account its length 
and its testcost too. 

This permits the user to extract of the best single solution according to the user’s relevance: 
comprehensible and shortness (Occam), accuracy and AUC (similarity) and testcost (test cost 
factor). 

For the previous example (monks2), if we use weights 15, 4 and 1, now we would have: 
Mean Results:  
  N. of susp. nodes explored :          100 +/-            0 
  Solutions in the Multitree :  4.12571e+15 +/-  3.88401e+16 
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 Results for 1st Solution:  
  Accuracy of 1st Solution   :     0.687667 +/-    0.0535297 
  AUC (by nodes) of 1st Sol  :     0.607398 +/-    0.0676029 
  Mean # Rules               :       324.36 
  Test Cost per Example      :      46.2625 +/-      6.58806 
 Results for Combination:  
  Accuracy of Combination    :     0.737833 +/-    0.0522155 
  AUC of Combination         :     0.676091 +/-    0.0692213 
 Results for Archetype:  
  Accuracy of Archetype      :     0.715833 +/-    0.0527778 
  AUC (by nodes) of Archetype:     0.647856 +/-    0.0750104 
  Mean # Rules               :        318.3 
  Test Cost per Example      :      57.2522 +/-       9.0557 
 Results for Best Solution:  
  Accuracy of Best           :     0.685167 +/-    0.0593121 
  Mean # Rules               :       308.93 
  Accuracy class 0           :      0.75152 +/-    0.0752203 
  Accuracy class 1           :     0.564675 +/-    0.0977124 
  AUC by Hand                :     0.648288 +/-    0.0775428 
  MSE                        :     0.692875 +/-    0.0626703 
  LogLoss                    :      0.83394 +/-    0.0513109 
  Test Cost per Example      :      77.5215 +/-      17.3678 
 
 Time Used                   :       0.2743 +/-    0.0758555 

Now we can see that the archetype has lost some similarity to the combination (and 
consequently accuracy and AUC are reduced) but the number of rules and the testcost is also 
reduced, that is what we wanted, a single solution that takes into account the similarity with the 
combination, a short number of rules and a low testcost. 

The weights assigned to each criteria are problem dependent, but according to the usual 
absolute amounts of each factor, the values 15, 4 and 1 represent a compromise of the three 
criteria. The user can change these values in order to give more relevance to each desired 
characteristic of the model. 

3.17   Other Facilities 
There are other options mainly related to output.  They are self-explained by their description in 
the options file, although a more complete description can be found in Section 6: 

%--output: syntax to show the rules: 
show rules mode=functional-logic 
% 
%--output class dist.: show the trainset examples falling in each rule. 
show class distribution=no 
%show class distribution=yes (not implemented) 
% 
%--show all multitree rules 
show all multitree rules=no show 
%show all multitree rules=show 
%show all multitree rules=to file 
% 
%--show all k-best solutions 
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show all k-best solutions=no show 
%show all k-best solutions=show 
%show all k-best solutions=to file 
% 
%--show component matrix of solutions 
show solutions components=no show 
%show solutions components=show 
% 
%--show confusion matrix 
%show confusion matrix=no show 
%show confusion matrix=show only if costs 
show confusion matrix=show 
% 
%--how to show statistics 
%show statistics=absolute statistics 
%show statistics=relative statistics 
%show statistics=both statistics 
show statistics=just accuracy 
% 
%--show number of possible solutions in the multitree 
show number of multitree possible solutions=yes 
%show number of multitree possible solutions=no 

At the present version of SMILES there are no other options (from the ones already explained) 
that could be modified through the options file. We will introduce in Section 5 other hardwired 
options for programmers or expert users. 

4   SMILES Expertise 
In this section, we take a more practical view on how to use the options described in the 
previous section, and we explain, mainly through experiments, when it is better to use some 
options over others. 

4.1   Experimental comparison of splitting criteria 
One of the things that affect the resulting accuracy of a decision tree is the splitting criterion 
used for learning. 

First of all, we are going to study the splitting criteria wrt. two-class problems and then 
with multi-class problems. We use 25 datasets extracted from the UCI repository [2]. All of them 
have two classes, either originally or by selecting one of the classes and joining all the other 
classes. Table 1 shows the dataset (and the class selected in case of more than two classes), the 
size in number of examples, the nominal and numerical attributes and the percentage of 
examples of the minority class. 

Table 1. Datasets used for the experiments. 

ATTRIBUTES # DATASET SIZE 
NOM NUM 

%MIN 
CLASS 

1 MONKS1 566 6 0 50 
2 MONKS2 601 6 0 34.28 
3 MONKS3 554 6 0 48.01 
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4 TIC-TAC 958 8 0 34.66 
5 HOUSE-VOTES 435 16 0 38.62 
6 AGARICUS 8124 22 0 48.2 
7 BREAST-WDBC 569 0 30 37.26 
8 BREAST-WPBC 194 0 33 23.71 
9 IONOSPHERE 351 0 34 35.9 

10 LIVER 345 0 6 42.03 
11 PIMA 768 0 8 34.9 
12 CHESS-KR-VS-KP 3196 36 0 47.78 
13 SONAR 208 0 60 46.63 
14 BREAST-CANCER 683 0 9 34.99 
15 HEPATITIS 83 14 5 18.07 
16 THYROID-HYPO 2012 19 6 6.06 
17 THYROID-SICK-EU 2012 19 6 11.83 
18 TAE [{0}] 151 2 3 32.45 
19 CARS [{UNACC}] 1728 6 0 29.98 
20 NURSERY [{NR}] 12960 8 0 33.33 
21 PENDIGITS [{0}] 10992 0 16 10.4 
22 PAGE-BLOCKS [{0}] 5473 0 10 10.23 
23 YEAST [{ERL}] 1484 0 8 31.2 
24 LETTER [{A}] 20000 0 16 3.95 
25 OPTDIGITS [{0}] 5620 0 64 9.86 

First we compare the most commonly used splitting criteria: Gain Ratio (only considering splits 
with at least average gain as is done in C4.5), Gini (as used in CART), DKM and Expected Error. 

Table 2. AUC values for different splitting criteria. 

SET  GAIN RATIO GINI DKM EERR 
1 81.5 ± 14.0 79.8 ± 11.9 79.8 ± 11.9 82.2 ± 5.3 
2 60.6 ± 10.4 57.7 ± 8.4 55.5 ± 7.9 69.8 ± 4.1 
3 98.8 ± 1.6 98.7 ± 1.7 98.7 ± 1.7 95.4 ± 2.6 
4 81.3 ± 8.0 80.6 ± 7.5 79.8 ± 8.1 76.4 ± 5.6 
5 96.9 ± 2.5 96.9 ± 2.5 96.9 ± 2.5 96.9 ± 2.5 
6 1 ± 0 99.9 ± 0.2 1 ± 0 1 ± 0.1 
7 91.1 ± 6.6 90.9 ± 5.8 95.7 ± 5.3 93.6 ± 3.7 
8 58.1 ± 24.4 66.4 ± 18.3 54.9 ± 18.6 51.2 ± 3.5 
9 88.8 ± 10.2 56.1 ± 13.6 90.8 ± 5.0 59.0 ± 15.1 

10 65.1 ± 6.7 63.4 ± 8.2 65.6 ± 8.4 59.9 ± 9.4 
11 78.0 ± 5.2 27.8 ± 3.5 69.3 ± 25.7 30.5 ± 39.8 
12 99.7 ± 0.4 99.3 ± 0.4 99.7 ± 0.3 98.3 ± 0.8 
13 60.6 ± 10.2 69.7 ± 10.4 72.7 ± 6.8 68.1 ± 12.8 
14 95.5 ± 2.5 95.2 ± 2.7 96.8 ± 2.1 94.8 ± 2.9 
15 92.9 ± 12.4 65.4 ± 24.4 72.9 ± 26.3 65 ± 24.2 
16 83.2 ± 16.5 48.6 ± 51.2 96.9 ± 5.7 34.8 ± 41.1 
17 93.6 ± 3.2 49.7 ± 46.1 65.8 ± 45.5 3.7 ± 11.3 
18 50.5 ± 25.9 48.9 ± 27.1 52.5 ± 24.5 21.5 ± 21.4 
19 98.1 ± 0.7 98.2 ± 0.8 98.1 ± 0.8 97.8 ± 1.1 
20 1 ± 0 1 ± 0 1 ± 0 1 ± 0 
21 99.7 ± 0.6 98.2 ± 0.7 99.7 ± 0.3 96.3 ± 2.1 
22 93.7 ± 3.7 81.7 ± 4.9 66.6 ± 21.6 50 ± 0 
23 73.7 ± 3.1 66.6 ± 9.9 73.5 ± 4.3 51.0 ± 4.0 
24 98.7 ± 1.0 95.9 ± 2.4 99.4 ± 0.5 85.7 ± 0.5 
25 98.1 ± 2.3 95.9 ± 3.3 98.0 ± 2.6 96.0 ± 3.3 
M 85.53 77.26 83.19 71.12 
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Although all methods behave very similarly in terms of accuracy (as has been shown in the 
machine learning literature and by our own experiments not listed here), the differences in 
AUC are very noticeable, especially in datasets 9, 11, 15, 16, 17, 22, 23. There is no apparent 
relationship with any dataset characteristic except the minority class proportion, which will be 
analysed at the end of this section. 

The worst methods according to the AUC measure are clearly Gini and Expected Error. 
Better and more similar results are given by GainRatio and DKM. If we select Gain Ratio as the 
best classical method, we can compare its results with AUCsplit results. In order to make 
comparisons significant, we have repeated 10-fold cross validation 10 times, making a total of 
100 learning runs for each pair of dataset and method. These new results are shown in Table 3. 

Table 3. Accuracy and AUC for Gain Ratio and AUCsplit. 

 GAIN RATIO AUCSPLIT BETTER? 
SET ACC. AUC ACC. AUC ACC. AUC 
1 90.7±6.6 83.6±11.8 96.5±3.9 94.3±6.7 ü ü 
2 57.7±6.5 61.1±7.9 56.0±6.2 56.7±8.0 x x 
3 97.6±7.8 97.4±8.5 99.1±1.1 99.1±1.4 ü ü 
4 78.9±4.6 79.8±7.2 77.6±4.7 76.9±6.5 x x 
5 95.8±2.6 95.2±3.1 95.8±2.6 95.2±3.1   
6 1±0 1±0 1±0 1±0   
7 92.5±4.1 91.5±6.1 92.9±3.7 94.7±4.6  ü 
8 72.1±10.2 61.3±16.9 69.5±10.6 59.3±16.2 x  
9 92.0±4.7 90.4±7.0 89.6±5.0 89.7±6.7 x  

10 62.6±8.8 64.2±10.6  64.0±9.0 65.8±10.1   
11 73.3±5.7 76.6±6.9  72.5±5.1 76.7±6.0   
12 99.1±2.3 99.5±1.6 99.2±0.6 99.5±0.6   
13 68.2±10.2 67.4±11.9 71.0±10.4 73.6±11.0 ü ü 
14 95.4±2.5 96.3±2.5 96.2±2.5 97.6±2.1 ü ü 
15 86.4±14.2 85.1±17.9 83.4±14.0 63.5±22.3   x 
16 98.0±10.9 84.6±13.1 98.6±0.8 94.8±5.6 ü ü 
17 95.2±1.4 92.6±3.5 96.7±1.2 95.1±3.1 ü ü 
18 71.4±12.4 61.5±20.8 68.9±11.6 59.8±21.3   
19 95.0±1.8 98.2±0.9 94.8±1.9 98.1±1.0   
20 1±0 1±0 1±0 1±0   
21 99.6±0.3 99.6±0.5 99.6±0.2 99.4±0.6   
22 96.8±0.9 93.3±4.7 96.8±0.2 95.1±6.9  ü 
23 70.4±3.9 72.2±4.9 71.1±3.6 73.3±4.0  ü 
24 99.5±0.2 98.9±1.4 99.5±0.1 99.3±0.7 ü ü 
25 98.9±1.8 94.2±19.4 99.5±0.3 98.5±1.8 ü ü 
M. 87.49 85.78 87.55 86.24   

 
Table 3 lists the accuracy of the chosen labelling and the AUC values of the whole set of optimal 
labellings. The first thing that can be observed is that the differences in accuracy are smaller 
than in AUC. In some cases it happens that Gain Ratio is better than AUCsplit in terms of 
accuracy, but not significantly in terms of AUC. 

Since means of different datasets are illustrative but not reliable we compare dataset by 
dataset if one method is better than the other. The ‘Better?’ column represents if AUCsplit 
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behaves better (ü) or worse (x) than Gain Ratio. These marks are only shown when the 
differences are significant according to the t-test with level of confidence 0.1. This gives 8 wins, 
13 ties and 4 loses for accuracies and 11 wins, 11 ties and 3 loses for AUC. 

Now let us analyse the splitting criteria used for more than two classes. We have performed 
experiments with the same methodology as before for 14 multi-class datasets with the following 
characteristics: 

Table 4. Datasets used for the experiments. 

# DATASET 

1 balance 
2 Cars 
3 derm 
4 echocardiogram 
5 newt 
6 nursery_3c 
7 page 
8 pendigits 
9 tae 

10 iris 
11 opt-digits 
12 sat 
13 segmentation 
14 wine 

 

We examine now the results with the GainRatio, M-AUCsplit, MSEsplit, LogLsplit and the GINI 
criterion, without and with pruning, also showing the results for the 25 two-class problems and 
the 14 multi-class problems: 
 
NOPRUNING 
 
Two-class 

GEOMEANS GainRatio M-AUCsplit MSEsplit LogLsplit GINI 
Accuracy of Best 0,864903 0,865027 0,867024 0,867124 0,868102 
M-AUC              0,888052 0,884429 0,889705 0,887637 0,872447 
Rules  59,98738  58,18974  53,35602 56,46755 108,2007 
Time Used        0,711908 0,573635 0,538084 0,535376 1,646817 

 
Multi-class 

GEOMEANS GainRatio MAUCsplit MSEsplit LogLsplit GINI 
Accuracy of Best 0,833811 0,817345 0,838144 0,834983 0,8343 
M-AUC 0,911666 0,896301 0,911093 0,912881 0.9074 
Rules 144,9268 213,5072 130,7308 162,9093 257,69 

 
 
PRUNING 
 
Two-class 

GEOMEANS GainRatio M-AUCsplit MSEsplit LogLsplit GINI 
Accuracy of Best 0,874515 0,871911 0,870511 0,87014 0,8651 
M-AUC              0,874204 0,880809 0,87984 0,879037 0.7901 
Rules 23,27337 21,18863 22,99033 21,28136 12,30577 



 51

Time Used        0,710292 0,556105 0,54099 0,529881 1,624467 
 
Multi-class 

GEOMEANS GainRatio MAUCsplit MSEsplit LogLsplit GINI 
Accuracy of Best 0,809011 0,802879 0,831174 0,809857 0,7969 
M-AUC 0,893041 0,901847 0,900887 0,897177 0.8583 
Rules 74,48508 75,61664 68,26054 82,5315 42,54716 

 

While it seems that MAUC is the best one with pruning, and both MSE and LogLoss are quite 
good without pruning, it seems that the MSE is a quite good option for all the situations. It also 
gives very short trees. Only GINI with pruning gives shorter trees, but this may be related to 
the king of postpruning used (PEP pruning). 

4.2   Comparison of criteria to extract a solution from the multitree 
Once the multitree has been built there are several criteria to extract a solution from the 
multitree. In the current implementation of the system, these are the possible options: 

%--multitree: best tree selection criterion 
multitree best tree criterion=occam best 
%multitree best tree criterion=test cost best 
%multitree best tree criterion=occam and test cost best 
%multitree best tree criterion=coverage best 
%multitree best tree criterion=cross coverage 
%multitree best tree criterion=expected error best 
%multitree best tree criterion=split optimality best 
%multitree best tree criterion=mdl best 

We are not going to analyse the combinations with test cost. We are going to analyse all the rest. 
The cross-coverage option splits the train data set into two independent parts and requires 

that the “same training set” option is active: the first part is used in the construction of the 
multitree, and the second part (named validation data set) is used for the selection of the 
solution. Concretely, we select the solution that has more accuracy w.r.t. the validation data set.  
We often use approximately the 20% of the original train data set for the validation data set and 
the rest 80% for the new train data set. Note that this technique is very useful to handle 
problems with a huge amount of examples and/or arguments.  

We have made experiments on the behaviour of some of the previous criteria in the 
learning of 10 problems. These problems contain both numerical and continuous arguments 
and noisy data. The following figures show the average of the accuracy of the programs 
obtained with the C45, MDL, and Expected-Error splitting criteria to build the multitree 
depending on the size of the multitree and the technique applied for the selection of the 
solution. The number of solutions is varied from 1 to 1000. 
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With one solution we only can examine the splitting criterion. The best one, as we said, seems to 
be Expected-Error (although the difference is not significant). The performance of the four 
techniques of selecting the solution is very similar apart from the bad behaviour of MDL using 
MDL as splitting criterion. When C45 or Expected-Error criteria are used for the split criterion, a 
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further population of the multitree does not give the impression to improve the accuracy. 
Cross-coverage seems to decrease. 

This may suggest that further study on the best tree selection method must be performed. 
However, it must be said that these results are obtained with RivalRatio instead of Topmost, 
being the latter much better to increase accuracy. The next section tries to give more light on 
this issue. 

4.3   Evolution of Best Solution Accuracy for Increasing Number of trees 
One of the great advantages of SMILES is that the multitree can be further explored to obtain 
better solutions. However, is it always true that further populating the multitree gets better and 
better solutions? 

The next figure shows the number of rules and accuracy for increasing number of solutions. 
From these solutions just one comprehensible solution is obtained with the “best 
tree”=”Occam”, i.e., the shortest solution is selected. All the results are obtained for “second 
tree opening criterion” = “rival ratio”. Moreover, pre-pruning is active and split MDL) 

 

 
                         mean                           81.31                     82.23                    85.07                     84.82 

Results with SMILES 0.5. Second Rival Ratio and Occam Best 

It is clear (as expected) that if the best tree selection criterion (Occam) tries to select the shortest 
solution, the number of rules cannot increase and, it is shown, it usually decreases. The results 
are also generally positive for accuracy. Except in two cases, the accuracy with 1000 is higher 
than with 1. One interesting thing that can be observed is that, in the average, the maximum is 
not obtained with 1000 but with 100. This may suggest that there is a point from which Occam 
criterion selects much too short solutions. 

As we said before better results may be obtained with other second-best criteria, such as 
topmost. 

Let us make a comparison using more typical options, such as “MSE splitting criterion”, 
“no pruning”, “second tree opening criterion=random”, and let us study the shortest solution 
again (i.e. Occam), with the current version of SMILES, but now with more datasets: 
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Now we can see that this increase arrives to a saturation point (in general around 100) and then 
begins to decrease slowly. As we will see, without the use of combination or archetype, we do 
not fully exploit the possibilities of the multitree. 

4.4   Comparison of Combination 
In this section, we present some results on the combination of the hypotheses once the multitree 
has been created. The possible options are:  

%-- Combination: How to combine several solutions 
%multitree solution combination=no combination 
%multitree solution combination=cross coverage combination 
%multitree solution combination=majority crisp 
multitree solution combination=majority absolute stochastic 
%multitree solution combination=majority relative stochastic 
%multitree solution combination=majority cost stochastic 

We are going to explore the two ways with better results: majority crisp and majority absolute 
stochastic. The following pictures compare these two methods on the learning of 10 problems. 
The figures present the average of accuracy obtained using the two methods depending on the 
size of the multitree and the split criterion. All the results are obtained for “second tree opening 
criterion” = “rival ratio”. 
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There are some interesting points to conclude from these results:  

• The use of hypotheses combination usually improves the accuracy although it is 
important to note that the comprehensibility of the solution is lost. 
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• The improvement of accuracy does not grow linearly with the size of the multitree. 
A multitree populated in excess might even affect negatively in the accuracy 
because later solutions may have lower accuracy than the first ones. 

• The majority_absolute_stochastic technique seems to obtain better results than 
majority_crisp. 

• The best improvement has been obtained with the MDL split criterion, although 
this criterion has worse results initially. 

Finally, we analyse in more detailed the results for one splitting criterion (MDL) and 
majority_absolute_stochastic combination criterion.  

 
                                         mean                 81.31          83.67          86.85          85.97    

Figure 2. Results with SMILES 0.5. Second Rival Ratio and Combination (pre-pruning active) 

If we compare these results with the results with the selection of one solution with Occam best 
criterion, we see that combination results are slightly better (around a 1% better in accuracy). In 
our opinion, only in quite limited situations is preferable to have this slight increase in accuracy 
with the loss of comprehensibility that combined solutions have. 

Finally, although we are not showing results, we realised that in order to improve accuracy 
for combination, pruning must not be used with combination when the multitree number is 
high (>100).  

4.5   Fusion Methods 
To study the different fusion methods, we are going to use the following datasets: 
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Datasets used in the experiments 

For the following experiments, we used GainRatio as splitting criterion and we chose a random 
method for populating the shared ensemble (after a solution is found, a suspended OR-node is 
woken at random). Pruning is not enabled. 

Since there are many sources of randomness, we performed the experiments by averaging 
10 results of a 10-fold cross-validation. This makes a total of 100 runs for each pair composed of 
a method and a dataset.  

The following table shows the mean accuracy and the standard deviation using the 
different fusion techniques introduced in Section 3.6 for each dataset. We summarise the results 
with the geometric means for each technique. The techniques studied are sum, product, maximum, 
minimum, and arithmetic mean, all of which use the original vectors. In the table, we do not 
include the experiments with geometric mean because they are equivalent to the results of product. 
The multi-tree was generated by exploring 100 suspended OR-nodes, thus giving thousands of 
possible hypotheses (with much less required memory than 100 non-shared hypotheses). 
According to the experiments, the best fusion technique was maximum. Thus, we will use this 
fusion method to study the effect of applying the transformations on the vector.  
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Comparison between fusion techniques 

The next table illustrates the results for accuracy using the original vector and the good loser, 
bad loser, majority and difference transformations. According to these experiments, all 
transformations get very similar results, except from majority. We will use the combination 
“max + difference” in the following experiments. 

 
Comparison between vector transformation methods 

4.6   Combination Accuracy as Multi-tree is Bigger 
Let us study now the influence of the size of the multi-tree, varying from 1 to 1,000 explored 
OR-nodes. The results have been obtained with the combination “max + difference”. The next 
table shows the accuracy obtained using the shared ensembles depending on the number of OR-
nodes opened.  
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Influence of the size of the multitree 

The results indicate that the greater the population of the multi-tree the better the results of the 
combination are. A saturation point is not arrived in most of the datasets (at least for 1000 open 
second trees). 

4.7   The relevance of Second Tree Opening Criterion 
Some of the previous results were obtained for “second tree opening criterion” = “rival ratio”. 
and some other with “second tree opening criterion” = “random”. This was the criterion used in 
the first versions of SMILES. 

However, later on, we designed new second tree opening criteria and realised that many 
other criteria behave much better that “rival ratio”. As we have shown in Section 3.5, these are 
the possible other options: 

%--second tree opening: how to select the 2ond node to explore 
%second tree opening=split optimality 
%second tree opening=optimality rival ratio 
%second tree opening=optimality rival ratio depth 
%second tree opening=optimality rival ratio component 
%second tree opening=optimality rival ratio component random 
second tree opening=second topmost 
%second tree opening=second bottommost 
%second tree opening=second random 
%second tree opening=second random depth 

The first results were surprising. Simple criteria such as TopMost or Random were much better 
than rival ratio with lower number of trees, both for select best solution (Occam) or for 
combination. We did the experiments with just one dataset: cars.  
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Figure 3. Effect on accuracy depending on several second tree opening methods 

Figure 5 shows that the best single solution results are obtained for BottomMost at 100 with 
Occam: 0.902 accuracy, whereas for combination the topmost at 100 also gets the maximum 
with TopMost: 0.934. Rival Ratio seems to have the maximum later, at 10000 opened trees. 

If we restrict to just combination and 1000 second trees for different datasets, we have a 
clearer portrait of the several second tree opening methods (RivalRatio, Front (LIFO), Back 
(FIFO), BottomMost, TopMost and Random), as we can see in the following table: 

 
Figure 4. Effect on combination accuracy depending on several second tree opening methods 

The best results are obtained with TopMost. However, the required time is much higher than 
for the other methods. In fact, with TopMost we lose the shared parts between trees and the 
multitree method is similar to a forest method. After this result, it seems that the “Random” 
option obtains high accuracy relatively quick. “RivalRatio” also seems a compromise between 
accuracy and time. Note that these results depend, in the end, on the mean depth at which 
second tree openings are performed. 

Finally, we can corroborate the previous results if we make a selection of methods and 
study them with variable number of trees (1 tree, RivalRatio 1000, TopMost 100 and 1000, and 
Random 100, 1000 and 10000): 

 
Figure 5. Effect on combination accuracy depending on several second tree opening methods 
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Again the best results are obtained with TopMost and, again, the required time is much higher 
than random. In fact, we have only been able to arrive to 10.000 for all datasets with the random 
option. However, the accuracy has not been increased further. 

A more technical discussion about how all these methods work and more results can be 
found at [27]. 

4.8  Archetype Expertise 
The archetype is one of the new and innovative features in SMILES that better take advantage 
of the multi-tree structure. With it, SMILES is able to obtain a highly accurate and, at the same 
time, comprehensible hypothesis. 

We are going to illustrate how to generate good archetypes. For the experiments, we  used 
GainRatio as splitting criterion. We chose a random method for populating the shared ensemble 
(after a solution is found, a suspended OR-node is woken at random) and we used the 
maximum fusion strategy for combination. As usual, we used several datasets from the UCI 
dataset repository. The following table  shows the dataset name, the size in number of examples, 
the number of classes, the nominal and numerical attributes. 

 
Since there are many sources of randomness, we have  performed the experiments by averaging 
10 results  of a 10-fold cross-validation. This makes a total of 100 runs (each one with a different 
multi-tree construction, random dataset and hypothesis selection process) for each pair of 
method and dataset. 

In the experiments, we will use the following notation: 
• First Solution: this is the solution given by just one hypothesis (the first hypothesis 

that is obtained). This is similar to C4.5. 
• Combined Solution: this is the solution given by combining the results of the 

ensemble (in our case, the multi-tree, as described in the previous section). 
• Archetype Solution: this is the single solution which is most similar to the 

combined solution. 
• Occam Solution: this is the single solution with the lowest number of rules, i.e., the 

shortest solution. 

It is not our purpose now to evaluate the improvement of the Combined Solution over the First 
Solution using shared ensembles. We have done that in previous section. We have not included 
the results using post-pruning because it does not improve the performance of any of the four 
kinds of solutions. Our goal is to show that a significant gain can be obtained from the First 
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Solution to the Archetype and Occam methods as long as the size of the ensemble increases. 
Another question to be answered is to determine which method to extract a single solution from 
an ensemble is better: Archetype or Occam. 

The first thing we are going to study is the similarity metric. As we saw, there are three 
possibilities: 

similarity method for combination to single=kappa 
%similarity method for combination to single=kappa1 
%similarity method for combination to single=qstat 

The next table shows the accuracy for each pair composed of a dataset and a method and the 
geometric means for each method. The methods studied are First, Combined and Archetype. 
The latter uses three different similarity metrics kappa, theta (kappa2) and Q (qstat). The multi-
tree has been generated exploring 100 suspended OR-nodes. 

 
As expected, hypothesis combination improves the accuracy w.r.t. the first single tree. The use 
of the archetype method also obtains good results. On the other hand, the results show that the 
Archetype method is very dependent on the measure of similarity used: kappa seems to be the 
best metric and Q the worst (it even obtains lower accuracy than the first single hypothesis). 

The next thing we are going to study is the size of the invented dataset. Similarity is 
approximated through the use of an invented dataset. Let us study the influence of its size, 
varying from 10 to 100,000 examples. The similarity metric and the size of the multi-tree are 
fixed to kappa and 100 alternative opened OR-trees, respectively.  
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The previous table shows that in order to obtain a good archetype hypothesis, the similarity 
metric has to be computed as accurately as possible. Although it depends on the dataset, a size 
of 10,000 invented examples seems to be sufficient. 

Now, we are going to study the influence of the size of the multitree. The effect of the size 
of the multi-tree is evaluated in the following table. 

 
In this table, we show the accuracy of the first single solution and the accuracy of the 
combination, the archetype solution and the Occam solution for multi-trees created by 
exploring 10, 100, and 1000 alternative OR-nodes1. We also include the geometric average 
number of solutions in the multi-tree (#Sol). Note that with 100 OR-nodes, we obtain millions of 
solutions with much less required memory than 100 non-shared hypotheses. 

The results are quite encouraging: by simply exploring 10 OR-nodes, the archetype solution 
surpasses the first solution and the Occam solution. This difference is increased as long as the 
multi-tree is populated. This is mainly due to the improvement in the accuracy of the combined 
solution and the fact that the archetype hypothesis can actually get close to it. The Occam 
solution does not seem to be improved by larger multi-trees. Nevertheless, the Occam 

                                                 
1 The experiments for datasets 9 and 13 have been performed exploring only 300 and 500 alternative OR-
nodes, respectively. 
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hypothesis can also be regarded as a way to obtain more and more compact solutions without 
losing accuracy. 

Finally, it should be said that we can combine the archetype with occam and with testcost 
criteria. This possibility has not been fully evaluated. 

4.9   Forgetting Suspended Nodes 
As we introduced in section 3.5, SMILES presents “suspended nodes forgetting” methods: 

%--suspended nodes forgetting: must all suspended nodes maintained? 
suspended nodes forgetting=maintain all 
%suspended nodes forgetting=maintain const random 
%suspended nodes forgetting=maintain log random 
%suspended nodes forgetting=maintain log random with depth 
%suspended nodes forgetting=maintain log random with squared depth 
%suspended nodes forgetting=maintain log random with depth adjusted 

The following table shows how the previous methods affect on accuracy, time and memory (all 
results are with C4.5 splitting criterion with smoothing, 100 trees and 10x10 cross-validation): 

 

DATASET MAINTAIN: ALL CONST 
RANDOM (2) 

LOG 
RANDOM 

LOG WITH 
DEPTH 

LOG WITH 
DEPTH SQRT 

LOG WITH 
DEPTH ADJ. (+8) 

Memory 3900K 2400K 2300K 450K 850K 2500K 
Time (sec) 0.38 0.27 0.36  0.095 0.17 0.43 
First Sol. 74.83 74.83 74.83 74.83 74.83 74.83 
Comb 77.15 76.87 77.47 75.85 76.2 77.83 

MONKS2 

Best 72.8 72.47 72.67 74.88 74.68 72.8 
Memory 32000K 2100K 300K 1800K 2100K 1800K 
Time (sec) 3.30 2.43 0.83 0.84 2.91 3.25 
First Sol. 93.12 93.12 93.12 93.12 93.12 93.12 
Comb 92.53 92.76 93.05 92.77 92.35 93.17 

WINE 

Best 93.29 93.24 93.12 93.53 93.29 93.24 
Memory 10000K 3000K 3000K 4500K 3700K 3800K 
Time (sec) 1.30 0.52 72.07 2.24 1.56 1.65 
First Sol. 76.82 76.82 76.82 76.82 76.82 76.82 
Comb 83.01 81.47 82.14 85.24 84.92 85.03 

BALANCE 

Best 76.87 76.55 76.55 76.76 76.79 76.72 
Memory 3500K 1800K 1800K 400K 1300K 2000K 
Time (sec) 0.33 0.19 0.24 0.12 0.36 0.46 
First Sol. 60.88 60.88 60.88 60.88 60.88 60.88 
Comb 67.0 66.25 66.88 65.25 67.63 67.5 

POSTOPER 

Best 60.88 60.88 60.88 60.75 62.75 62.75 
Memory 8130 2284 1389 1099 1712 2418 
Time (sec.) 0.86 0.5 1.51 0.38 0.73 1.01 
First Sol. 75.56 75.56 75.56 75.56 75.56 75.56 
Comb 79.38 78.76 79.33 79.09 79.73 80.32 

GEOMEAN 

Best 75.08 74.91 74.94 75.6 76.12 75.61 

According to these experimental results, LOG WITH DEPTH is the most economical option, 
either in memory and in time, and results are not significantly deteriorated. If time is not a 
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problem (and just memory), LOG WITH DEPTH ADJUSTED is also a good option because it 
even increases accuracy in some cases. However, more datasets and types of combination 
should be studied in order to make a more reliable conclusion about these options. 

4.10   Comparison with other systems 
To conclude this section we compare the more popular thing of machine learning algorithms: 
their top accuracy. Although we have argued that comparing AUC, comprehensibility, test 
costs or other issues is at least equally important, accuracy and resources are usually used in the 
literature to compare some systems.  

The following results use SMILES with a C4.5 splitting criterion, random population of the 
multi-tree, original + max fusion and no pruning. 
 

 
Accuracy comparison between ensemble methods. 

The previous table presents a comparison of accuracy between our system (multi-tree), boosting 
and bagging, depending on the number of iterations. We have employed the Weka 
implementation (http://www.cs.waikato.ac.nz/~ml/weka/) of these two ensemble 
methods. 

For all the experiments we have used GainRatio as splitting criterion, and we have chosen a 
simple random method for populating the multi-tree and a fusion strategy based on selecting 
the branch that gives a maximum cardinality for the majority class. 

The datasets have been extracted from the UCI repository [2]. The experiments were 
performed with a Pentium III-800Mhz with 180MB of memory running Linux 2.4.2. Since there 
are many sources of randomness, we have performed the experiments by averaging 10 results  
of a 10-fold cross-validation (1500 runs in total). The results present the mean accuracy for each 
dataset, and finally the geometric mean of all the datasets. Although initially our method 
obtains lower results with a few iterations, with a higher number of iterations it surpasses the 
other systems.  

A similar portrait is shown graphically below. The fusion method is “original + max”: 
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Accuracy comparison between ensemble methods 

Nevertheless, the major advantage of the method is appreciated by looking at the consumption 
of resources. We have argued that a multitree has a great advantage over a forest because the 
former shares the common parts between several trees whereas the latter codes and stores the 
several trees separately. This, in theory, must have consequences on both space and time 
requirements. As we will see in the following graphs, this is the case. 

The following figure shows the average training time depending on the number of 
iterations (1-300) for the three methods. Note that the time increase of Bagging is linear, as 
expected.  Boosting behaves better with high values because the algorithm implemented in 
Weka trickily stops the learning if it does not detect a significant increasing of accuracy. Finally,  
SMILES presents a sub-linear increase of required time due to the sharing of common 
components of the multi-tree structure. 
 

 
Time comparison between ensemble methods 
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We have performed the comparison where this can be done. There are lot of features in SMILES 
that do not exist in other systems: archetype, size minimisation, misclassification cost 
minimisation, test cost minimisation, ROC analysis, ROC-inspired splitting criteria, etc. 

5   Short Programmer’s Manual 
SMILES has been implemented on the C++ Programming Language [60][31]. There are some 
reasons for this: C++ is a powerful language, standardised and portable, efficient and with a lot 
of mathematical and ML-related software. 

5.1   Summary of source files: classes and functions 
The following table shows the different files that compose the system: 

file description classes or structs functions 
components .h .cpp for constructing and handling component 

matrices 
component_matrix get_partition  

cost .h .cpp for computing MDL-related measures vindex, tindex compute_cost, 
calcula_partv 

criteria .h .cpp for computing some criteria and defines 
structures related to these options 

split_selection_criteria, 
split_partition, ...   

 

estructures  .h  some basic definitions about types argument, variable, 
discrete, numeric 

 

evaluate .h .cpp for the statistics for evaluating trees including 
cost and confusion matrix 

class_matrix, 
evaluation_statistics 

 

exemples  .h  for defining and handling (sampling) datasets example, dataset randomGenerator 
getopt  .h  part of the GNU C library for handling 

command-line arguments 
  

main  .cpp main program: reads options and arguments, 
creates the multitree, learns and evaluates 
results. 

 main 

options .h .cpp defines many options and the options class options default_options, 
hardwired_options, 
trau_opcions 

options-file .h .cpp for parsing the option file   ompli_options 
parser .h .cpp parser for the dataset files   ompli_memoria 
roc .h .cpp ROC facilities   compute_ROC_points, 

compute_ROC_AREA, 
genera_ps 

rules .h .cpp defines basics of rules condition, rule  
temps .h .cpp utilities for handling time   start_st, stop_st, 

pulsos_a_segs, vore_st 
trees .h .cpp largest source file with the main learning 

functions 
tree, and_tree, 
or_tree, multi_tree  

 

utils .h .cpp some utilities: mathematical and output 
functions 

  Pause, log2, logbase, Sqr, 
RandUniform, RandNormal 

5.2   Main source files 
The most basic definitions and types are in the file “estructures.h” 
typedef unsigned char byte; 
typedef unsigned short int word; 
typedef unsigned long word4; 
typedef float numeric;  // used for numerical attributes 
typedef byte discrete;  // used for nominal attributes 
typedef int variable;   // used for variables 
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typedef word4 indext;   // used for indexes in datasets 
 

typedef enum { EMPTY, CONST_EQ, CONST_NEQ, VAR_EQ, VAR_NEQ, NUM_LT, NUM_GE } cond_op;   
// kind of operators in conditions 
 

typedef enum { NUMERIC_KIND, DISCRETE_KIND, VARIABLE_KIND } kind; 
// kinds of arguments 
 

typedef vector <string> argtable;     // argument values name 
typedef vector <argtable> exetablet;  // table of several arguments values names 
typedef byte indargtable; 
typedef word argoffsetv;              // offset of arguments in tables 
typedef argoffsetv argoffsett; 
typedef word sizeexamplet;            // size of example 
typedef vector<indext> vdistt;        // class distribution 
typedef vector<kind> typest;          // vector of kinds 
 

class argument;                       // argument 
From these definitions the main components of a solution (conditions and rules) can be easily 
defined: 
class condition { 
  // constructs a condition with an operator and an argument 
  condition(cond_op o, argument v); 
 

  // checks if two conditions are added over the same argument 
  bool Specialises(const condition &c2) const;  
}; 
 
class rule { 
  // constructs a rule of n arguments (n+1 if we consider the class) 
  rule(int n); 
 

  // copy constructor 
  rule(const rule &r); 
 

  // adds a condition to argument a of the rule 
  bool Add_Condition(int a, const condition &c); 
 

  // converts the rule to string (to be shown, for instance) 
  string ToStringUnfolded(char * FName, const dataset & DataSet, bool Short= false); 
}; 

In the files “examples.h” and “examples.cpp” the class dataset is implemented. These are the 
main methods: 
// constructs a training set from a file 
dataset(const string & file) 
 

// constructs a test set from a file and maintaining the structure of a training set 
dataset(const string &file, const dataset &dtrain) 
:vdist(dtrain.NumClasses()) 
 

// shows a dataset 
void show() 
 

// shows class distribution 
void show_vdist() 
 

// Returns the nth argument (narg) of example nex 
argument Nth_arg(indext nex ,int  narg) const 
 

// Obtains a set of the real values (numeric). Used for intervals in partitions 
void OrderedSetOfRealsOf(int narg, set<numeric> &s, const vector<indext> &Covered)  
const  
 

// Computes if argument i of example e follows condition c 
bool FollowsCondition(int i, const condition & c, indext e) const 
 

// Obtains the classes of all examples in a vector 
void Obtain_Results(vector<discrete> &results) 
 

// Returns the class of example i 
inline discrete ClassOf(indext i) const 
 

// Returns the kind (numeric, discrete) of an argument.   
kind KindOf(int a) const 
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// Returns the type of an argument 
int TypeOf(int a) const 
 

// Return the number of arguments of the dataset (without including the class) 
int NumArguments() const 
 

// Returns the number of constants of argument a 
discrete NumConstants( int a) const 
 

// Returns the number of classes of the dataset 
discrete NumClasses() const 
 

// Returns if rule r covers example e 
bool Covers(const rule & r, indext e) const 
 

// Returns the cardinality of the dataset 
indext Cardinality() const 
 

// Returns the class distribution of the dataset  
vdistt ClassDistribution()  const 
 

// Returns the majority class of the dataset 
discrete MajorityClass() const 
 

// Returns the frequency of class C 
float FreqOfClass(int C) const  
 

// Returns the name of value v of argument a 
string NameArgumentValue(int a, discrete v) const 
 

// Returns the name of class with value v 
string NameClassValue(discrete v) const 
 

// Returns the name of class with value v 
string GetName(discrete v) const 
 

// Returns the weight of class v   
numeric GetWeight(discrete v) const 
 

// Set weights of classes to 1 
void SetWeightsTo1() 
 

// Set weights to inverse frequency of the classes using Param 
void SetWeightsToInvFreq(float Param) 
 

// Recovers the value of an argument from the argument and the name  
discrete GetIndex(word numarg,char * arg) const 
 

// Extracts a % of the examples randominly putting them in a new dataset New 
void RandomExtract(numeric pcn, dataset  & New) 

From here, learning structures can be further constructed. In this sense, probably the most 
important and complex source file is “trees.h”. A lot of methods of the tree, and_tree, or_tree 
and multitree classes are defined in this file because they are inline.  

The structure of the multitree is defined in the files “trees.h” and “trees.cpp”. The trees can 
be traversed bi-directionally. The classes “and_tree” and “or_tree” are specialisations of tree 
such that the parent and children of an and_tree are or_trees and the parent and children of an 
or_tree are and_trees. With this construction, a multitree is a class that contains a root node that 
is an and_tree. 

Let us take a look to the public methods of the multitree: 
// Constructs the multitree 
multitree(const dataset & Train, options &Opt) 
 

// Learns the multitree 
void Learn(const dataset &Train,const dataset &Validation_Test)  
 

// Obtains N solutions: a vector of vector of nodes 
void ObtainNBestDifferent(int n, vector<vector<and_tree *> > &Solutions)  
 

// Unmarks and marks a multitree according to a solutions (set of leaf nodes) 
void Mark(const vector<and_tree *> Sol)  
 

// Shows the solutions of a multitree given as argument 
void Show(const vector<and_tree *> Sol, char *FunctionName)  
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// Obtains a vector of class results using the marks in the OR nodes 
void Result_as_Marked(const dataset &Test, const options &Options, vector<discrete> 
&Results) 
 

// Predict the class using the marks in the OR nodes 
discrete PredictMarked(and_tree *Actual_AND_Node, indext i, const dataset & Test) 
 

// Fill all leaf nodes with their "TestDistribution" 
void FillTestDistribution(const dataset &Test)  
 

// Show all Rules of Multitree 
string ShowAllRules(char *FunctionName, const dataset &DataSet, bool Short) const; 
 

// Show tree in the form of rules. Obsolete 
string ShowTreeBest(char *FunctionName, const dataset &DataSet, const dataset 
&Validation_Data,bool Short) const 
 

// Obtains the prediction of the best tree for example i of dataset Test 
discrete PredictBest(indext i, const dataset & Test)  
 

// Obtain the prediction of a combined solution with for example i of dataset Test 
// Three function with three different combination methods 
discrete PredictComb(indext i, const dataset & Test)  
discrete PredictCombVect(indext i, const dataset & Test)  
discrete PredictCrossCoverage(indext i, const dataset & Test)  
 

// Evaluates the best solution. Obsolete 
void Evaluate(const dataset & Test, evaluation_statistics & Eval,options &Options) 

From here, the main function in “main.cpp” just reads options and arguments, creates the 
multitree, learns and evaluates results. The main file has the following (simplified) structure: 

Reads Options 
Begins Loop for Cross-Validation 
  Reads Training Set 
  Splits Training Set (if cross-validation or sampling) 
  Reads Cost Information 
  Creates and Learns Multitree 
  Shows Rules (optional) 
  Prepares (or reads) Test Set 
  Evaluates Combined Results 
  Begins Loop for Different k Single Solutions 
    Obtains 1 Solution 
    Evaluates it 
    Shows it (optional) 
    ROC Analysis (optional) 
  Ends Loop 
  Computes Means for Different k Single Solutions 
  Accumulates Some Results 
  Destroys Dataset and Multitree 
Ends Loop 
Computes and Shows Cross-Validation Results (optional) 

5.3   Default and hardwired options 
Options structures and attributes (some of them defined in options.h and others in criteria.h) 
are grouped together in a structure named “options”. The most important attributes of this 
structure are: 
struct options { 

    missing_numeric_values MissingNumericValues; 
    reliability_calculation ReliabilityCalculation; 
    class_probability_vector_calculation ClassProbabilityVectorCalculation; 
    show_mumber_solutions ShowNumberSolutions; 
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    expected_error_options ExpectedError; 
    smoothing_options Smoothing; 
    smoothing_options NodeSmoothing; 
    probability_in_splitting_criteria ProbabilityInSplittingCriteria; 
    output_options Output; 
    multitree_options Multitree; 
    solution_combination Comb; 
    split_selection_criteria SSC; 
    pruning_criterion PC; 
    post_pruning_method PostPruningMethod; 
    numerical_interval_criterion IntervalCriterion; 
    vector<bool> Enabled_Partitions; 
 
    weights_options Weights; 
    cost_derived_probability_method Cost_Derived_Probability_Method; 
    class_matrix CostMatrix; 
    vector<double> WeightVector;   
 
    vector<double> TestCostVector;  // vector of attribute test costs. 
    test_cost_method TestCostMethod; 
    test_cost_use TestCostUse; 
    double TestCostRelevanceInSplitting; // must be from 0 to infinite. 
    double TestCostRelevanceInSelectBest; // must be from 0 to 1. 
 
    component_matrix Components; 
    component_matrix AccComponents; 
    component_matrix RandomComponents; 
    bool Components_Reckoning;  // if this is true the previous matrices are computed 
    components_in_split_criterion Components_In_Split_Criterion; 
    float ComponentsRandomFactor; 
 
    k_best_selection SelectKBest; 
 
    sample_training_set SampleTrainingSet; 
    cross_validation CrossValidation; 
    float SampleTrainingSetProportion; 
    int kFoldValidation; 
    int RepeatKFold; 
    bool AllowTestWithoutOneClass; 
 
  ... 
} 

These options are assigned default values by the function “default_options” in “options.h”. 
In case that the options file (usually called “options.cfg”) does not contain any entry about a 
particular option, this default option will be used in SMILES. 

However, not every option can be modified through the options file, especially some 
parameters and the enabled partitions. In this case, only by modifying the program it is possible 
to change one of these options. These options can be recognised in the function 
“hardwired_options”. It is not difficult to change them by changing the sources, even with 
little idea of C++ programming. The file to be modified is “options.cpp”. This is an excerpt of 
this function which gives an idea of how easy it can be to modify one option: 
void hardwired_options(options &Options) { 
   Options.ComponentsRandomFactor= 0.5; 
 
   ... 
   
   Options.Smoothing.m= 5; 
   Options.Components_In_Split_Criterion.Met= NO_USE_OF_COMPONENT_IN_SPLIT; 
   Options.SelectKBest.FactorForRandomComponents= 0.25; 
 
   ... 
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   vector<bool> Part(4);  // AÇÒ SERIA MILLOR UN CONJUNT. 
   Part[PARTITION_MANY_CONST_EQ]= true;            // Partition X=a, X=b, X=c... 
   Part[PARTITION_ONE_CONST_EQ]= false;            // Partition X=a, X!=a 
   Part[PARTITION_ONE_VARIABLE_EQ]= true;          // Partition X=Y, X!=Y 
   Part[PARTITION_ONE_CONST_DISEQ]= true;         // Partition X<c, X>=c 
 
   Options.Enabled_Partitions= Part; 
} 

The following section presents a summary of all the options and distinguish between the ones 
that can be modified through the options file and the hardwired (only modifiable by program). 

6  Options Summary 
The following table shows all the options that the current system has, their description, whether 
they are implemented or not, if there are some additional parameters and if they can be 
modified through the options file (Y:yes, P:partially, N:no). 

 
Issue Variants Impd Parameters M 

NO_COMPUTE: It doesn’t compute it. Best option if the Expected 
Error is not going to be used. 

  Y 

RELATIVE_FREQUENCY_WITH_MAJORITY_CLASS: Expected 
Error just as 1-freq of majority class. 

  Y 

RELATIVE_FREQUENCY_WITH_FREQ_PROB: Expected Error just 
as = Σ(pi)(1-pi). 

  Y 

COST_WITH_MINIMUM_CLASS: Computing the cost instead of 
error by assuming that the class with minimum cost has been 
assigned to the node. 

  Y 

COST_WITH_FREQ_PROB: Computing the cost instead of error by 
multiplying the probability of assigning a class with the cost 
associated to that case. The probability is based on frequency. 

  Y 

COST_WITH_COST_PROB: Computing the cost instead of error by 
multiplying the probability of assigning a class with the cost 
associated to that case. The probability is based on costs. 

  Y 

Expected Error Method. 
This option selects between 
different ways to compute 
the expected error. 
The expected error is not 
needed if neither pruning nor 
the selection criterion (split 
and best solution) are based 
on it. 

COST_WITH_COST_PROB_REL_FREQ_SECOND: The same as 
before but in case that two or more classes have the same cost use 
the one with less expected error. 

NO  N 

NO_SMOOTHING: the probability of a class is just computed as the 
frequency of the examples of that class under a particular node. 

  Y 

LAPLACE: Laplace correction of relative frequency, i.e., 
p(c) = (n(c) + 1) / (n + NumClasses) 

  Y 

K-ESTIMATE: aberration of Laplace correction: 
p(c) = (n(c) +  k) / (n + k) 

  Y 

M_ESTIMATE: M-estimate correction of relative frequency using the 
frequencies of dataset, i.e., 

p(c) = (n(c) + freqc·m) / (n +  m) 
where freqc is the frequency of class c for all the dataset. 

 m P 

Frequency Error Smoothing: 
Use smoothing or not for 
every calculation of 
frequencies. 
There are two options: 
“smoothing method” (for 
frequencies of each class). 
 
“node smoothing” (for 
frequencies of each node). 

M_ESTIMATE_UNIFORM: M-estimate correction of relative 
frequency assuming uniform distribution of dataset, i.e., 

p(c) = (n(c) + freq·m) / (n +  m) 
where freq = 1 / NumClasses. 

If m=NClasses then M-ESTIMATE = LAPLACE. 

 m P 
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MAJORITY_CLASS: the class with more instances in a node is 
selected. When two or more classes have the same number of 
instances, the most common one in the dataset is selected. If the 
node has cardinality zero, then the majority class of the dataset is 
selected. 

  Y 

MAJORITY_CLASS_WITH_SMOOTHING: With Laplace smoothing it 
is the same to use smoothing or not, but with other smoothing 
methods may be different. 

NO  N 

MIN_COST_CLASS: the class which minimises the cost is selected. 
When two classes have the same cost, the majority class is selected. 
When cardinality is zero the one which minimises the cost (assuming 
a uniform distribution) is selected. 

YES, 
but 
check 

 Y 

MIN_COST_CLASS_WITHOUT_SMOOTHING: the same as before 
but does not use smoothing (in the case it is activated). 

NO  Y 

Class Selection Method: 
How the class of a leaf node 
is selected 

STRATIFICATION_CLASS: the class which maximises the benefit 
(using the weight vector) is selected. When two classes have the 
same benefit, the majority class is selected. When cardinality is zero, 
the one which maximises the benefit (assuming a uniform 
distribution) is selected. 

YES, 
but 
check 

 Y 

FREQUENCY RELIABILITY   Y Prediction reliability 
calculation methods: 
Now this reliability is not 
shown. 

LAPLACE RELIABILITY   Y 

FREQUENCY CLASS PROBABILITY VECTOR 
 

  Y Prediction class probability 
vector calculation methods 
(this is used for the AUC 
example by example) 

LAPLACE CLASS PROBABILITY VECTOR   Y 

PARTITION_MANY_CONST_EQ  
// Partition X=a, X=b, X=c... 

  N 

PARTITION_ONE_CONST_EQ 
// Partition X=a, X!=a 

  N 

PARTITION_ONE_VARIABLE_EQ 
// Partition X=Y, X!=Y 

  N 

PARTITION_ONE_CONST_DISEQ 
// Partition X<c, X>=c 

  N 

Partitions: which partitions 
are active in the learning 
process. 

PARTITION_BACKGROUND 
// Partition X=f(...), X !=f(..) 

NO  N 

FIXED: Generate all the possible nodes using the active partitions.   N 
Best_Partition_Set: way of 
using the partitions. ADJUST: selects the partitions according to the problem by using a 

first round adjusting the active partitions. 
NO  N 

Partitions Restriction / 
Priorisation: methods on how 
to restrict some partitions on 
some attributes using 
association or correlation 
information. 

ASSOCIATION-CORRELATION NO SUPPORT / 
CONFIDENC
E 

N 

NO_LIMIT: all intervals given by the middle points of the values 
falling under the node. 

  Y 

CLASS_INTERVAL (C4.5). It just differs in efficiency with NO_LIMIT. 
Doesn’t generate a threshold if the classes on both sides are the 
same. 

NO  N 

MAX(a): maximum number of intervals. It just orders the values and 
split it in a segments… 

  Y 

Numeric Interval Criterion: 
how continuous attributes 
are handled in each node in 
order to generate the 
thresholds (and how many) 

LOG(a,b): like the previous one but the number of intervals is 
obtained by: (a + logb n). 

  Y 
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 Discretisation based on reduction on Variance 
(see “Investigation and reduction of discretization variance in 
decision tree induction” P. Geurts, L. Wehenkel. Proc. of ECML2000, 
Barcelona, Spain, May 2000, @springer-verlag) 

• Classical (C4.5) 
• Kolmogorov-Smirnov (J.H. Firedman “A recursive 

partitioning decision rule for nonparametric classifier) 
IEEE Transactions on Computers, C-26:404-408, 1977. 

• Median. (implemented MAX(1)) 

NO  N 

FROM_FREQUENCY_NO_SMOOTHING   Y 
FROM_FREQUENCY_SMOOTHING   Y 
FROM_FREQUENCY_FROM_COSTS   Y 
FROM_FREQUENCY_WITH_STRATIFICATION   Y 

Probability in splitting 
criteria: only applicable to 
GAIN and derivatives, GINI 
and DKM. 

FROM_FREQUENCY_WITH_STRATIFICATION_NO_SMOOTHING   Y 
LEFT_FIRST: Selects the first node.   Y 
GAIN: Entropy. Quinlan’s Gain.   Y 
GAIN_RATIO: Quinlan’s Gain Ratio.   Y 
C4.5 : Quinlan’s Gain Ratio for those with gain greater than the 
mean. 

  Y 

ADJGAIN : C4.5 but with numerical splits improvement. NO  N 
CART: Simplified Breiman et al. GINI heuristic.   Y 
MGINI: Correct Breiman et al. GINI heuristic.   Y 
DESC_MDL: The description cost of the examples following under 
the split nodes + the cost of the partition. 

  Y 

PRED_MDL: Just the class of the examples are described. NO  N 
DKM: Kearns & Mansour modification of CART.   Y 
SPLIT_EXPECTED_ERROR: Uses expected error (and its selected 
method to compute it, maybe using cost). 

  Y 

WEIGHTED_GAIN: to be defined how to combine it with costs. NO  N 
WEIGHTED_MDL: to be defined how to combine it with costs. NO  N 
LOCAL_ROC_AREA: Selects the split with greatest area under the 
ROC curve. Only takes into account the nodes in that split. 

  Y 

GLOBAL_ROC_AREA: Selects the split with greatest area under the 
ROC curve. Takes into account all the open nodes in the tree. 

NO  N 

ONE_POINT_LOCAL_ROC_AREA: simplification of “local ROC 
area”. Just computes the are with one point. 

  Y 

MSE: minimum squared errror.   Y 
LOGLOSS: logloss metric.   Y 
SQDIFF: computed as the square of the difference between 
probability for class a and probability for class b. Only valid for two 
classes 

  Y 

GENENTROPY: gain and gini can be seen as special cases of a 
generalised entropy function depending on a power. This is a 
parametrised split criterion where this exponent can be modified (by 
program). 

  Y 

ROCV: another (not very successful) extension to the roc split for 
more than 2 classes. 

  Y 

AUCH: Based on Hand and Till’s extension of Area Under the ROC 
Curve for more than two classes 

  Y 

Splitting Criterion: criterion 
which is used to select the 
best split. 
This sets the 
SPLIT_OPTIMALITY value 
used by other issues. 

AUCS: Fawcett’s variant of AUCH.   Y 
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NO_USE_OF_COMPONENT_INFORMATION   N 
ADAPTATIVE COMPONENT: use an accumulative component 
matrix to avoid components (partitions and attributes) that have been 
used in previous solutions in order to obtain different solutions. 

  N 
Components in Split 
Criterion: use of a 
component matrix (reflecting 
the partitions and attributes 
that have been used). RANDOM_COMPONENTS: generate the component matrix 

randomly also in order to obtain different solutions. 
 alpha N 

NO_PRUNING   Y 
PROPORTIONAL: prune when the number of examples under a 
node are less than alpha and the proportion of correctly classified is 
greater than beta. 

 alpha + beta P 

EXPECTED ERROR: prune using EXPECTED ERROR (and its 
associated method that may take cost into account). The parameter 
alpha is used as a factor between the expected error of the parent 
and the expected error of the children.  

 alpha 
(1 is the 
default and as 
greater it is 
the more it 
prunes). 

P 

SIGNIFICANCE NO alpha: 
significance 
degree 

N 

MDL_PRUNING: prune if the description cost of children (and 
partition) is greater than the parent node. 

  Y 

STUMP_PRUNING: prune the tree at a constant depth.  Stump 
Pruning Limit 
(depth) 

Y 

PEP-pruning: Uses “Pessimistic Error Pruning”:   Y 

Pre-pruning: criterion for 
pruning when constructing 
the tree. 

MDL_PRUNING2: as MDL_PRUNING but measuring exceptions 
separately. 

NO  N 

NO_POSTPRUNING: doesn’t use post-pruning   Y 
Post-pruning PEP_PRUNING: Uses “Pessimistic Error Pruning”: This pruning is 

based on marking nodes as pruned, but doesn’t delete them. 
  Y 

ONE_ONLY: just generate the first tree. (Greedy search). Never 
used. If MaxNumTree=1 then ONE_AND_FORGET is used. 

  N 

ONE_AND_FORGET:  just generate the first tree. However, unused 
or nodes are deleted when constructing the tree. This is the option 
that requires lower memory resources. 

 If 
MaxNumTree
=1. 

Y 

MANY_AND_MAINTAIN: generate and maintain MaxNumTrees.  MaxNumTree
s 

Y 

Multitree: how many and 
how the several trees are 
generated 

MANY_AND_FORGET: when only one solution is required, bad 
solutions can be forgotten. A h() function is necessary as a A* search 
algorithm. 

NO  N 

CONSTANT: The algorithm stops when NumTree OR-nodes have 
been explored. 

  N 

MAXTIME: The algorithm stops when time is finished. NO  N 
STALLED: The algorithm stops when accuracy has not been 
incremented in the last m iterations. 

NO  N 
Stopping Criterion for the 
overall algorithm. 

HEURISTICALLY: The number of iterations is guessed accordingly to 
number of attributes, types and number of examples. 

NO  N 

OCCAM_BEST: the one with lower number of rules.   Y 
TEST_COST_BEST: the one that minimises testcost.   Y 

BestTree Selection Criterion: 
How to select the best 
solution if only one of all has 
to be shown 
(comprehensible model) 

OCCAM_AN_TEST_COST_BEST: a combination of the preceding 
two. The relevance of each one through internal option 
TestCostRelevanceInSelectBest that must be from 0 to 1 

  P 
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EXPECTED_ERROR_BEST: the one with lower expected error (or 
cost if it is included). 

  Y 

COVERAGE BEST:   Y 
CROSS_COVERAGE: The training set is split in two parts. Only one 
is used for learning and the other one is used for selecting the best 
tree (the one with more accuracy). 

  Y 

SPLIT_OPTIMALITY_BEST: the one with higher optimality (using the 
optimality as is computed by the splitting criterion). 

NO  Y 

 

MDL_BEST: the one with lower description cost.   Y 
K_Best_Less_Visited: from all the possible solutions, selects the best 
according to the “BestTree Selection Criterion”. For the second tree, 
tries to avoid the branches selected by the first and so on. 

  Y 

K_Best_Less_Visited_Plus. NO  Y 
K_Best_Less_Visited_Different_Components from all the possible 
solutions, selects the best according to the “BestTree Selection 
Criterion”. For the second tree tries to avoid the branches selected by 
the first and so on. When the same branch has to be passed again, 
the one with different components (according to the accumulated 
component matrix). 

  Y 

K_Best_Different_Components: tries to select solutions with 
components different to the reference component matrix. In case of 
tie then the “besttree selection criterion is used”. 

  Y 

SelectKBest: how the k best 
solutions are seleted. 

K_Best_Random: selects each solution randomly combining the all 
possible branches. Note that repeated solutions might be obtained. 

  Y 

Components_Accumulate: the reference component matrix 
accumulates the resulting component matrix of previous solution 
matrices. Initially the matrix is filled with 0s. 

  Y 

Components_Random_Generated_From_Start: the reference matrix 
is generated randomly. 

  Y 
K Best Component 
Generation: how the 
reference component 
matrices are generated. Components_Random_Generated_From_Second: This is a variant 

of the previous one that ensures that the first solution is always the 
same as if only one solution (the best one) were generated. 

  Y 

K Best Number of Solutions: How many solutions are generated from the multitree.   Y 
SPLIT_OPTIMALITY: the node with best absolute splitting optimality 
of all the tree structure. 

  Y 

OPTIMALITY_RIVAL_RATIO: the node with best relative absolute 
splitting optimality of all the tree structure. 

  Y 

OPTIMALITY_RIVAL_RATIO_DEPTH: balancing 
 optimality_rival_ratio with the depth of the node. 

 alpha P 

OPTIMALITY_RIVAL_WITH_COMPONENT: balancing 
 optimality_rival_ratio with an accumulated component matrix. 

  Y 

OPTIMALITY_RIVAL_WITH_COMPONENT_RANDOM: balancing 
 optimality_rival_ratio with a random component matrix. 

  Y 

SECOND_BOTTOMMOST: the bottommost node is selected.   Y 
SECOND_TOPMOST: the topmost node is selected.   Y 
SECOND_FRONT: the node most time suspended is selected. A 
FIFO order. 

  Y 

SECOND_BACK: the node most time suspended is selected. A LIFO 
order. 

  Y 

Second Tree Opening 
Criterion: once the first 
solution is found, how to 
select a second node to 
explore for the second 
solution. 

SECOND_RANDOM: selects a node pseudo-randomly with a 
uniform distribution. 

  Y 
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SECOND_RANDOM_DEPTH: selects a node pseudo-randomly with 
a distribution that takes also into account the depth of the node. 

 weight to 
ponder the 
random result 
and depth 

P 

ROC-DISTANCE NO  N 

 

ROC-SAMPLING NO  N 
MAINTAIN ALL    
MAINTAIN CONST RANDOM  The const is 

specified 
through the 
option 
“suspended 
nodes 
maintain 
const value” 

Y 

MAINTAIN LOG RANDOM   Y 
MAINTAIN LOG RANDOM WITH DEPTH   Y 
MAINTAIN LOG RANDOM WITH SQUARED   Y 

Suspended Nodes 
forgetting: 
must all suspended nodes 
maintained? 
 

MAINTAIN LOG RANDOM WITH DEPTH ADJUSTED   Y 
NO_CHANGE NO  N Change of dataset weights 

between different solutions: BOOSTING_ADJUST_OF_COST_MATRIX NO alpha N 
NO_COSTS / UNIFORM_WEIGHTS: don’t use cost information (or 
just construct the matrix with all values equal). 

  Y 

WEIGHTS_FROM_FILE: get a weight vector from the dataset file 
and convert it into a cost_matrix, understanding the vector as a 
stratification. 

NO  Y 

INVERSE_FREQUENCY_WEIGHTS: assume the weight vector as 
the inverse of the frequencies on the dataset. 

NO  Y 

Weights (Cost) Method: How 
the cost matrix is 
constructed. 

COST_FROM_MATRIX: cost matrix given by the user.  Cost_Matrix Y 
DIRECT: no use smoothing to compute cost derived probability.   Y Cost Derived Probability 

Method WITH_VECTOR_SMOOTHING: use somoothing.   Y 
no test costs   Y 
uniform test costs   Y 

TESTCOST: how the vector 
of attribute test costs is 
constructed test costs from file   Y 

test costs no use   Y 
test costs linear plus1 without repetition   Y 

TEST COST USE: how the 
vector of attribute test costs 
is used ("without repetition" 
better than "with repetition") 

test costs linear plus1 with repetition   Y 

TestCostRelevanceInSplittin
g 

In the case that TEST COST USE is different from “no use” then the 
option TestCostRelevanceInSplitting can be used to give it more or 
less importance. Its value must be from 0 to infinite. 

  N 

NO COMBINATION: no combination is used.   Y 
MAJORITY CRISP: when an OR node is found, just assign the 
majority class of the children. 

  Y 

MAJORITY ABSOLUTE STOCHASTIC (CLASS DISTRIBUTION): 
Instead of propagating the assigned class, a class distribution is 
propagated. At root, the majority class of that vector is selected. 

  Y 

MAJORITY RELATIVE STOCHASTIC (CLASS DISTRIBUTION): 
Instead of using a class distribution. 

NO  Y 

Combination: how to 
combine several solutions 

CROSS_COVERAGE_COMBINATION: Using the partition of the test 
set into two datasets (one for training and one for combining). Uses 
the same technique as “Absolute Stochastic”. 

  Y 
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MINIMAL COST: selects the OR with less cost. NO  N 
MAJORITY_COST_STOCHASTIC   Y 
COMPREHENSIBLE RULE SELECTION: tries to select a set of rules 
from all the possible solutions. 

NO MaxNumRules 
MinAccuracy 
Min%WholeAc
curacy 

N 

 

MDL NO  N 
Combination smoothing. Use 
smoothing before 
combination 

YES/NO 
 

  Y 

Allow post-pruning in 
combination (in post-prune 
enabled) 

YES/NO   Y 

Combination vector: 
absolute (n. of examples) or 
relative (frequency) 

ABSOLUTE/RELATIVE   Y 

ORIGINAL 
 

  Y 

GOOD LOSER   Y 
BAD LOSER   Y 
DIFFERENCE   Y 
MAJORITY   Y 

Combination vector method: 
how to derive the vector 

SQUARED   Y 
SUM   Y 
PROD   Y 
ARITHMEAN   Y 
GEOMEAN   Y 
MAX   Y 
MIN   Y 

Combination fusion method: 
how to combine the vectors 

MEDIAN   Y 
KAPPA   Y 
KAPPA1   Y 

ARCHETYPE: Similarity 
function used for the 
selection of a single solution 
from the combination  QSTAT   Y 

NO EXTRACTION 
 

  Y Combination to Single 
Solution Method 

INVENTED DATASET   Y 
Length of the invented 
random dataset 

   Y 

ARCHETYPE SIMILARITY IMPORTANCE FACTOR   Y 
ARCHETYPE OCCAM IMPORTANCE FACTOR   Y 

Combination to Single 
Solution (Archetype) Use of 
Other Criteria. These factors 
affect how the Archetype is 
extracted. If all the factors 
except similarity are left to 0, 
then it is just a semantic 
extraction. 15, 4, 1 are 
compensated values. 

ARCHETYPE TEST COST IMPORTANCE FACTOR   Y 

SAMPLE_TRAINING: splits 
the training set into a 
subtraining set and a 
validation (fake) test. 

NO_SAMPLE / SAMPLE: whether or not to generate a percentage of 
the training set to use it for pre-pruning, selection criteria and so on. It 
depends on the following options. 

  Y 
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SAMPLE TRAINING SET 
PROPORTION 

Proportion of the training set to be used (the rest is for validation if 
cross coverage options are active or the rest is simply ignored). The 
selection is made randomly. 

  Y 

CROSS_VALIDATION: splits the training set into two sets: one for 
learning (real training set) and other for validation (test set) 

  Y 

USE_SEPARATE_TEST: reads two different tests: training set file 
and test set file. 

  Y 

KFOLD CROSS VALIDATION: uses the same partition several times, 
until all the combinations have been used. 

  Y 

CROSS VALIDATION: use 
separate files for train/test or 
split the training set 

REPEATED KFOLD CROSS VALIDATION: repeats the experiments 
n times (as option REPEAT KFOLD below). 

  Y 

KFOLD OF 
CROSSVALIDATION:  

Times that the cross validation is to be performed.   Y 

REPEAT KFOLD how many times (if cross validation) we repeat the experiment   Y 
allow (if cross validation) a 
test dataset with one class 
without examples 

YES/NO   Y 

FUNCTIONAL LOGIC: Functional Logic Programming without 
simplification of conditions (constraints). 

  Y 

SIMPLE FLP: Functional Logic Programming but simplifies the 
constraints and eliminates empty rules. 

NO  N OUTPUT OF RULES 

IF-THEN-ELSE NO  N 
SHOW: show the proportion of each class (for the training set). NO  Y SHOW CLASS 

DISTRIBUTION NO SHOW   Y 
NO SHOW   Y 
SHOW   Y 

SHOW ALL MULTITREE 
RULES: show all rules of the 
multitree (used or not) TO FILE: outputs them to a file. NO  Y 

NO SHOW   Y 
SHOW   Y 

SHOW ALL K BEST 
SOLUTIONS: show the rules 
of the k best solutions TO FILE: outputs them to a file. NO  Y 
SHOW COMPONENT 
MATRIX OF SOLUTIONS 

SHOW/NO SHOW: whether or not to show the component matrix 
corresponding to each solution. 

  Y 

NO SHOW: Never shows the confusion matrix.   Y 
SHOW ONLY IF COSTS: Only if costs are used.   Y SHOW CONFUSION 

MATRIX SHOW: Shows the confusion matrix for combined solution and for K 
best solutions. 

  Y 

ABSOLUTE STATISTICS: Shows results per class and total, in an 
absolute way (number of examples). 

  Y 

RELATIVE STATISTICS: Shows results per class and total, in a 
relative way (proportion of examples). 

  Y 

BOTH STATISTICS: absolute and relative statistics.   Y 

SHOW STATISTICST 
MODE 

JUST ACCURACY: Just shows accuracy.   Y 
TRAINING SET (YES/NO)   N 
TEST SET (YES/NO)   N ROC AREA WITH 
TRAINING ORDER TEST  NO  N 

COMPUTE ROC POINTS YES/NO   Y 
SHOW ROC POINTS YES/NO   Y 
COMPUTE ROC AREA YES/NO   Y 
GENERATE ROC CURVE 
FILE 

YES/NO   Y 
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show number of possible 
solutions in the multitree YES/NO   Y 

IGNORE EXAMPLES WITH MISSING NUMERIC VALUES   Y HOW TO HANDLE 
MISSING VALUES SUBSTITUTE MISSING NUMERIC VALUES   Y 
Use Fake Test for 
Combination 

Future feature. NO  N 

Use Fake Test for Second 
Tree Opening 

Future feature. NO  N 

Use Fake Test for Selecting 
the Best Solution 

Future feature. NO  N 

Null-argument and missing 
argument treatment 

Future feature. NO  N 

Post-pruning Future feature. NO  N 

As we can see in the previous table, some options are not yet implemented. These were once 
considered as imminent future work to be done and, jointly with the issues discussed in the 
next section. 

7  Future work 
In this section, we describe some improvements or new things that could be added in new 
versions of SMILES. 

A first thing strongly related to implementation is that the second tree opening criterion 
looks into a list of suspended nodes to see which one has the highest optimality to be opened. 
This requires the traversal of the entire list every time a new second tree is required. One 
alternative could be to insert in an ordered way into the list of suspended nodes. This has 
advantages and disadvantages: faster retrieval but slower insertion of new suspended nodes 
that are found throughout the multitree construction. 

Another relevant thing would be to extend the stop criteria. Now the number of multitrees 
just depends on a constant. It would be better to make some mechanism in order to detect when 
further trees are not improving significantly the solution. This could be done through the use of 
an additional validation set, a reserved part of the training set or an invented dataset. 

At the current implementation, partitions cannot be activated or deactivated through the 
“options.cfg” file. The intention was to include options to make this automatic, i.e. the system 
should have heuristics to use the appropriate ones for each problem, but at the moment it can 
only be done modifying the source code. Moreover, new partitions are envisaged and 
optionally a types file. Consequently, all this could vary a great deal in the future. This is also the 
reason why the directive !NAMES in the training set file has not been implemented either. 

Related to the previous extension, it would be interesting to accept ordered nominal values 
such as {low, medium, high}. There is also a restriction in the number of different possible 
values for a nominal attribute: 256. Although this is maintained in this way to reduce space, it 
precludes SMILES from handling some datasets. In a similar way, a further treatments of 
unknown numerical values (now denoted by ‘?’) could be implemented. Currently there are 
two things to be done: to ignore the examples or to consider an additional branch (X=’?’), whose 
appropriateness has not been analysed. 

One important thing to improve user friendliness is to improve the outputs. The output of 
rules is in if-then-else form, not showing rules with 0 coverage, etc, would be interesting. 
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Outputs to file should also be improved: such as saving and loading the entire multi-tree, best 
k-solutions, ROC points, etc. In the future, inputs and outputs should be in XML standards. 

Moreover, now SMILES integrates the generation of the multi-tree structure (the real 
learning stage) and the combination and the extraction of solutions. It would be very interesting 
to run both parts independently, and to be able to export and import multi-trees, to extract 
archetypes, to apply them, to visualise them, etc.  

The handling of testcosts now does not take into account “test groupings”, i.e. that two or 
more attributes can be obtained in the same real tests, e.g., the concentration of sugar in blood 
and the leucocytes level can be performed by the same real test (a blood analysis) and its cost 
should only be reckoned once. The best form to do is through the modification of the “.testcost” 
files, through additional information for the joining of attributes. For instance, 

3, 50, 3, 50, 1, 0, 50, 4 
1->3 
2->7 
2->4 

Means that tests on attributes 1 and 3 should be added only once, and tests on attributes 2, 4 
and 7 should be added only once. 

Now SMILES learns models but doesn’t give any additional support to apply them. In fact, 
SMILES can compute the reliability of each prediction, but this reliability is not shown. SMILES 
(or an additional application) should be able to open existing models, apply them, even edit 
them, change their format, etc. 

The pre-pruning methods are quite limited and are hardwired with quite arbitrary 
parameters. More standard pre-pruning and, especially, post-pruning methods should be 
implemented. 

Some other things of a more novel hue that could be implemented are: 
• New Occam fusion method: weight each of the hypotheses to be combined 

depending on their size. Reorganise all the “MAJORITY” fusion options, because in 
practice just one is used. 

• New fusion method and splitting criterion based on the measure of confidence 
(support/confidence), which are closely related to the AUC measure. 

• Now the archetype just uses an invented dataset. Make it possible to use part of the 
training dataset or an additional external dataset. Allow that the archetype would 
be constructed with an external Oracle (just an additional training set) instead of 
the combination. 

• Design a kind of pruning based in combination. 
• Design a kind of pruning based in AUCH, MSE and LogLoss. 
• Study cross-coverage again and compare with archetype. 
• Pursue with the suspended or forgetting methods: add a children limit per node, a  

global limit, new forget method (forget the similar ones). 
• Use of background knowledge and more expressiveness. 

Finally, other more ambitious extensions may include a visual interface and a modification to 
convert SMILES in a regression system, a clustering system or even an association rules 
discoverer. 
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Appendix A: Program History 
 
 
   v.0.1    October  2001:  New system design begins as a successor of FLIP (FLIP3.0) 
   v.0.5    November 2001:    Basic Facilities: multi-tree structure, parsing utilities 
   v.0.6    November 2001:  First Evaluation measures: testset 
   v.0.7    December 2001:  Cost-sensitive facilities: Use of cost and confusing matrices 
   v.0.9    December 2001:  Different Solutions: component matrices 
   v.1.0    January  2002:  Options file. General improvement of inputs and outputs 
                           The system receives its current name: SMILES 
                                                   FIRST RELEASED VERSION. 
   v.1.1    January  2002:  ROC Facilities 
   v.1.2    January  2002:  Cross-validation and basic missing numeric values handling 
   V.1.2.5  January  2002:  K-Fold Cross-validation implemented 
   v.1.3    January  2002:  First Post-pruning method implemented (PEP Method) 
   v.1.4    January  2002:  Classes can be made equivalent in order to reduce no. of classes 
   v.1.4.1  January  2002:  Repeated k-fold cross-validation 
   v.1.4.2  January  2002:  Some memory leaks are fixed. 
   v.1.5    January  2002:  When only one tree is learnt the new option "ONE_AND_FORGET" is used. 
                           This options deletes or_nodes that are not further used and memory is freed. 
                                       SECOND RELEASED VERSION. 
   v.1.6    February 2002:      MSE measure and MSE split criterion implemented 
   v.1.6.1  February 2002:      LogLoss split criterion implemented 
   v.1.6.2  February 2002:      All memory leaks corrected. 
   v.1.6.3  February 2002:       Some correlations are computed using the Compute_Correlation function. 
                                                  The new source file "utils.cpp" is added to the project. 
   v.1.6.4  February 2002:          SqDiff split criterion implemented 
   v.1.6.5  February 2002:  MGINI_SPLIT and GENENTROPY_SPLIT criteria implemented 
   v.1.6.6  February 2002:  Split Nodes Smoothing implemented (with new option "Nodes Smoothing") 
   v.1.6.7  February 2002:  New Smoothing Method: k-estimate 
   v.1.6.8  February 2002:  GINI Criterion fixed (CART) for more than 2 classes. 
   v.1.6.9  February 2002:  MSE_SPLIT remade with better results! 
   v.1.7.0  March    2002:  M AUC measure (Hand's measure) called AUCH implemented. 
   v.1.7.1  March    2002:  New split criterion: AUCH_SPLIT using Hand's measure. 
   v.1.8.0  March    2002:  Invented Datasets created. "Comb2Single" option with Kappa similarity method. 
                           Two bugs fixed: SECOND_RANDOM sometimes selected NULL or_trees and  
  Setvdist() in "exemples.h" used word instead of long and caused problems with  
  long datasets; 
   v.1.8.1  March    2002:  Combination Accuracy and Comb2Single Accuracy (means and StdDev)  
  are computed when cross-validation. 
  First Solution is also shown when combination is enabled. 
   v.1.8.2  March    2002:  Combination Methods: majority crisp and majority absolute stochastic corrected 
   v.1.9.0  March    2002:  New Combination Methods: MAX, MIN, GEOMEAN, ... 
   v.1.9.1  March    2002:  Smoothing in Combination 
   v.1.9.2  March    2002:  Postpruning now enabled also for combination (a new function PostPrune) 
   v.1.9.3  March    2002:  Combination options arranged. 
   v.1.9.4  April    2002:  First Solution (shown when combination) corrected. 
  However, it doesn't work with post-pruning. 
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   v.1.9.5  April    2002:  New options: PruneInCombination, SIMILARITY MEASURES for Comb2Single  
  and AllowTestWithoutOneClass 
   v.1.9.6  April    2002:  Mean NumRules are also output of each kind of solution. 
   v.1.9.7  April    2002:  The memory of the random datasets were not freed. Two bugs: A temp object  
  delete missing in the dataset constructor and no delete in main. 
  There was also a similar memory link bug in "tracta_exemple". 
   v.1.9.8  May      2002:  Computed the number of possible solutions of the multitree. 
                           The AUC value can be computed by Hand or by our way. 

v.1.9.9  June     2002:  Treat missing numeric values using !TYPES directive, '0U' or '0u' 
  (extend numeric partition with an extra leaf for unknown value) 

  v.1.9.10  June    2002:  Now SMILES ignores some attributes when an 'I' or 'i' is put in the !TYPES. 
  v.1.9.11  June    2002:  New vector combination method: squared. 

v.1.9.12  June    2002:  Suspended Nodes Forgetting. New options enabled to free memory from  
  suspended nodes that probably will never be woken. 

   v.2.0B    June    2002:  Version 2.0 Beta release. 
                           THIRD RELEASED VERSION. 
   v.2.0     June    2002:  Version 2.0 stable release. 
   v.2.1     June    2002:  New way to compute AUC for more than 2 classes: Fawcett's method. 
                           New splitting criterion AUCS 
   v.2.1.1   July    2002:  Reliability is now calculated for each prediction. Two ways are implemented: 
   v.2.1.2   July    2002:  Reliability is used to compute 2-class AUC for combined and other solutions!!!! 
   v.2.1.3   July    2002:  Now SMILES accepts a ".testcost" file 
   v.2.1.4   July    2002:  AUC of comb. for 2 classes fixed. Now it matches AUC computed with nodes. 
   v.2.1.5   July    2002:  AUC of combination for more than 2 classes is implemented. 
   v.2.1.6   July    2002:  Prediction now works better for combination that uses "DIFFERENCE"  
  or other methods that mangle the probability vector. 
   v.2.1.7   July    2002:  AUC by Hand (computed by nodes) is now implemented in a way that  
  this measure is independent of the casual ordering of two or more nodes 
  that have the same ratio. 
   v.2.1.8   July    2002:  In "roc.cpp" a double type is used for cardinalities and now smoothing works better. 
                           This has the following consequences: MSE and LogLoss can be slightly different if  
  Options.ProbabilityInSplittingCriteria == FROM_FREQUENCY_SMOOTHING. 
  AUC by nodes with LAPLACE SMOOTHING and AUC by examples with LAPLACE 
  SMOOTHING now match. 
   v.2.2     July    2002: testcost learning (modification of optimality measure implemented). 
  For computing the total test cost, we check the repeated use of the same 
   argument, and it is not reckoned, giving an exact measurement of testcost. 
   v.2.2.1   July    2002:  new way of selecting the Best Tree from the multitree:  TEST_COST_BEST 
   v.2.2.2   July    2002:  the way in which TEST_COST_BEST now is weighted with the cardinality of each  
  node. Now it computes the real TEST_COST 
   v.2.2.3   July    2002:  A new Best Tree Method: OCCAM_AND_TEST_COST_BEST that combines  
  both OCCAM and TEST_COST through the use of a factor. 
  The weight of each is determined by the new value  
  TestCostRelevanceInSelectBest that must be from 0 to 1. 
   v.2.2.4   July    2002:  A new weight that tells how much TEST_COSTS are used to modify splitting  
  criteria. TestCostRelevanceInSplitting that must be from 0 to infinite. 
   v.2.2.5   July    2002:  Two bugs fixed: "test cost method=no test costs" didn't work and there was a 
  problem with numeric attributes with unknown values. 
   v.2.2.6   July    2002:  More friendly messages are output when the cost and testcost files are not 
   provided correctly. The good way is something such as: 
                                    ./smiles samples/liver.all.train - - liver.testcost 
   v.2.2.7   July    2002:  Some minor improvement in the parser. 
  Now if a line doesn’t contain the class, SMILES gives a proper message and exits. 
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   v.2.2.8   August  2002:  The standard deviation of kfold crossvalidation for FirstAUC fixed. 
  Testcost is also shown for Archetype solution. 
   v.2.2.9   August  2002:  There was a bug in the archetype extraction. Suspended Nodes were considered. 
  Although it seems it didn't affect on results, it did on efficiency. 
   v.2.3.0   August  2002:  Implementation of the Archetype Use of Other Criteria. 
   v.2.3.1   August  2002:  Minor improvements to the interface. 
   v.2.3.2   September 02:  Test Costs not shown in statistics if they don't exist. 
                           Now AUC computed and shown for archetype. 
  FOURTH RELEASED VERSION 
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Appendix B: Datasets in SMILES format 
 

Along with the SMILES distribution, a lot of datasets can be downloaded from the SMILES 
webpage. These datasets are mostly taken from the UCI repository [2] and they are by no means 
an alternative repository but just a format adaptation. Some of them have been partially 
modified, so users of other systems should use the original datasets.  

In the following pages we show the following information: 
• name of the dataset  
• usability (whether it is fast, modifications performed, ..) 
• whether AUC calculation is feasible (there are a minimum of examples for each 

class) 
• the name of the file without numeric missing treatment and with numeric missing 

treatment (when there are no numerical missing values, just the name in the first 
column is shown),  

• whether or not is about medical domain,  
• whether misclassification cost and test cost files are provided,  
• the number of classes 
• the size of all the examples and the percentage of the least frequent class,  
• the size of all the examples without missing values and the percentage of the least 

frequent class only for the examples without missing values, 
• the number of nominal and numerical attributes. 

The experiments performed and shown in this manual have been done with these datasets. 
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ATTRIBS DATASET USABILITY AUC 
CALC 

MISS 
VAL 

FILE WITHOUT NUMERIC 
MISSING TREATMENT 

FILE WITH NUMERIC MISSING 
TREATMENT 

ME
D? 

MISCL 
COSTFILE 

TEST 
COSTFILE 

#C SIZE  
ALL 

%MINC 
ALL 

SIZE  
NO-MISS 

%MIN C 
NO-MISS NOM NUM 

MONKS1 Fast OK No monks1.all  + .train + .test  NO .COST .TESTCOST 2 566 50 566 50 6 0 
MONKS2 Fast OK No monks2.all  + .train + .test  NO   2 601 34.28 601 34.28 6 0 
MONKS3 Fast OK No monks3.all  + .train + .test  NO   2 554 48.01 554 48.01 6 0 
TIC-TAC Fast OK No tic-tac.all  + .train + .test  NO   2 958 34.66 958 34.66 8 0 

HOUSE-VOTES Fast OK No house-votes.all  +.train+.test  NO   2 435 38.62 435 38.62 16 0 
AGARICUS-LEPIOTA Fair OK No agaricus.all  NO   2 8124 48.2 8124 48.2 22 0 

BREAST-WDBC Fair OK No breast-wdbc.all  YES   2 569 37.26 569 37.26 0 30 
BREAST-WPBC Fair OK Yes breast-wpbc.all breast-wpbc-UM.all YES   2 198 23.74 194 23.71 0 33 

BREASTCANCERWISC Fast OK Yes breast-cancer-wisc.all breast-cancer-wisc-UM.all YES   2 699 34.48 683 34.99 0 9 
IONOSPHERE Fair OK No ionosphere.all  NO   2 351 35.9 351 35.9 0 34 
LIVER-BUPA Fast OK No liver.all  YES  .TESTCOST 2 345 42.03 345 42.03 0 6 

PIMA DIABETES Fast OK No pima.all  YES  .TESTCOST 2 768 34.9 768 34.9 0 8 
CHESS-KR-VS-KP Fair OK No chess-kr-vs-kp.all  NO   2 3196 47.78 3196 47.78 36 0 

SONAR Slow OK No sonar.all  NO   2 208 46.63 208 46.63 0 60 
HEPATITIS Fast OK Yes hepatitis.all hepatititis-UM.all YES  .TESTCOST 2 155 20.65 83 18.07 14 5 

THYROID-HYPO Slow OK Yes thyroid-hypo.all thyroid-hypo-UM.all YES   2 3163 4.63 2012 6.06 19 6 
THYROID-SICK-EU Slow OK Yes thyroid-sick-eu.all thyroid-sick-eu-UM.all YES   2 3163 9.26 2012 11.83 19 6 

TAE [{0}] Fast. Reduced to 2 classes. OK No tae2c.all  NO   2 151 32.45 151 32.45 2 3 
CARS [{UNACC}] Fast. Reduced to 2 classes. OK No cars2c.all  NO   2 1728 29.98 1728 29.98 6 0 
NURSERY [{NR}] Fair. Reduced to 2 classes. OK No nursery2c.all  NO   2 12960 33.33 12960 33.33 8 0 
PENDIGITS [{0}] Slow. Reduced to 2 classes. OK No pendigits2c0.all  NO   2 10992 10.4 10992 10.4 0 16 

PAGE-BLOCKS [{0}] Slow. Reduced to 2 classes. OK No page-blocks2c0.all  NO   2 5473 10.23 5473 10.23 0 10 
YEAST [{ERL}] Fair. Reduced to 2 classes. OK No yeast2c.all  NO   2 1484 31.2 1484 31.2 0 8 

LETTER [{A}] Slow. Reduced to 2 classes. OK No letter2c.all  NO   2 20000 3.95 20000 3.95 0 16 
OPTDIGITS [{0}] Very Slow. Reduced to 2 c. OK No optdigits2c0.all  NO   2 5620 9.86 5620 9.86 0 64 

SPECT Fast OK No spect.all  NO   2 267 25.94 267 25.94 22 0 
SPECTF Slow OK No spectf.all  NO   2 349 27.22 349 27.22 0 44 

BALANCE Fast OK No balance-scale.all  NO   3 625 7.84 625 7.84 0 4 
CARS Fast OK No cars.all  NO .COST  4 1728 3.76 1728 3.76 5 0 

DERMATOLOGY Fast OK Yes dermatology.all dermatology-UM.all YES   6 366 5.46 358 5.59 33 1 
ECHOCARDIOGRAM Fast OK Yes echocardiogram.all echocardiogram-UM.all YES   3 132 18.18 107 16.82 1 6 

THYROID-NEW Fast OK No new-thyroid.all  YES   3 215 4.65 215 4.65 0 5 
NURSERY_4C Fast. Reduced to 4 classes. OK No nursery4c.all  NO   4 12957 2.53 12957 2.53 8 0 
PAGE-BLOCKS Slow OK No page-blocks.all  NO   5 5473 5.12 5473 5.12 0 10 

PENDIGITS Slow OK No pendigits.all  NO   10 10992 9.60 10992 9.60 0 16 
TAE Fast OK No tae.all  + .train + .test  NO  .TESTCOST 3 151 32.45 151 32.45 2 3 
IRIS Fast OK No iris.all  NO   3 150 33.33 150 33.33 0 4 

OPT-DIGITS Very Slow OK No optdigits.all  NO   10 5620 9.80 5620 9.80 0 64 
SAT Very Slow. No cross-valid! OK No sat.all  NO   6 6435 9.73 6435 9.73 0 36 

IMAGE-SEGMENT Fair OK No segmentation.all  NO   7 2310 14.29 2310 14.29 0 14 
WINE Fast OK No wine.all  NO   3 178 26.97 178 26.97 0 13 

POST-OPERATIVE Fast NO Yes post-operative.all post-operative-UM.all YES   3 90 2.22 87 1.15 7 1 
HEARTDIS-CLEVE Fast Diff No heart-disease-cleveland.all  YES  .TESTCOST 5 303 4.29 303 4.29 8 5 
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HEARTDIS-LONG Fast VDiff Yes heart-disease-longbeach.all ...-UM.all YES  .TESTCOST 5 200 5.00 137 4.38 8 5 
HEARTDIS-HUNG Fast OK Yes heart-disease-hungarian.all ...-UM.all YES  .TESTCOST 2 294 36.05 270 37.41 8 5 
HEARTDIS-SWITZ Fast NO Yes heart-disease-switzerland.all ...-UM.all YES  .TESTCOST 5 123 4.07 117 4.27 8 5 
HEARTDIS-ALL Fair OK Yes heart-disease-alltogether.all ...-UM.all YES  .TESTCOST 5 920 3.04 827 2.90 8 5 

SOYBEAN-SMALL Fast Diff No soybean-small.all  YES   4 47 21.28 47 21.28 35 0 
AUTOSDRIVEWHEELS Fast VDiff. Yes autos-drivewheels.all autos-drivewheels-UM.all NO   3 205 4.39 160 5 9 16 

ANNEALING Fast Diff No anneal.all  NO   5 898 0.89 898 0.89 32 6 
GLASS Fast VDiff No glass.all  NO   6 214 4.21 214 4.21 0 9 

CONNECT4 Very very slow. OK No connect-4.all  NO   3 67557 9.55 67557 9.55 42 0 
SOLAR FLAREC Fast NO No flarec.all  NO   3 323 2.17 323 2.17 10 0 
SOLAR FLAREM Fast NO No flarem.all  NO   4 323 0.62 323 0.62 10 0 
HAYES-ROTH Fast OK No hayes-roth.all  NO   3 160 19.38 160 19.38 4 0 
WAVEFORM Slow OK No waveform.all  NO   3 5000 32.94 5000 32.94 0 21 

CMC Fast OK No cmc.all  YES   3 1473 22.61 1473 22.61 7 2 
ECOLI4C Fast. Similar classes joined. OK No ecoli4c.all  NO   4 336 7.44 336 7.44 0 7 

PAGE-BLOCKS Slow OK No page-blocks.all  NO   5 5473 0.51 5473 0.51 0 10 
YEAST Fair. NO No yeast.all  NO   10 1484 0.34 1484 0.34 0 8 

YEAST-ERL Fair. Yeast except ERL class Diff No yeast-noERL.all  NO   9 1379 1.45 1379 1.45 0 8 
LETTER Very very slow. OK No letter.all  NO   25 20000 3.67 20000 3.67 0 16 

THYROID-ALLBP Slow Diff Yes  thyroid-allbp-UM.all YES   3 0 - 3772 0.37 22 7 
THYROID-ALLHYPER Slow NO Yes  thyroid-allhyper-UM.all YES   5 0 - 3772 0.03 22 7 
THYROID-ALLHYPER Slow, “Second” cl. removed Diff Yes  thyroid-allhyper-sec-UM.all YES   4 0 - 3771 0.27 22 7 
THYROID-ALLHYPO Slow NO Yes  thyroid-allhypo-UM.all YES   4 0 - 3772 0.05 22 7 
THYROID-ALLHYPO Fair, “Second” cl. removed OK Yes  thyroid-allhypo-sec-UM.all YES   3 0 - 3770 2.52 22 7 
THYROID-ALLREP Slow OK Yes  thyroid-allrep-UM.all YES   4 0 - 3772 0.90 22 7 

THYROID-ANN Fair OK No ann-thyroid.all  YES  .TESTCOST 3 7200 2.31 7200 2.31 15 0 
LUNG-CANCER Fast NO No lung-cancer.all  YES   3 32 28.13 32 28.13 56 0 

HRS-COLIC-OUTCOME Fair. With Outcome as class OK Yes  horse-colic-outcome-UM.all YES   3 366 14.21 20 20.00 14 8 
HRS-COLIC-SURGICAL Fair. With Surgical as class OK Yes  horse-colic-surgical-UM.all YES   2 366 5.46 20 20.00 14 8 

ARRHYTMIA2C Slow. Class Normal vs. rest OK Yes arrhythmia2c.all arrhythmia2c-UM.all YES   2 68 29.41 452 45.80 212 67 
HABERMAN-BREAST Fast OK No haberman-breast.all  YES   2 306 26.47 306 26.47 0 3 
POST-OPERATIVE-2 Fast. Class I removed OK Yes post-operative-I.all post-operative-I-UM.all YES   2     7 1 

ECOLI Fast NO No ecoli.all  NO   8 336 0.60 336 0.60 0 7 
ECOLI6C Fast. 3 less freq cl. joined VDiff No ecoli6c.all  NO   9 336 2.68 336 2.68 0 7 
NURSERY Fast NO No nursery.data  NO   5 12960 0.02 12960 0.02 8 0 

SPAM Very slow OK Yes spam.all  NO   2 4601 39.40 4601 39.40 0 57 
ADULT Very slow OK No adult.all  NO   2 48842 23.93 48842 23.93 8 6 

CYL-BANDS Fair. Two id values ignored. OK Yes cyl-bands.all cyl-bands-UM.all NO   2 365 36.99 540 42.22 17 19 
PLAYTENNIS Very Fast. Toy Problem No No playt.train + playt.test  NO   2     4 0 
INVENTED Very Fast. Toy Problem No No invented.train +.test  NO   2     5 0 

WATER Very Fast. Toy Problem No No water.train + water.test  NO   3     1 1 
DRUG Fast. From Clementine Diff No drug.train + drug.test  YES   5 1100 7.00 1100 7.00 3 3 

 
 


