
Predictive models for multidimensional data
when the resolution context changes

José Hernández-Orallo1, Nicolas Lachiche2, and Adolfo Mart́ınez-Usó1

1 DSIC, Universitat Politècnica de València
Camı́ de Vera s/n, 46022, València, Spain

{jorallo,admarus}@dsic.upv.es
2 ICube, Université de Strasbourg, CNRS

300 Bd Sebastien Brant - BP 10413, F-67412 Illkirch Cedex, France
nicolas.lachiche@unistra.fr

Abstract. Multidimensional data is systematically analysed at multiple
granularities by applying aggregate and disaggregate operators (e.g., by
the use of OLAP tools). For instance, in a supermarket we may want to
predict sales of tomatoes for next week, but we may also be interested
in predicting sales for all vegetables (higher up in the product hierarchy)
for next Friday (lower down in the time dimension). While the domain
and data are the same, the operating context is different. We explore two
approaches for multidimensional data when predictions have to be made
at different levels (or contexts) of aggregation. One approach, which we
have called same-level modelling, is based on creating a cube through
attribute aggregation at the desired level for the dimension hierarchies,
retraining the model each time the multidimensional context changes.
A second opposite approach, lowest-level modelling, creates one, more
reusable, model for the data at the lowest level and then the predic-
tions are reframed by aggregation. This important distinction between
aggregate-train-predict and train-predict-aggregate is analysed in terms of
advantages and disadvantages, and when they are expected to differ. We
perform an experimental analysis with several datamarts and introduce
new plots to better compare models under different contexts.
Keywords: multidimensional data, operating context, aggregation, OLAP
cubes, quantification.

1 Introduction

Most existing algorithms in machine learning only manipulate data at an indi-
vidual level (flat data tables), not considering the case of multiple abstract levels
for the given data set. However, in many applications, data contains structured
information that is multidimensional (or multilevel) in nature, such as retailing,
geographic, economic or scientific data. The multidimensional model is a widely
extended conceptual model originated in the database literature that can be
used to properly capture the multiresolutional character of many data sets [10].
Multidimensional databases arrange data into fact tables and dimensions. A fact
table includes instances of facts at the lowest possible level. Each row represents

2 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

a fact, such as “The sales of product ‘Tomato soup 500ml’ in store ‘123’ on
day ‘20/06/2014’ totalled 25 units”. The features (or fields) of a fact table are
either measures (indicators such as units, Euros, volumes, etc.) or references to
dimensions. A dimension is here understood as a particular variable that has
predefined (and hopefully meaningful) levels of aggregation, with a hierarchi-
cal structure. Figure 1 shows several examples of dimensions and hierarchies.
Using the hierarchies, the data can be aggregated or disaggregated at different
granularities. Each of this set of aggregation choices for all dimensions is known
as a data cube [4]. This approach provides an easy understanding and offers
flexibility for visualisation (aggregated tables and cubes). OLAP technology, for
instance, has been developed to handle large volumes of multidimensional data
in a highly efficient way, and moving through the space of cubes by the use of
roll-up, drill-down, slice&dice and pivoting operators.

day

week month

year

store

municipality

district

country

item

category brand

section

Fig. 1. Examples of dimensions and their hierarchies. Left: Time dimension, Middle:
Location dimension, Right: Product dimension.

Despite the success of multidimensional schemas and its widespread use for
data warehouses for about two decades, a full integration of machine learning
and multidimensional datasets has not taken place. Even in business intelligence
tools, which aim at integrating data warehouses, OLAP technology and data
mining tools, the usual procedure is to select a cube using an OLAP query or
operator, and derive a view from it. Next, this ‘minable view’ is transferred to
the data mining tool to apply machine learning or statistical techniques to this
flat, traditional view of the data.

When we analyse the problem more carefully, we see that the main issue for a
successful integration is that we would like to use off-the-shelf machine learning
techniques but taking full potential of the hierarchical information. Data mining
models3 are not designed to take hierarchical attributes. Consequently, we need
to do something different whenever the cube we want to predict for changes. In
other words, the predictions for tomatoes and weeks will be obtained in a dif-
ferent way than the predictions for vegetables and Fridays. These two situations
represent operating contexts. In principle, a model that has been obtained for
one context cannot be directly applied to a different context.

This leads us to two major alternatives. Either we learn one model for each
operating context and apply it for that level of aggregation, or we learn one,

3 From now on we will use the word ‘model’ to data mining models, such as a predictive
model, and not for conceptual data models any more.

Predictive models for multidimensional data 3

more versatile, model at the lowest operating context (highest resolution) and
we aggregate their predictions, as in a quantification problem [8,1,2]. In this
paper we analyse these two approaches systematically. In order to do that, we
need to find better ways of abstracting and plotting the operating context, such
that we can decide for which operating contexts one machine learning technique
behaves better than others for both approaches.

The rest of the paper is organised as follows. Section 2 formalises the notion
of multidimensional context and properly defines the two main approaches that
we will study: the same-level (retraining) approach and the low-level (reframing)
approach. Section 3 discusses how datamarts have to be understood when models
are required to predict some of the measures of the fact table, and whether the
training data has to be populated with zero-valued rows. Section 4 presents the
datamarts and techniques that will be used for the experiments. Section 5 intro-
duces the concept of reduction ratio, as an abstraction of the multidimensional
context. This facilitates the representation of results in what we call multidi-
mensional context (MDC) plots. Section 6 analyses the results of the same-level
and low-level approaches, discussing whether there are general patterns about
which method can be best for some contexts. Section 7 discusses some related
work. Section 8 closes the paper with some take-away messages and some future
work.

2 Multidimensional contexts. Same-level vs. lowest-level

We consider a multidimensional data set D (or datamart) of schema ⟨X,Y ⟩
where X = {X1, . . . , Xd} is the set of d dimensions (used as predictor attributes
or features) and Y , which is the target attribute (one measure or indicator that
can be numeric or nominal). Without loss of generality if we had more indicators
we could define another datamart with a different target attribute. We use DA

to denote the projection of dataset for attribute A. Note that datasets and
projections are multisets (i.e., they can have repeated values). Each dimension

Xi has an associated hierarchy h(Xi) of mi elements or levels {X(1)
i , . . . , X

(mi)
i }

with a strict partial order <. In this paper we will assume that hierarchies are

linear, so the partial order becomes a total order from the lowest level X
(1)
i to the

highest level X
(mi)
i . This is not a strong restriction, as a non-linear dimension

can be converted into several linear dimensions (one for each possible pathway in
the lattice), but simplifies our notation and the understanding of the procedures.

For instance, if X2 = location, as in Figure 1 (middle), we have X
(1)
2 = store,

X
(2)
2 = district, X

(3)
2 = municipality and X

(4)
2 = country with store < district <

municipality < country and their transitive closure. We will consider that the top
level mi for every hierarchy is all-i, such that for every l ∈ h(Xi), l < all-i. Non-
hierarchical attributes are just special cases, by just considering that mi = 2
(the bottom and the top all-i level). These dimensions then just become regular
attributes but with the possibility of aggregating them to the top level all.

Each level X
(j)
i of a hierarchy h(Xi) has an associated domain X (j)

i , which
can be nominal or numeric. We will assume that there are no levels with the same

4 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

name in the same or different hierarchies. In this way, if the name of a level is
name then we can just refer to the level by X(name) and the associated domain
by X (name). For instance, the domain of the level country for dimension location,

i.e., X (4)
2 , or X (country), might be the set with values {UK, Spain, France}. For

every pair of consecutive levels X
(j)
i and X

(j+1)
i in a hierarchy we define a

regrouping function φj
i between the values of X

(j)
i to the values of X

(j+1)
i . For

instance, φ3
2(Valencia) = Spain. We denote by φj:k

i , with j ≤ k the successive

application of φ from j to k, i.e., φj:k
i (v) = φk

i (...φ
j+1
i (φj

i (v))...). Given a value v

at a level X
(k)
i of the dimension i, we denote by ⊥(v) the set of all the values at

the lowest level of that hierarchy that belongs to, i.e., {w ∈ X (1)
i | φ1:k

i (w) = v}.
For instance, ⊥(Valencia) would be all the stores of all the districts of Valencia.

Definition 1. A multidimensional operating context or resolution is a d-tuple of
levels ⟨l1, . . . , ld⟩, with each li ∈ h(Xi). A multidimensional context determines
the level for every dimension of the dataset.

Using a multidimensional context, we define a selection of the data set D:

Definition 2. A selection of D at a context ⟨l1, . . . , ld⟩ with values ⟨v1, . . . , vd⟩
is defined as follows:

σ[l1=v1,...,ld=vd](D) , {⟨x1, . . . , xd, y⟩ |x1 ∈ ⊥(v1), . . . , xd ∈ ⊥(vd)}

For instance, if we have three dimensions X1 = product, X2 = location and
X3 = time, and Y is representing units, we could select all the facts for the
context ⟨item,municipality, year⟩ with values tomato, Valencia and 2013 respec-
tively with σ

[item=Tomato,municipality=Valencia,year=2013](D).

Finally, we can define an aggregation operator as follows:

Definition 3. Given an aggregation function, agg, as a function from sets to
real numbers, the aggregation of a datamart D for a context ⟨l1, . . . , ld⟩ is:

γagg
[l1,...,ld]

(D) , {⟨x1, . . . , xd, z⟩ | x1 ∈ X (l1), . . . , xd ∈ X (ld),

z = agg({y| ⟨v1, . . . , vd, y⟩ ∈ σ[l1=x1,...,ld=xd](D)})}

The above aggregation is extended for unlabelled datasets with no y attribute.

For instance, γsum
[item,municipality,year](D) returns all the tuples for each pos-

sible combinations of values at the level item in the dimension product, at the
level municipality in the dimension location and at the level year in the dimen-
sion time, where the output variable is constructed by summing all the y of the
corresponding rows according to the hierarchies.

Given the above notation, now we consider a predictive problem from X to
Y . For instance, how many tomatoes we expect to sell in Valencia next week?
Assuming we have a training dataset, how would we train our model? As a first
idea, it seems reasonable to aggregate the training data using the γ operator

Predictive models for multidimensional data 5

above for the context c = ⟨item,municipality,week⟩, producing a model M that
will be applied to the deployment data with the same context. However, if some
time later we are interested in predicting sales for all vegetables for next Fri-
day, what would we do? We could aggregate the training data for the context
c′ = ⟨category,municipality, day⟩, learn a new model M ′ and predict for the de-
ployment data. This is what we see in Figure 2 (top). We refer to this approach
as the Same-Level (SL) approach or the retraining approach.

<X,Y>
ẑc Mc

agg z
train deploy

c'
agg ^ z'Mc'

z'
train deploy

M c ẑ<X,Y>
ŷ agg

train deploy

c' ^ z'
agg

Fig. 2. Retraining (Same-Level approach) vs. reframing (Lowest-Level approach) for
two different multidimensional contexts c and c′. Retraining (top) needs to convert the
training data for the two contexts c and c′ and then aggregating the output into z or
z′ respectively. Two models Mc and Mc′ are learnt (one for each context) at the same
level the predictions must be done. Reframing (bottom) shows how the training data is
used just once at the lowest level to create a single model M that is applied to different
operating contexts c or c′ by aggregating the outputs appropriately.

But an alternative approach goes as follows. Consider that we train a predic-
tive model M for the lowest level in D. Once a new multidimensional appears,
we apply the model to the deployment data and aggregate the predictions. With
this approach, one model is used for every possible context. This is illustrated in
Figure 2 (bottom). We refer to this approach as the Lowest-Level (LL) approach
or the reframing approach.

So the difference is between aggregate-train-predict or train-predict-aggregate.
What method is best? Before analysing this in terms of prediction error, we dis-
cuss here the implications of each method in real practice. A datamart with d
dimensions and an average hierarchy depth of n, has d × n operating contexts.
This means that the retraining approach will require many models to be created
and validated, which may be infeasible in many contexts. For instance, in Section
4, where the datamarts for our experimental analysis are described, the number
of operating contexts are 48 (GENOMICS), 84 (AROMA) and 96 (CARS). Note

6 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

that we also consider the case where the dimension attribute has been rolled up
completely (the level all-i)).

3 Learning tasks, measure properties and mean models

While multidimensional data occurs in many different scenarios, we will focus
on data that originates from datamarts or has been converted into a multidi-
mensional schema. This focus is motivated by our aim of better integrating data
warehouses and OLAP tools with machine learning.

The first thing we need to consider is the kind of machine learning tasks
that are common with this data. The way the information is arranged in a
multidimensional schema, with a fact table containing measures suggests that
many machine learning tasks, especially predictive ones, are usually focussed on
predicting the measures. For instance, if facts are sales, consumptions, failures,
usages, etc., it is common to become interested in predicting some of the mea-
sures in these tables (e.g., units, dollars, hours, etc.) from past data. As measures
are usually numerical, many problems will turn out to be regression problems.
Nonetheless, some measures can be nominal, such as whether a purchase has
been satisfactory or not. In that case, however, the measure becomes a percent-
age, i.e., a number, when we aggregate, so binary nominal measures can also be
taken as numbers.

The time dimension is found in most datamarts. In a predictive scenario,
the time dimension becomes slightly special: predictions are about future facts,
so training is usually performed with available data up to a given time and the
model is then used to extrapolate from that point on (next week, next month,
next year, depending on the resolution).

Finally, there is an important issue that has to be discussed before building
predicted models using multidimensional data. Some multidimensional schemas
only represent positive data. For instance, in a supermarket datamart, we may
have that 3 units of product X (e.g., bottles of shampoo) were sold in supermar-
ket Y on day Z. This is going to appear as a row in our fact table. However, if
no units are sold on day Z ′, is this row going to appear with a zero? Depending
on the source of the data (OLAP tool, group by SQL query, or other), these
rows may be present or not. The degree of sparseness may also be an important
reason why they are not present, as only including the positive cases may imply
a significant space economy. In any case, it would be a great mistake not to
consider them, as only using positive facts would imply a very strong bias. As a
result, we will need to ensure that these zeros are present. If they are not, we will
need to create them, even if the dataset grows very significantly. Nonetheless, it
is not always the case that a row that is not present has to be associated with
a zero. For instance, if facts are opinion surveys over a population, the rows in
the fact table will represent those that have taken the survey and the measures
will be their answers. For the rest of individuals in the population, the measures
are unknown, but not zero, as they never took the survey.

Predictive models for multidimensional data 7

Another important issue about multidimensional schemas is whether the
measures we want to predict are additive, semi-additive or non-additive. A mea-
sure is additive when, for any dimension and any set of values S at level j that
we want to aggregate up to level n+k, the summation of these values using any
partition of S is equivalent, i.e., gives consistent results. For instance, units sold
in a supermarket aggregate well for all dimensions, i.e., the result is independent
of the way it has been aggregated. However, percentages do not aggregate well,
as the denominator is not known when performing the aggregation. Therefore
percentages are non-additive. Finally, the term semi-additive measure is used for
those measures that aggregate well for some dimensions but not for others. For
instance, measures that accumulate or depend on the state, such as stock levels
are usually semi-additive.

The aggregated function that is used for aggregating datamarts, as in Def-
inition 3, does not have to always be sum(S) ,

∑
s∈S s. For instance, it could

be an average, avg(S) , sum(S)
|S| . Some functions just work for some measures.

For instance, consumption (e.g., in kWh) can be aggregated by averaging it.
However, we have to be very careful about how this aggregation is performed.
For instance, if we have three households with consumption 3, 5, 10 for day D,
and the first two are in region A and the last one is in region B, we have that
the average consumption is 4 for region A and 10 for region B. If we further
aggregate, we get an overall average consumption of 7, which is wrong, as the
true average consumption is (3+5+10)/3 = 6. This means that avg is not com-
posable. This is important in terms of the approaches we explore in this paper
(see Figure 2), as both of them (retraining at the same level and reframing from
the lowest level) do not require the associativity property.

In regression tasks, we usually look at a baseline method that consists in
averaging the values for the training data and apply these values systematically
during deployment. This is known as the mean or constant model. Two baseline
approaches are possible with the Lowest-Level and the Same-Level philosophies.

Definition 4. Given a training data T with measure Y and a deployment data
D, the MEAN model for measure Y at the lowest level, denoted by LL.MEAN,
and deployed at a context ⟨l1, . . . , ld⟩ is defined as follows. We first calculate Y ,
avg(TY), the average of the measure Y for the whole training dataset T . Now,
for the deployment data D we add a new attribute Ŷ , which is set to Y for all the
rows in D, giving a new dataset D̂. Finally, given an aggregation function agg,
we now calculate the predictions for a context ⟨l1, . . . , ld⟩ as D̂∆ , γagg

[l1,...,ld]
(D̂),

which produces pairs ⟨X, Ŷ ⟩ at that context.

Definition 5. Given a training data T with measure Y and a deployment data
D, the MEAN model for measure Y at the same level in context ⟨l1, . . . , ld⟩,
denoted by SL.MEAN, is defined as follows. We first aggregate T for that context,
i.e., T∆ , γagg

[l1,...,ld]
(T). Then we calculate Y ∆ , avg(T∆

Y), the average of the

measure Y for this context. For the deployment data D we also aggregate the
original data as D∆ , γagg

[l1,...,ld]
(D). We finally add an attribute Ŷ to D∆ by

8 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

setting it equal to Y ∆ for every row in D∆, so producing D̂∆. This produces
pairs ⟨X, Ŷ ⟩ at that context.

How different are they? It is easy to find examples where they differ. For
instance, consider a very small training dataset T with one dimension (prod-
uct) and just three examples: 3 tomatoes, 5 pumpkins and 10 cakes. If the
multidimensional context is category, we have that the LL.MEAN will predict
(3 + 5 + 10)/3 = 6 for every row at the bottom level of the deployment dataset
D. If D also has two products in the category vegetables and one product in
the category bakery, then the prediction will be 12 for the first category and 6
for the second category. On the other hand, if we use SL.MEAN we first aggregate
and get 3+5 = 8 for category vegetables and 10 for the category bakery. The
average for this context in T is 9. This means that for D the prediction will be
9 for the first category and 9 for the second category. Note that the total is the
same for both approaches, but the predictions are different.

Both approaches only match in very specific situations. For instance, if the
context is balanced for each hierarchy it aggregates (i.e., the same number of rows
comes from each aggregation) for both the training and deployment datasets,
then the aggregation on the deployment dataset of the average at the lowest level
for the training dataset and the average of the aggregation at the same level for
the training set will match. This happens, for instance, when both training and
deployment datasets cover all combinations (either originally or because it has
been filled with zeros) and when the context only includes top levels or bottom
levels in the hierarchy. In general, however, both approaches are different.

Note that when differ, SL.MEAN seems to be more consistent. It is still a
constant model for the multidimensional context we are interested in.

4 Experimental setting

The MEAN approach is useful as a baseline, but we of course are interested in the
use of machine learning methods to get good predictions. Including the MEAN
approach as given by definitions 4 and 5, we have considered four techniques in
total. The other three are LRW (linear regression using RWeka in R [11,18]),M5P
(regression tree using RWeka) and KNN (package kknn in R). For the techniques
LRW, M5P and KNN, we can apply reframing or retraining in the same way we
did for the MEAN approach in definitions 4 and 5.

Definition 6. Given a regression technique TECH, a training data T with mea-
sure Y and a deployment data D, a model learnt for measure Y at the lowest
level, denoted by LL.TECH, and deployed at a context ⟨l1, . . . , ld⟩ is defined as
follows. We first train a model M : X → Y for the whole training dataset T .
Now, for each row at the lowest level in the deployment data D we apply M . We
add a new attribute Ŷ , and set it to the result of the model for each row, giving
a new dataset D̂. Finally, given an aggregation function agg, we now calculate
the predictions for a context ⟨l1, . . . , ld⟩ as D̂∆ , γagg

[l1,...,ld]
(D̂), which produces

pairs ⟨X, Ŷ ⟩ at that context.

Predictive models for multidimensional data 9

Definition 7. Given a regression technique TECH, a training data T with mea-
sure Y and a deployment data D, a model learnt for measure Y at the same
level in context ⟨l1, . . . , ld⟩, denoted by SL.TECH, is defined as follows. We first
aggregate T for that context, i.e., T∆ , γagg

[l1,...,ld]
(T). Then we train a model

M∆ : X∆ → Y ∆. For the deployment data D we also aggregate the original
data as D∆ , γagg

[l1,...,ld]
(D). We finally add an attribute Ŷ to D∆ by setting it

equal to the predictions of the model M∆ for each of these aggregated rows, so
producing D̂∆. This yields pairs ⟨X, Ŷ ⟩ at that context.

Once we have set the four techniques we will use and the two variants (re-
training and reframing), we present the datamarts for our experimental analysis:

– GENOMICS: This database was meant to be a unified genomic varia-
tion repository to allow biologists to perform efficient recovery tasks about
genomic variations (mutations) and their phenotype [17]. Originally, this hu-
man genome dataset contains genomic data (HGDB) from several public and
private research databases, including information about genes, chromosomes,
mutations, diseases, etc. structured in 20 (numerical and nominal) attributes.
We converted it into a multidimensional datamart, where each fact showed
the number of variations according to five different dimensions (hierarchies
in parenthesis): SPEC (Eff < All), GENOTYPE (ID < Chrom < All), PHENO-
TYPE (Name < ICD10 < ICD10.Cat < All), DBANK (Dbnk < All) and DATE
(Year). Note that as we use the DATE dimension to split the data we only
consider one level here. The number of possible multidimensional contexts
is then 2 × 3 × 4 × 2 × 1 = 48. Data goes from years 1970 to 2012 and the
output variable is the number of variations.

– AROMA: This is an artificial dataset constructed from IBM sales informa-
tion. It contains sales data for coffee and tea products sold in stores across
the United States [13]. The data is almost directly converted into a multi-
dimensional datamart where each fact describes the sales of products using
two measures (units and dollars, although we will only use dollars as the
output variable) according to five dimensions (hierarchies in parenthesis):
PROMO (KeyPromo < PromoType < All), CLASS (KeyClass < All), PROD-
UCT (KeyProduct < All), STORE (KeyStore < KeyMKT < MKT-HQ-City <
MKT-HQ-State < MKT-District < MKT-Region < All) and PERIOD (Year).
Note that as we use the PERIOD dimension to split the data we only con-
sider one level here. Data goes from years 2004 to 2006 and the number of
possible multidimensional contexts is 3× 2× 2× 7× 1 = 84.

– CARS: This is a dataset for car fuel consumption and emissions which is cre-
ated as a reduced representation of [7] (some attributes are removed) in order
to construct a datamart. It describes fuel consumption in cars from years
2000 to 2013, being published by the Vehicle Certification Agency (VCA),
an Executive Agency of the United Kingdom Department for Transport.
The target variable is car fuel emissions (CO2) and we have six dimensions
(hierarchies in parenthesis): CAR (Man.Model.Description < Man.Model <
Manufacturer < All), ENGINE (EngineCapacity < All), TRANS (Transmission <

10 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

TransType < All), EURO (EuroSTD < All), FUEL (FuelType < All) and TIME
(Year). Note that as we use the TIME dimension to split the data we only
consider one level here. The number of possible multidimensional contexts
is 4× 2× 3× 2× 2× 1 = 96. No rows with zeros were added here, as miss-
ing cases are just absence of information. The target variable is a ratio, so
the aggregation function that makes sense for this dataset is avg, which is
neither additive nor associative.

We split these datasets into training and test on the basis of a split-year, which
is 2006 for all the datasets, being the split-year included in the test set.

Finally, we clip the predictions of all methods to 0 if they are negative, as
in the three datamarts the measures cannot be negative. This is important for
methods that could potentially predict negative values such as M5P or LRW.

5 Multidimensional context plots

We now start by analysing the results. The first thing to decide is the error
measure. As the three datamarts have led to regression problems, we may use
the Mean Squared Error (MSE). However, for the two datamarts that use sum
as aggregating function, the magnitude of the error will be much higher for
highly aggregated contexts, and the values will be difficult to compare. As an
alternative, we could use the Squared Error (SE), i.e., without averaging by the
number of examples. This measure is interesting in our scenario, as the higher
the aggregation the higher the magnitudes but the number of rows decreases, so
the magnitudes will be comparable. This is not completely true, as squared error
usually penalises errors of high magnitudes (by squaring them), so the contexts
on the upper levels of the hierarchy will still have higher values for SE.

For instance, we can plot SE (as shown on the y-axis) and the contexts
sequentially on the x-axis, as in Figure 3.

Yet another option is to use the Absolute Error (AE). A good way of getting
rid of all these dilemmas is to divide SE (or MSE) by the SE (or MSE) of
the MEAN model. Interestingly, in a classical regression setting, the MSE of the
MEAN model equals its error variance. So, actually, what we are doing is to
show the MSE by some kind of error variance. We use the SL.MEAN model, as
it ensures that it is constant for the deployment multidimensional context.

Definition 8. The normalised squared error (NSE) of a method MET is defined

as MSE(MET)

MSE(SL.MEAN)
.

If we use NSE everything is normalised so we just see whether they are
better or not than the mean model. In fact, in regression quantification (which
is actually what we are doing here), a similar measure, known as V SE (page 18
of [2]) is used, which is the SE divided by the error variance.

However, the main problem of Figure 3 is that the order of the dimensions
and levels is not very meaningful, and plots look very bumpy. As an alternative
we summarise the degree of aggregation of a context by the following indicator:

Predictive models for multidimensional data 11

● ●

0 10 20 30 40

5
10

15
20

25

Cube

S
E

● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

● ● ●

● ●
●

●

●

●

●

●

●

● ● ●

● ●

●
●

●

●

●

●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

SL.MEAN
LL.MEAN
SL.M5P
SL.LRW
SL.KNN
LL.M5P
LL.LRW
LL.KNN

Fig. 3. SE values for the GENOMICS dataset. Comparison of a retraining approach
(SL) with a reframing approach (LL) for several techniques: MEAN, M5P, LRW and
KNN. Note here that the x-axis of the graph shows the 48 cubes sequentially as they
are generated by iterating over the dimensions.

Definition 9. Given a deployment dataset D and a multidimensional context
c = ⟨l1, . . . , ld⟩, we define the Reduction Coefficient (RC) as follows:

RC , 1− log(|D∆|)
log(|D|)

where D∆ = γagg
[l1,...,ld]

(D). (1)

RC goes from 0 (no aggregation, i.e., the bottom level) to 1 (all rows are
collapsed into one row). Note that the two different contexts may have similar
(or even equal) RC . The RC is a very useful way of locating each point in
the plot according to how much aggregated the context is. This allows for more
regular plots and a common scale [0,1] for all datasets. Combining the NSE with
RC , we have the multidimensional context plots:

Definition 10. A multidimensional context (MDC) plot represents RC on the
x-axis for all the possible multidimensional contexts in the datamart with NSE
in the y-axis.

Figure 4 shows the MDC plots for the GENOMICS (top), AROMA (middle)
and CARS (bottom) datamarts. These new plots show how we have different
variabilities in results as we move to a higher aggregations (RC closer to 1). For
instance, higher variability can be shown for GENOMICS whereas this variability
decreases for AROMA, being fairly constant for CARS. It is important to stress
at this point that curves or lines in the graphs do not represent any possible
or meaningful interpolation between the points. However, we keep these lines
in the graphs in order to provide to the reader a much easier way of following
the evolution of each method than just with points. In addition, as a matter of
better distinguishing between SL and LL strategies, those methods applied on
a SL basis have been plotted using “heat” colours whereas those ones on a LL
basis have been plotted using “cold” colours.

For GENOMICS, some methods behave much better than the mean (e.g.,
the KNN methods or the LL.LRW), but there are also some methods that behave

12 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

much worse. For AROMA, we observe a different behaviour, as there is higher
variability in the middle, for values of RC around 0.5. We see that KNN only
behaves well for high aggregations. The CARS datamart does not exhibit the
same behaviour since it is very different from the other two. We do not have the
sparseness, and this allows the models to make better predictions. In fact, as the
Lowest-Level context is not full of zeros, the Lowest-Level model works well for
many techniques even for high values of RC . We can see that LL.KNN is a very
good technique overall for this dataset.

The sparseness of both GENOMICS and AROMA is probably responsible
of the poor results of some methods (worse than the MEAN method). As most
regression techniques are designed to minimise the squared error, when there are
many zeros, the models will tend to predict values very close to 0. For the Lowest-
Level approaches, any bias in these predictions will accumulate further up and
will lead to high error. For the Same-Level approaches, things are different as
the models are learnt from aggregated data, and many rows will be aggregated
into single rows with measures that are no longer zero.

Finally, even if in the previous section we discussed that LL.MEAN and
SL.MEAN would give different results in general, we see that both plots are
almost identical for most contexts. Nevertheless, in AROMA, there are contexts
(from 0.3 to 0.9) where LL.MEAN is much worse (almost three times worse) than
the SL.MEAN.

6 Discussion

The MDC plots are useful to see the operating contexts where some techniques
are better than others. The usefulness of these plots is then further justified as it
is clear that no technique and no approach is consistently better for all operating
contexts. As usual, this is dataset-dependent, and the metrics and plots we have
introduced in the previous section can be very useful to assess models and to
perform model selection. Nonetheless, it may be interesting at this point to make
a summary in terms of retraining vs. reframing. One option could be to define
an envelop measure (graphical representation) for MDC plots, assuming that
the distribution of contexts is uniform w.r.t. RC . While this may be useful as a
single metric, we take a different approach below.

Table 1 shows the pairwise comparison results between LL and SL for the
three datasets. Again, for the GENOMICS and AROMA datasets we see that
the SL approach is better. Only LL for LRW and KNN, seem to be at least
comparable to their SL counterparts. A very different picture happens for CARS.

Another possible reason for the behavioural differences of each methodology
is the learnability of each dataset. The CARS dataset is a machine learning
benchmark; as such one could expect that the output depends on the inputs
variables and therefore a model can be learnt. We do not have such guarantee
for the AROMA dataset or for the GENOMICS dataset.

Predictive models for multidimensional data 13

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

RC

N
S

E

● ● ●● ●●● ●● ●●● ●● ●●

●

●● ●●

●
●

●●

●
●

●

●

●●
● ●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
● ● ●● ●

●●
●● ●

●

● ●
● ●●

●
●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

SL.MEAN
LL.MEAN
SL.M5P
SL.LRW
SL.KNN
LL.M5P
LL.LRW
LL.KNN

●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

RC

N
S

E

● ●●● ● ● ● ●●● ●●● ●●●
● ●●●● ●

●
●

●
●

●
●

●
●●

●●●
● ●●

●

●

●

●
●

●● ●●●●

●
● ●

● ●

●
●

●●
●
●
● ●

●
●

●

● ●
●
●

●●
●● ● ●

● ● ●

●
●

●● ● ●

●● ●●● ● ● ● ●●● ●●● ●●●

● ●●●

● ●

●

●

●

●
●
●

●●●

●●●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●●●

●

●
●
●
●

●●

●
●

●

●●

●

●

●

●●

●

●

● ●
●●
● ●

●

●

● ●

●

●

SL.MEAN
LL.MEAN
SL.M5P
SL.LRW
SL.KNN
LL.M5P
LL.LRW
LL.KNN

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

RC

N
S

E

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●
●

●
●
●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
● ●

●●

●

●
●●

●
●

●

●
●●

●

●
●

●

● ●

●

●

● ●

●●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

SL.MEAN
LL.MEAN
SL.M5P
SL.LRW
SL.KNN
LL.M5P
LL.LRW
LL.KNN

Fig. 4. MDC plots for GENOMICS (top) AROMA (middle) and CARS (bottom)
datasets. Comparison of a retraining approach (SL) with a reframing approach (LL)
for several techniques: MEAN, M5P, LRW and KNN. The y-axis shows NSE . This axis
has been re-scaled for CARS in order to yield a more detailed view of all methodologies,
leaving SL.KNN out of focus. Note that only the AROMA dataset reaches RC = 1 (all
rows collapsed into one) since in GENOMICS and CARS the time dimension is not
completely collapsed (there are several years in the test set). This does not happen in
AROMA because it only has one year in the test set.

14 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

GENOMICS AROMA CARS
LL SL LL SL LL SL

MEAN 0.97 1.00 1.31 1.00 0.93 1.00
M5P 1.14 1.03 5.81 3.44 0.71 0.57
LRW 0.91 0.94 1.56 1.24 0.93 0.60
KNN 0.90 0.89 1.36 1.74 0.29 1.31

Overall 0.98 0.97 2.51 1.86 0.71 0.87

N.Cubes 79 56 77 243 224 150

Table 1. Pairwise comparison between LL and SL for the GENOMICS, AROMA and
CARS datasets. The first four rows of the table show the average of the NSE measure
(per context) for each strategy. The ‘Overall” row shows the overall average. Finally, the
‘N.Cubes’ row shows how many cubes of the corresponding strategy win, aggregating
all methods. This last row does not consider those cubes where LL and SL draw.

7 Related Work

As we mentioned in the introduction, the efforts for a full integration of data
mining and OLAP tools have not been as common as originally expected. There
are, though, some significant contributions for descriptive models. For instance,
multidimensional association rules were firstly introduced in [14] and, since then,
some related approaches have appeared in areas such as hierarchical association
rules, subgroup discovery, granular computing [15] and others [5].

‘Prediction cubes’ [6,5], despite the term ‘predictive’ in their name, actually
perform subgroup discovery or exploratory mining [19], where we want to have
a metric (e.g., predictive accuracy) for a model on a given subset of the data
(a cell in a cube) and see whether some cells have different metrics than others
(hence being special). It is important to note that “Prediction Cubes” are not
meant to aggregate outputs. They are not actually used to make predictions at
several resolution levels of values that are unknown. In fact, they always work
with a labelled test set to which they compare to get the metrics.

When looking at predictive modelling, the usual approach in the literature
has been the same level approach (i.e., generating a view for the resolutions
at hand). There is no versatile model that can work for the whole hierarchy
in every dimension. A significant exception is the area of multilevel modelling
(MLM) [3,9], also known as hierarchical (linear) modelling (HLM) [20], among
other names. This is an extension of linear, and non-linear, models such that
the variables are measured at different levels of a global, usually linear, hierar-
chy. The first and key difference between a multilevel modelling problem and a
multidimensional problem is hence that in the latter all the measurements take
place at the lowest level (e.g., they come from facts in a multidimensional data
warehouse). However, in multilevel modelling, measurements may take place at
any level. As a result, in multilevel modelling, putting all the variables at the
lowest level does not make sense, as it means that some of the input variables
would have to be disaggregated (or repeated). The second difference is that in
multilevel modelling hierarchies apply to all attributes. In other words, there is
an orthogonal hierarchy, which can be applied to each attribute, depending on
the level at which the value has been measured. So it is not actually applicable

Predictive models for multidimensional data 15

to a multidimensional database, where each attribute can be aggregated inde-
pendently. The third difference is that in multilevel modelling the predictions are
still made generally at the lowest level. In a multidimensional setting we want
predictions at whatever level of aggregation. In addition, multilevel modelling
has usually been addressed by linear (and occasionally non-linear) regression
models with several assumptions about normality, homoscedasticity, indepen-
dence, etc. Because of the differences, there are only a few attempts that have
been done to apply multilevel models to multidimensional data. For instance, in
[16], multilevel models are applied to a datamart. However, we still see a sep-
arate concept hierarchy that is applied to all dimensions, instead of having a
particular hierarchy for each dimension, as usual in datamarts and OLAP tools,
so it is not actually a multidimensional database.

As a result, the problem of having several hierarchies, one for each dimension
and seeing the problem (including predictions) at any possible resolution, is new.
Also there is no general approach about how to apply any data mining technique
to this kind of problem (and not only linear regression models or non-linear
variants). So, the multidimensional approach presented in this paper is more
general in at least these two aspects.

8 Conclusions and future work

Multidimensional data is a rich and complex scenario where the same task can
change significantly depending on the level of aggregation over some of the di-
mensions. This is the ‘multidimensional context’. From this notion of context,
we have seen that there are two options whenever the context changes: to adapt
or reframe an existing model to a new context (LL) or to retrain a new model
for the context (SL). This dilemma between reframing and retraining has been
systematically explored in this paper. We have also identified different types of
datamarts, in terms of sparseness and aggregating function, and we have in-
troduced new plots and metrics to analyse the behaviour of several techniques
when the multidimensional context changes. Our approach is very general, and
applicable to any set of off-the-shelf machine learning techniques.

From our experimental results, we see that the best choice is dependent on the
dataset and the learning technique that is used. Nonetheless, there is still a simple
take-away message. If the datamart is sparse, SL could work better. Otherwise
LL is a much better option. The use of MDC plots in any case is recommended,
in order to spot the contexts where a pair of approach and technique is better
than the rest. Finally, resources are an important criterion for how to proceed, as
retraining a model again and again may become infeasible for some applications,
and reframing a single, versatile model may be a much better option in cost-
effective terms.

A more sophisticated approach to select between SL and LL would be to
perform a cost-benefit analysis of reframing against retraining, if the costs of
retraining were available. Also, the assumption of a uniform distribution could
be changed by other distributions. For instance, if the dataset is too big, learning

16 José Hernández-Orallo, Nicolas Lachiche, and Adolfo Mart́ınez-Usó

at the lowest-level may have a high computational cost or even be infeasible. Also,
when dimensions are not linear, we may consider that all the possible pathways
do not have the same probability.

This work suggests many avenues for future work. One area for improvement
is the choice of other kinds of plots and metrics. For instance, the squared error
on the y-axis could be replaced by relative measures, so that comparison between
datasets is easier. This is evident in Figure 4, where the y-axis could have the
same scale instead of the different scales we see now. The use of the logarithmic
transformation for the reduction coefficient is just an arbitrary choice to set it
between 0 and 1 but other possible (and perhaps better justified) options could
be considered. The second area we are undertaking is a modification of the LL
approach where the aggregation function is substituted by a quantification pro-
cedure [8,1]. As quantification is able to correct some aggregation problems, we
hope some quantification techniques (especially those for regression using crisp
regression models [2] or soft regression models [12]) to be beneficial for the LL
approach. A third idea to consider is disaggregation (using frequency counts),
as it may be more robust for some contexts to work at an upper level and then
disaggregate. Of course, it does not make sense to learn a single model at the
Highest-Level and disaggregate it for any other context. Instead, we could break
the dichotomy between LL (or Highest-Level) and SL generating models as a
subset of the most representative levels (covering the context space) and using
these models to aggregate and disaggregate accordingly. The set of predictions
could be used as an ensemble, hopefully leading to better results. Finally, even
if the approaches analysed in this paper are general to work for any off-the-shelf
machine learning techniques, there may be room for improvement if specific tech-
niques are developed for the multidimensional setting: multidimensional KNN,
multidimensional decision trees and multidimensional Naive Bayes.

Acknowledgements

This work was supported by the Spanish MINECO under grants TIN 2010-
21062-C02-02 and TIN 2013-45732-C4-1-P, and the REFRAME project, granted
by the European Coordinated Research on Long-term Challenges in Information
and Communication Sciences Technologies ERA-Net (CHIST-ERA), and funded
by MINECO in Spain (PCIN-2013-037). We thank the reviewers for some com-
ments about a cost-benefit analysis, the use of other possibilities for normalising
the metrics, the issue of non-linear hierarchies, etc.

References

1. Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.: Quantification
via probability estimators. In: IEEE ICDM. pp. 737–742 (2010) 3, 16

2. Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Aggregative
quantification for regression. DMKD 28(2), 475–518 (2014) 3, 10, 16

Predictive models for multidimensional data 17

3. Bickel, R.: Multilevel analysis for applied research: It’s just regression! Guilford
Press (2012) 14

4. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM Sigmod record 26(1), 65–74 (1997) 2

5. Chen, B.C.: Cube-space data mining. ProQuest (2008) 14
6. Chen, B.C., Chen, L., Lin, Y., Ramakrishnan, R.: Prediction cubes. In: Proc. of

the 31st Intl. Conf. on Very large data bases. pp. 982–993 (2005) 14
7. Datahub: Car fuel consumptions and emissions 2000-2013 (2013), http://

datahub.io/dataset/car-fuel-consumptions-and-emissions 9
8. Forman, G.: Quantifying counts and costs via classification. Data Min. Knowl.

Discov. 17(2), 164–206 (2008) 3, 16
9. Goldstein, H.: Multilevel statistical models, vol. 922. John Wiley & Sons (2011) 14

10. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. Intl. J. of Coop. Information Systems 7, 215–247 (1998) 1

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explor. 11(1), 10–18 (2009) 8

12. Hernández-Orallo, J.: Probabilistic reframing for cost-sensitive regression. ACM
Transactions on Knowledge Discovery from Data, 8(3), to appear (2014) 16

13. IBM Corporation: Introduction to Aroma and SQL (2006), http://www.ibm.com/
developerworks/data/tutorials/dm0607cao/dm0607cao.html 9

14. Kamber, M., Jenny, J.H., Chiang, Y., Han, J., Chiang, J.Y.: Metarule-guided min-
ing of multi-dimensional association rules using data cubes. In: KDD. pp. 207–210
(1997) 14

15. Lin, T., Yao, Y., Zadeh, L.: Data Mining, Rough Sets and Granular Computing.
Studies in Fuzziness and Soft Computing, Physica-Verlag HD (2002) 14

16. Páircéir, R., McClean, S., Scotney, B.: Discovery of multi-level rules and exceptions
from a distributed database. In: Proc. of the 6th ACM SIGKDD Intl. Conf. on
Knowledge discovery and data mining. pp. 523–532. ACM (2000) 15

17. Pastor, O., Casamayor, J., Celma, M., Mota, L., Pastor, M., Levin, A.: Conceptual
modeling of human genome: Integration challenges. LNCS, vol. 7260, pp. 231–250
(2012) 9

18. R Team, et al.: R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2012) 8

19. Ramakrishnan, R., Chen, B.C.: Exploratory mining in cube space. Data Mining
and Knowledge Discovery 15(1), 29–54 (2007) 14

20. Raudenbush, S.W., Bryk, A.S.: Hierarchical linear models: Applications and data
analysis methods, vol. 1. Sage (2002) 14

http://datahub.io/dataset/car-fuel-consumptions-and-emissions
http://datahub.io/dataset/car-fuel-consumptions-and-emissions
http://www.ibm.com/developerworks/data/tutorials/dm0607cao/dm0607cao.html
http://www.ibm.com/developerworks/data/tutorials/dm0607cao/dm0607cao.html

	Predictive models for multidimensional data when the resolution context changes
	Introduction
	Multidimensional contexts. Same-level vs. lowest-level
	Learning tasks, measure properties and mean models
	Experimental setting
	Multidimensional context plots
	Discussion
	Related Work
	Conclusions and future work

