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ABSTRACT

Performance metrics in classification are fundamental to assess the quality of
learning methods and learned models. However, many different measures have
been defined and choices made by one metric are different from choices made
by other metrics. In this work we analyse experimentally the behaviour of 16
different performance metrics in different scenarios, identifying different clusters

and relationships between measures.

1 INTRODUCTION

The correct evaluation of learned models is one of the most important issues in machine
learning. One perspective of this evaluation can be based on statistical significance and
confidence intervals, when we want to claim that one model is better than another or that
one method is better than another. A different perspective, however, relies on which metric
is used to evaluate a learned model. It is certainly not the same to evaluate a regression
model with absolute error that with squared error.

In this work we concentrate on metrics for evaluating classifiers, such as accuracy, F-
measure, rank rate, Area Under the ROC Curve (AUC), squared error, log loss/entropy, etc.
Some of these metrics have different applications and measure quite different things. More
specifically, we will use 16 different metrics, which we classify in three families as follows:

e Metrics based on a threshold and a gualitative understanding of error: accuracy, macro-
averaged accuracy (arithmetic, geometric and mixed), mean F-measure (F-score) and
Kappa statistic. These measures are used when we want a model to minimise the
number of errors and, hence, these metrics are usual in many direct applications of
classifiers. Inside this family, some of these measures are more appropriate for balanced
or imbalanced datasets, or for information retrieval tasks.

e Metrics based on a probabilistic understanding of error, i.e. measuring the deviation
from the true probability: mean absolute error, mean squared error (Brier’s score)
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and log loss (cross-entropy). These measures are especially useful when we want an
assessment on the reliability of the classifiers, not only measuring when they fail but
whether they have selected the wrong class with a high or low probability. This
is crucial in committee models, machine ensembles, to properly perform a weighted
fusion of the models.

e Metrics based on how well the model ranks the examples: AUC (Flach et al., 2003),
which for two classes is equivalent to the Mann-Whitney-Wilcoxon statistic (we will
use five different extensions for multiclass problems, following the extension introduced
by Hand and Till (Hand and Till, 2001)) and probability (rank) rate (two variants).
These are important for many applications, such as mailing campaign design, CRM,
fraud detection, spam filtering, etc., where classifiers are used to select the best n
instances of a set of data.

In this paper we analyse how these 16 metrics correlate to each other, in order to analyse in
which extent and in which situations the results obtained and the model choices performed
with one metric are extensible to the other metrics. The results show that most of these
metrics really measure different things and in many situations the choice made with one
metric can be different to the choice made with another. These differences become higher
for multiclass problems or problems with very imbalanced class distribution.

Although there are some previous works that compare theoretically some of these mea-
sures (see e.g. (Flach, 2003)), empirical studies have been scarce and limited in the literature.
The only exception to this is (Caruana and Niculescu-Mizil, 2004), but it only uses seven
datasets and it is restricted to binary (two-class) evaluation metrics. Additionally, some
important measures such as macro-averaged accuracy, the AUC variants and probability
rate are not included in their study.

To our knowledge, this is the first experimental work which thoroughly compares the
most generally used classifier evaluation metrics for binary and multiclass problems drawing
conclusions about the correlation and interdependence of these measures.

2 METHODOLOGY

As we have said before, for this study 16 classification performance metrics were
chosen:  Percent_Correct (PC), Kappastatistic (KS), Mean_Absolute_Error (MAE),
Mean_Squared _Error (MSE, also known as Brier score), Log-Loss (LLoss, also known as
Cross Entropy), AUC_1vslu (Allu), AUC_1vslp (Allp), AUC_1vsNu (Alnu), AUC_1vsNp
(Alnp) (corresponding to one vs. one or one vs. the rest extensions to the Area Under the
ROC Curve, using a uniform distribution or using class probabilities), MAVG_Acc_A (MAA,
arithmetic macroaveraged accuracy), MAVG_Acc_G (MAG, geometric macroaveraged accu-
racy), MAVG_Acc.M (MAM, a mixture between MAVG_Acc_A and MAVG_Acc_G), MeanF-
Measure (MFM, the mean of all the F-scores of one vs. the rest class combinations), Mean-
ProbRate (MPR, the sum of the probabilities of the correct class), MAVG_MeanProbRate
(MAMPR, the sum of the probabilities of the correct class, uniformly averaging all classes)
and Multiclass Wilcoxon (MV). Proper definitions and references for all these metrics are



included in (Ferri et al, 2004).

The experiments were performed using Weka, which we extended with several new met-
rics, not included in the current distribution (the last fourteen metrics in the above list). We
used six well-known machine learning algorithms: C4.5, Naive Bayes, Logistic Regression,
Multilayer Perceptron, K-Nearest Neighbour, AdaBoost and we performed the experiments
with 20 medium-size datasets! included in the machine learning repository (Blake and Merz,
1998), 10 of them being two-class (binary) problems from which 5 balanced and 5 imbal-
anced and 10 of them being multiclass, 5 balanced, 5 imbalanced. The above mentioned
models were evaluated using 20 x 5 fold cross-validation, each of the 6 models being ap-
plied to each of the 20 datasets, getting 600 results for each dataset, making 12,000 results
in total. We set up five types of analysis: an overall analysis for all datasets, an analysis
for binary problems, for multiclass problems, for balanced and for imbalanced problems.
In each case we calculated the standard linear correlation and Spearman rank correlation
between all sixteen metrics. In order to avoid negative values for correlation we work with
1-MAE, 1-MSE and 1-LLoss. We will use dendrograms for representation; where the link
distance is defined as (1-correlation).

3 ANALYSIS OF RESULTS

In this section we discuss some of the interesting outcomes we encountered from the analysis
of the correlation between metrics. First we analyse the standard correlations and then the
rank correlations. Table 1 shows the standard correlation between all metrics.

- pc ks mae mse lloss allu allp alnu alnp maa mag mam mfm mamprmpr mw mc
pc 1.00 0.9 0.92 0.88 0.72 0.83 0.83 0.84 0.84 0.94 0.7 0.89 0.94 0.88 0.93 0.84 0.87
ks 0.90 1 0.95 0.94 0.64 094 094 094 094 094 0.75 0.91 0.94 0.86 0.82 0.94 0.9
mae 0.92 0.95 1 0.93 0.6 0.9 0.9 0.9 0.9 0.92 0.72 0.88 0.92 0.88 0.89 0.91 0.88
mse 0.88 0.94 0.93 1 0.79 0.9 0.91 0.91 0.91 0.88 0.66 0.83 0.88 0.8 0.79 0.9 0.87
1lloss 0.72 0.64 0.6 0.79 1 0.63 0.63 0.64 0.64 0.67 0.51 0.64 0.66 0.62 0.63 0.63 0.67
allu 0.83 0.94 0.9 0.9 0.63 1 0.999 0.996 0.99 0.89 0.75 0.87 0.89 0.81 0.76 1 0.89
allp 0.83 0.94 0.9 0.91 0.63 0.999 1 0.997 0.99 0.89 0.73 0.86 0.89 0.81 0.76 0.99 0.88
alnu 0.84 0.94 0.9 0.91 0.64 0.996 0.997 1 0.99 0.9 0.75 0.88 0.9 0.82 0.78 1 0.89
alnp 0.84 0.94 0.9 0.91 0.64 0.99 0.99 0.99 1 0.88 0.7 0.84 0.88 0.8 0.77 0.99 0.88
maa 0.94 0.94 0.92 0.88 0.67 0.89 0.89 0.9 0.88 1 0.86 0.98 1 0.93 0.88 0.9 0.9
mag 0.70 0.75 0.72 0.66 0.51 0.75 0.73 0.75 0.7 0.86 1 0.94 0.87 0.84 0.73 0.76 0.77
mam 0.89 0.91 0.88 0.83 0.64 0.87 0.86 0.88 0.84 0.98 0.94 1 0.99 0.93 0.86 0.88 0.89
mfm 0.94 0.94 0.92 0.88 0.66 0.89 0.89 0.9 0.88 1 0.87 0.99 1 0.93 0.89 0.9 0.91
mampr| 0.88 0.86 0.88 0.8 0.62 0.81 0.81 0.82 0.8 0.93 0.84 0.93 0.93 1 0.96 0.83 0.86
mpr 0.93 0.82 0.89 0.79 0.63 0.76 0.76 0.78 0.77 0.88 0.73 0.86 0.89 0.96 1 0.79 0.83
mw 0.84 0.94 0.91 0.9 0.63 1 0.99 1 0.99 0.9 0.76 0.88 0.9 0.83 0.79 1 0.89

Table 1: Standard correlation results for all datasets.

In the left part of Figure 1 we show a dendrogram built from the obtained standard cor-
relations using all the available results. This figure represents the relations between the
measures in an abridged and more comprehensible way.

! credit-ranking, pima-diabetes, heart-statlog, hepatitis, ionosphere, kr-vs-kp, post-operativeW,
german-credit, spect, breast-cancer, balance-scale, iris, soybean, cmcW, dermatology, new-
thyroidW, segment, taeW, wine, waveform.



Log_loss K l
MeanProbRate [y S— AUC_fvshp |
ol AUC_tvsNu
Mean_squared_Emor ———————————— AUC_tvsip
i AUC_“Iszp —l AUC_tvsiu
AUC_1vsNu MeanProbAate
AUC_1vs1p Mean_Absolute_Emor
AUC_fvstu Log_loss
MeanFMeasure Mean_Squared_Error Iy
MAVGA MeanFMsasure
MAVGM MAVGR
Mean_Absolute_Ermor MAVGA
Kappaﬁ:;lélié MAVGG
_ Kappa_statistc
perentComect ——————————— perantComsct p—
L L L L I L L I L L
6] 0os 01 0.15 02 00 005 o1 015 a2

Figure 1: Dendrograms of standard correlations (left) and rank correlations
(right) between the metrics for all datasets.

The first observation can be made with the AUC measures. The 5 variants of AUC behave
quite similarly, so they can even be used interchangeably. This means that previous works in
the literature using these different variants for evaluating rankers can be contrasted safely,
independently of which variant they have used. Additionally, it is interesting to note that
no other measure correlates to AUC more than 0.94, justifying the use of the AUC as a
genuinely different measure. The results for Kappa are quite surprising, because this metric
is just a modification of error (accuracy), which just corrects the right predictions occurred
by chance. It should be close to accuracy but, unexpectedly, it is closer to Minimum
Absolute Error and other measures. An expected result is the close relationship between
MAVG_Acc_A and MeanFMeasure. Following their definitions, it seems that they are just
measuring the same thing. Finally, Logloss seems to be a quite different metric with respect
to the rest.

If we use the rank correlation, things are slightly different and more insightful, since this
correlation tells us whether the decisions would be the same, independently of the absolute
values. Below we show the table and in the right part of Figure 1 the dendograms for all
the measures.

- pc ks mae mse llos allu allp alnu alnp maa mag mam mfm mamprmpr mw mc
acc 1 0.97 0.77 0.85 0.62 0.71 0.71 0.69 0.7 0.91 0.83 0.88 0.94 0.73 0.77 0.7 0.8
ks 0.97 1 0.76 0.82 0.6 0.72 0.73 0.71 0.72 0.97 0.91 0.95 0.97 0.78 0.76 0.72 0.82
mae 0.77 0.76 1 0.62 0.32 0.57 0.57 0.55 0.56 0.73 0.69 0.71 0.75 0.91 0.999 0.61 0.7
mse 0.85 0.82 0.62 1 0.86 0.77 0.77 0.76 0.76 0.78 0.72 0.76 0.81 0.62 0.62 0.76 0.77
log 0.62 0.6 0.32 0.86 1 0.72 0.72 0.71 0.71 0.58 0.53 0.56 0.59 0.36 0.32 0.65 0.61
11u 0.7 0.72 0.57 0.77 0.72 1 0.995 0.98 0.97 0.73 0.7 0.72 0.72 0.62 0.57 0.95 0.78
11p 0.71 0.73 0.57 0.77 0.72 0.995 1 0.98 0.98 0.72 0.69 0.71 0.72 0.62 0.57 0.94 0.78
1nu 0.69 0.71 0.55 0.76 0.71 0.98 0.98 1 0.99 0.71 0.68 0.7 0.71 0.61 0.55 0.95 0.77
1np 0.7 0.72 0.56 0.76 0.71 0.97 0.98 0.99 1 0.71 0.67 0.7 0.7 0.6 0.56 0.94 0.77
maa 0.91 0.97 0.73 0.78 0.58 0.73 0.72 0.71 0.71 1 0.96 0.99 0.98 0.82 0.73 0.73 0.82
mag 0.83 0.91 0.69 0.72 0.53 0.7 0.69 0.68 0.67 0.96 1 0.98 0.95 0.81 0.69 0.7 0.78
mam 0.88 0.95 0.71 0.76 0.56 0.72 0.71 0.7 0.7 0.99 0.98 1 0.98 0.82 0.71 0.72 0.81
mfm 0.94 0.97 0.75 0.81 0.59 0.72 0.72 0.71 0.7 0.98 0.95 0.98 1 0.8 0.75 0.72 0.82
mampr| 0.73 0.78 0.91 0.62 0.36 0.62 0.62 0.61 0.6 0.82 0.81 0.82 0.8 1 0.91 0.66 0.73
mpr 0.77 0.76 0.999 0.62 0.32 0.57 0.57 0.55 0.56 0.73 0.69 0.71 0.75 0.91 1 0.61 0.7
mwi 0.7 0.72 0.61 0.76 0.65 0.95 0.94 0.95 0.94 0.73 0.7 0.72 0.72 0.66 0.61 1 0.77

Table 2: Rank correlation results for all datasets.

We can see several things from the dendrogram. First, there is an equivalence between



MeanProbRate and MAE, that is not surprising if we take a look at their definitions (for
standard correlation they might differ but they always make the same decisions). Secondly,
we have 3 clusters. The first includes the AUC measures, being, in some way, outliers from
the rest, and we can even see more clearly that AUC is a completely different measure and
no substitute can be used safely. Secondly, MSE and Logloss are now cluster and Logloss
(if we use rank correlation) is not so different as it was with standard correlation. Finally,
there is a third cluster with many measures based on counting hints and errors and ignoring
the ranks or the probabilities.

Now, if we compare the correlation results of 2-class problems with multiclass problems
(see Figure 2), we have some expected results. All the AUC variants collapse, since they
are all extensions for multiclass problems but equivalent for 2-class problems. The rest of

the correlations are similar in both cases.
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Figure 2: Dendrograms of rank correlations between the metrics for two-class
datasets(left) and multi-class datasets (right).

Finally, if we compare the correlations for the datasets with balanced class distribution
against the correlations for the datasets with imbalanced class distribution (see Figure 3),

the results are much more interesting.
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Figure 3: Dendrogram of rank correlations between the metrics for balanced
datasets (left) and imbalanced datasets (right).

Overall results are significantly different and measures diverge very significantly (correlations
are much lower) for imbalanced datasets.

4 CONCLUSIONS

Summing up, the previous analysis shows that most of the measures used in machine learning
for evaluating classifiers really measure different things, especially for multiclass problems



and problems with imbalanced class distribution. One of the most surprising results from the
study is that the correlations between metrics inside the same family (of the three families:
qualitative understanding of error, probabilistic understanding of error and ranking under-
standing of error) are not very high, showing that even with a qualitative understanding
of error, it is significantly different to use accuracy or Kappa statistic, with a probabilistic
understanding of error, it is significantly different to use MSE or Logloss, and, when we
want to rank predictions, it is significantly different to use AUC or to use ProbRate. Conse-
quently, the analyses of machine learning methods (stating, e.g., that one method is better
than other) using different metrics (even inside the same family) could not be comparable
and extensible to the other metrics, since, usually, the differences in performance between
modern machine learning methods are tight.
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