
Measuring Universal Intelligence:

Towards an Anytime Intelligence Test

José Hernández-Oralloa,∗, David L. Doweb

aUniversitat Politècnica de València, Departament de Sistemes Informàtics i
Computació, Camı́ de Vera s/n, E-46022, València, Spain

bComputer Science & Software Engineering, Clayton School of I.T., Monash University,
Clayton, Victoria, 3800, Australia

Abstract

In this paper, we develop the idea of a universal anytime intelligence test. The
meaning of the terms “universal” and “anytime” is manifold here: the test should
be able to measure the intelligence of any biological or artificial system that exists
at this time or in the future. It should also be able to evaluate both inept and
brilliant systems (any intelligence level) as well as very slow to very fast systems
(any time scale). Also, the test may be interrupted at any time, producing an
approximation to the intelligence score, in such a way that the more time is left
for the test, the better the assessment will be. In order to do this, our test proposal
is based on previous works on the measurement of machine intelligence based on
Kolmogorov Complexity and universal distributions, which were developed in the
late 1990s (C-tests and compression-enhanced Turing tests). It is also based on the
more recent idea of measuring intelligence through dynamic/interactive tests held
against a universal distribution of environments. We discuss some of these tests and
highlight their limitations since we want to construct a test that is both general
and practical. Consequently, we introduce many new ideas that develop early
“compression tests” and the more recent definition of “universal intelligence” in
order to design new “universal intelligence tests”, where a feasible implementation
has been a design requirement. One of these tests is the “anytime intelligence
test”, which adapts to the examinee’s level of intelligence in order to obtain an
intelligence score within a limited time.

Keywords:
Measurement of Intelligence, Artificial Intelligence, Psychometrics, Algorithmic

∗Corresponding author
Email addresses: jorallo@dsic.upv.es (José Hernández-Orallo),

david.dowe@infotech.monash.edu.au (David L. Dowe)

Preprint submitted to Artificial Intelligence September 24, 2010

Information Theory, Kolmogorov Complexity, Algorithmic Probability, Turing
Test, Universal Intelligence, Computerized Adaptive Testing, Compression,
Inductive Inference, Prediction, Minimum Message Length (MML),
Reinforcement Learning.

1. Introduction

Artificial intelligence has arguably given preference to the goal of devel-
oping intelligent systems over the goal of evaluating them. The evaluation
of artificial intelligence has almost always been addressed in the context of
what artificial intelligence should be, or even in the context of whether it
was possible. In fact, we are uncertain of how much the field of artificial
intelligence has progressed in precise measurable terms since its inception.
However, the eventual achievement of true and general artificial intelligence
does not entail, per se, that intelligence can be evaluated. Nor does a defi-
nition of intelligence entail that intelligence can be evaluated with it. From
an engineering point of view, the most desirable sequence of events would be
to have a definition, then a feasible measurement procedure, and from these,
to build intelligent systems that could be ultimately certified and evaluated
with the measurement procedure.

The evaluation and measurement of intelligence is related to the notion
of test, which is the daily basis of psychometrics; however, it is also the
approach taken by the so-called Turing test [1], its variants, and extensions.
In artificial intelligence, the major concern has been more about when and
how our artefacts will be able to pass any of these tests, and not as much
about how well our artificial intelligence systems will score in them. In the
best case, evaluation is performed as a competition among several contenders,
but even the results of two consecutive contest editions are not comparable.

From a scientific point of view, we could instead think about the desider-
ata for an intelligence measurement procedure, and then, with an engineer’s
perspective, see whether these desiderata are physically attainable. In other
words, a scientifically ambitious view of a measurement of intelligence should
have the following properties:

• It must be “universal” in the sense that it cannot be designed to only
measure or favour some particular kind of intelligent system. It must
allow us to measure any kind of intelligent system (biological or com-
putational).

2

• It must be derived from well-founded computational principles with
precise formalisations of the concepts involved in the measurement such
as environment, action, goal, score, time, etc.

• It should be meaningful in the sense that what is being measured ac-
counts for the most general notion of intelligence.

• It must be able to evaluate and score any present intelligent system
or any system that may be built in the future, thereby allowing the
comparison between different generations of intelligent systems up to
and beyond human intelligence.

• The measurement should handle any level of intelligence and any time
scale of the system. It must be able to evaluate inept and brilliant
systems (any intelligence level) as well as very slow to very fast systems
(any time scale).

• The quality (precision) of the assessment should be tuneable and should
mostly depend on the time that is provided for the measurement. The
evaluation can be interrupted at any time, producing an approximation
to the intelligence score. The longer the evaluation time, the better the
assessment (anytime test).

It is, of course, questionable whether a measurement that follows the above
requirements is even possible since no measurement or test of intelligence
presented to date fulfils all of these requirements. In fact, most of them do
not take any of them into account.

This paper presents the first general and feasible test of intelligence, which
can be valid for both artificial and biological systems, of any intelligence de-
gree and of any speed. The test is not anthropomorphic; it is gradual, any-
time, and is exclusively based on computational notions, such as Kolmogorov
complexity ([2]). It is also meaningful since it averages the capability of suc-
ceeding in different environments.

In order to do this, we build upon previous works on measuring or defin-
ing intelligence [3][4][5][6][7][8][9] based on the notions of inductive infer-
ence, prediction, compression, and randomness, all of which are properly
formalised and understood in the context of Algorithmic Information The-
ory, Kolmogorov complexity, Occam’s razor or the Minimum Message Length
(MML) principle [2][10][11][12]. Our starting point is the same as in [9]; we

3

set up the evaluation in a framework where an agent interacts with a set
of environments. This is a very simple and natural idea since intelligence
can be seen as good performance in a variety of environments. This also
looks appealing, that is, if we do not care about the number of environments
and the amount of time that is required for each of them. However, if we
want the evaluation to be reliable with a small sample of environments and a
small number of interactions in each of them, then we must confront several
problems. We need to establish some conditions over the environments. The
environments must be discriminative; they must react immediately; and they
must be balanced (in terms of the expected score) in order to ensure that
their aggregation is appropriate. We need to define a proper and computable
measure of complexity for environments, and we need to design a way to
derive a sample of these environments that adjusts to the subject’s level of
intelligence.

In what follows, we analyse the limitations of the definition of “universal
intelligence” by Legg and Hutter [9]. We also introduce many new ideas that
develop previous “compression tests” [3][4][5][13], “comprehension tests” [7],
and the definition of universal intelligence [9] into a new “anytime intelligence
test”, with its actual implementation in mind. One of the key concepts that
is worked out in this paper is the relation between time and intelligence
and how to incorporate time into the measurement. As a result, this paper
includes four operative intelligence test definitions: one that does not include
time and is not anytime (but solves many other previous issues); one that
does include time but is not anytime; one that does not include time and
is anytime; and one that includes time and is anytime. A summary can be
found in Table 4 at the end of this paper.

At the theoretical level, intelligence is defined as an average of perfor-
mance in many environments, where complex environments are more rele-
vant than in Legg and Hutter’s definition. An adaptive test is not only a
good thing in practice to get a reliable score in less time, but it is also a
way out of the dilemma of choosing between simple and complex environ-
ments and the time required in each of them. At a practical level, we show
some examples of what these tests should look like in practice. The tests are
designed to evaluate the abilities of purported intelligent agents (artificial,
human, non-human animal or extraterrestrial) in a feasible way.

Although the general idea is to measure general intelligence (which is
accomplished if unbiased universal machines are used to generate the set of
environments), the tests we introduce here can be used to evaluate more spe-

4

cialised capabilities by appropriately choosing a class of environments. For
instance, if environments were chosen so that actions only affect rewards but
not observations (passive environments), the tests would be able to evaluate
sequence prediction capability (ignoring planning capabilities). Similarly, by
using different classes of environments, performance on several tasks (classi-
fication, mazes, board games, etc.) in many (if not all) the areas in artificial
intelligence could be efficiently evaluated. In Section 6, we present five exam-
ples with their corresponding environment classes to evaluate the following:
very simple inference capabilities; performance in environments generated by
finite state machines; performance in playgrounds where some other agents
can co-exist in the environment (typical in mazes and other kinds of games);
performance in a more general class with a universal generation of spaces,
agents and behaviours; and performance in a class of game environments
based on the AAAI game competition and the game description language
used therein.

The rest of the paper is organised as follows. In Section 2, we present a
brief overview of previous approaches for the measurement of intelligence in
the areas of psychometrics, comparative cognition, and artificial intelligence.
We also include some general notions and notation about agents and envi-
ronments that will be used throughout the rest of the paper. Section 3 starts
with a short introduction to the basic concepts of Algorithmic Information
Theory, Kolmogorov complexity, and related areas in order to pave the way
for the explanation of the closest precedents of this work, i.e., intelligence
definitions or measurements based on Kolmogorov Complexity and related
notions. We also re-visit Legg and Hutter’s definition. Section 4 discusses
several problems found in this definition, leading to the proposal of solutions
for the selection of environments, the use of practical interactions, and the
aggregation of the measurement into a single score. Section 5 analyses the
relation between time and intelligence, how this affects rewards, and it in-
troduces the anytime algorithm (considering time or ignoring it). Section 6
presents several examples of some interesting environment classes, from sim-
ple and specialised cases to more general scenarios. Section 7 discusses the
main features of the new tests and comments on their implementation and
applicability. Finally, Section 8 closes the paper with the implications of this
work and directions for future work.

5

2. Background

In this section we summarise the many perspectives of intelligence mea-
surement, including human, animal, and machine intelligence. Although
these come from very different disciplines, we recognise some ingredients that
are common to all of them, such as agents, environments, and rewards. As
a result, we introduce some notation and concepts around these issues using
the terminology and uses in artificial intelligence (especially from reinforce-
ment learning). We also re-visit some characterisations that have previously
been given about the way tasks, environments, and agents should be.

2.1. Intelligence Measurement from Different Perspectives

Psychometric tests have a long history [14]; they are effective, easy to
administer, fast, and quite stable when used on the same (human) individ-
ual over time. In fact, they have provided one of the best practical defini-
tions of intelligence: “intelligence is what is measured by intelligence tests”.
However, psychometric tests are anthropomorphic; they cannot evaluate the
intelligence of systems other than Homo sapiens. They are also static and
are based on a time limit. New approaches in psychometrics such as Item
Response Theory (IRT) allows for item selection based on their cognitive de-
mand features, providing results for understanding what is being measured
and adapting the test to the level of the individual being examined. Items
generated from cognitive theory and analysed from IRT are a promising tool,
but these models have not been fully implemented in mainstream testing [15].

These and other efforts have attempted to establish “a priori” what an
intelligence test should be (e.g., [16]) and then find adaptations for different
kinds of subjects. However, in general, we need different versions of the psy-
chometric tests to evaluate children at different ages and to evaluate adults
with varying pathologies since the psychometric tests for sane adult Homo
sapiens rely on certain skills and knowledge.

The same thing occurs for other animals. Comparative psychologists and
other scientists in the area of comparative cognition usually devise specific
tests for different species. An example of these specialised tests for children
and apes can be found here [17]. It has also been shown that psychometric
tests do not work for machines at the current stage of progress in artificial
intelligence [13] since they can be cheated upon by relatively simple and spe-
cialised computer programs. However, the main drawback of psychometric

6

tests for evaluating subjects other than humans is that there is no mathe-
matical definition behind them.

The first machine intelligence tests were first proposed by Alan Turing [1],
who developed the imitation game (commonly known as Turing test) [18]. In
this test, a system is considered intelligent if it is able to imitate a human (i.e.,
to be indistinguishable from a human) during a period of time and subject
to a (tele-text) dialogue with one or more judges. Although it is still broadly
accepted as a reference to eventually check whether artificial intelligence will
reach the intelligence of humans, it has long generated debates. Of course,
many variants and alternatives have been suggested [18]. The Turing test
and related ideas present several problems as a machine intelligence test: the
Turing test is anthropomorphic (it measures humanity, not intelligence); it
is not gradual (it does not give a score); it is not practical (it is increasingly
easy to cheat and requires a long time to get reliable assessments); and it
requires a human judge.

A recent and singular approximation to a machine intelligence test is
what is called a CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart) [19][20]. CAPTCHAs are any kind of
simple question that can be easily answered by a human but not by current
artificial intelligence technology. Typical CAPTCHAs are character recog-
nition problems where letters appear distorted. These distortions make it
difficult for machines (bots) to recognise the letters. The immediate objec-
tive of a CAPTCHA is to tell humans and machines apart. The ultimate
goal is to prevent bots and other kind of machine agents or programs from
being able to create accounts, post comments or other tasks that only hu-
mans should do. The problem with CAPTCHAs is that they are becoming
more and more difficult for humans, since bots are being specialised and im-
proved to read them. Whenever a new CAPTCHA technique is developed,
new bots appear that have chances of getting through the test. This forces
CAPTCHA developers to change them again, and so on and so forth. Al-
though CAPTCHAs work reasonably well today, in about 10 or 20 years, they
will need to make things so difficult and general, that humans will require
more time and several attempts in order to resolve them.

There are, of course, many other less well-known proposals for intelligence
measurement, most of which are informal or merely philosophical, and none
of which have been put into practice. From an engineering point of view,
there have also been many proposals. We can most prominently highlight
the series of workshops on Performance Metrics for Intelligent Systems (see,

7

e.g., [21]) held since 2000, which typically address very limited or specialised
scenarios, systems, or applications. And, finally, there has been a vague
and a catch-all use of the term Machine Intelligence Quotient (MIQ). It
has been used in different ways in [22][23][24], especially in the area of fuzzy
systems, but without a precise definition. In any case, the very notion of MIQ
is inappropriate because the quotient1 in psychometrics is obtained from a
population of individuals from a species at a given stage of its development
(child, adult), which is possible for humans, but it makes no sense when
there is no notion of species or homogeneous sample for artificially intelligent
systems.

2.2. Environments, Agents and Scores

Although very different from each other, there are three dimensions where
any approach for intelligence measurement has to make choices. In every in-
telligence assessment setting, there is (1) a subject or agent to be examined,
(2) a set of problems, tasks, or environments, and (3) a protocol for the ap-
plication of the measurement and the derivation of one or more performance
scores. Depending on the assumptions or constraints placed on each of these
issues, we have, as a result, a different assessment framework. Nevertheless,
in the artificial intelligence literature, focus has been primarily given to (1)
and (2), especially in the area of cognitive architectures where, implicitly or
explicitly, a set of constraints or requirements is established for agents and
environments.

For instance, Soar [25][26], one of the most successful and well-known cog-
nitive architectures in artificial intelligence, implicitly assumes some features
about agents and environments. Some of these assumptions become explicit
requirements in [27], where the relation between intelligence requirements
and cognitive architecture requirements are elucidated. More precisely, this
work outlines eight characteristics of the environments, tasks, and agents
that are deemed to be important for human-level intelligence, from which
they derive twelve requirements for general cognitive architectures. Here we

1Originally, the quotient was a real quotient of a child’s estimated mental age over their
biological age. Nowadays, the ‘Q’ in IQ is a historical relic; the quotient is a normalised
score according to the scores of a population, typically assuming a normal distribution
with mean equal to 100. This normalisation is much harder to do with machines, as it
is not clear which machines to average over. So, it is this latter relative interpretation of
intelligence quotient and its application to machines which we criticise here.

8

are not interested in the requirements for the architecture, i.e., for building
intelligent agents. However, the characteristics for the environments, tasks,
and agents are a good basis for the requirements on agents and environments
that have appeared in the literature in the last fifty years. The characteris-
tics can be summarised as follows: environments must be dynamic, reactive,
and complex. They must contain diverse interacting objects, as well as some
other agents that affect performance. Tasks must be complex, diverse, and
novel. There must be regularities at multiple time scales. Agent perception
may be limited, and the environment may be partially observable. Agents
must be able to respond quickly to the dynamics of the environment, but
agent computation resources must be considered limited. Finally, agent exis-
tence is long-term and continual, so it must balance immediate task or reward
completion with more long-term goals. None of the measurement approaches
mentioned in Section 2.1 follow these requirements.

The notion of agent is nowadays mainstream in artificial intelligence, and,
apart from the previous (or other) requirements, it does not deserve further
clarification. The distinction between goal, task, and environment is a more
complex issue since it depends on the intention and will of the agent. In child
psychometrics and animal comparative cognition, intelligence tests cannot
assume that we are able to program certain goals or to explicitly explain a
task to the examinee. Consequently, testing is generally performed using re-
wards, which is a conditioning approach to make subjects indirectly focus on
a task. Interestingly, this is the same approach taken in reinforcement learn-
ing [28]. Although reinforcement learning is typically seen as a formalisation
of this setting in the context of artificial intelligence and machine learning, it
can also be viewed from a broader perspective since reinforcement learning
is the study of how animals and artificial systems optimise their behaviour
conditioned by rewards and punishments.

The most general picture of this setting is the interaction between an
agent and an environment through actions, rewards, and observations. This
is also similar to the setting typically used in control or system theory, which
is outlined in Figure 1.

Actions are limited by a finite set of symbolsA, (e.g. {left, right, up, down});
rewards are taken from any subset R of rational numbers between 0 and
1; and observations are also limited by a finite set O of possibilities (e.g.,
a grid of binary cells of n × m and the objects therein, or a set of light-
emitting diodes, LEDs). We will use ai, ri, and oi to (respectively) denote
action, reward, and observation at interaction or cycle i (or, more loosely,

9

agent environment

observation

reward

action

Figure 1: Interaction between an agent and an environment [9].

state). Rewards and observations are the outputs of the environment. A
pair 〈ri, oi〉 is also known as a perception. The order of events is always
reward, observation and action2. Therefore, a sequence of events is a string
such as r1o1a1r2o2a2 Both the agent and the environment are defined
as a probabilistic measure. For instance, given an agent, denoted by π,
the term π(ak|r1o1a1r2o2a2 . . . rkok) denotes the probability of agent π ex-
ecuting action ak after the sequence of events r1o1a1r2o2a2 . . . rkok. In a
similar way, an environment µ is also a probabilistic measure that assigns
probabilities to each possible pair of observation and reward. For instance,
µ(rkok|r1o1a1r2o2a2 . . . rk−1ok−1ak−1) denotes the probability in environment
µ of outputting rkok after the sequence of events r1o1a1r2o2a2 . . . rk−1ok−1ak−1.
Note that if for every cycle there is one action/perception with probability 1
(and 0 for the rest), we then have a deterministic agent/environment. If we
combine the probability measures for agent and environment we have a prob-
ability measure for the interaction history or sequence. Interaction histories
will be deterministic (respectively, computable) if both agent and environ-
ment are deterministic (respectively, computable). A sequence of actions can

2Typically, in artificial intelligence and in the cognitive sciences, the sequence of events
is observation, action and reward. Legg and Hutter [9], however, use the sequence obser-
vation, reward, and action because the pair <observation, reward> is seen as a whole (the
“perception”). The reason is that grouping environment outputs simplifies the formal def-
inition of environment interaction as a sequence of perception-action pairs. In this paper,
we use an intermediate approach between the classical sequence of events used in artifi-
cial intelligence and Legg and Hutter’s. We still maintain the sequence perception-action,
but we change the order of the perception pair from <observation, reward> to <reward,
observation>. With this mostly irrelevant change, we finally have the same sequence of
events that is typical in artificial intelligence (although with an initial reward starting the
series). In any case, the order chosen is mostly a matter of taste and does not significantly
affect the results in the rest of this paper.

10

be denoted by a1:n = a1a2 . . . an where ai ∈ A. A sequence of actions deter-
mines (and hence can also denote) a state in a deterministic environment.
We will denote by aµ,πi , rµ,πi and oµ,πi the action, reward, and observation at
interaction or cycle i for environment µ and agent π.

Example 1. Consider a test setting where a chimpanzee (the agent) can
press one of three possible buttons (A = {B1, B2, B3}). Rewards are just
the handing over (or not) of a banana (R = {0, 1}) and the observation
set is derived from three cells where a ball must be inside exactly one of
them (O = {C1, C2, C3}). An example of a possible environment is defined
by the following rules about observations and rewards. The observation ok is
randomly generated with a uniform distribution between the three possibilities
in O. The first reward is 1 (we start the game by giving a banana to the
chimpanzee). The remaining rewards follow these properties:

µ(rk|r1o1a1r2o2a2...rk−1ok−1ak−1) =
1 if

{
{(ak−1 = B1 and ok−1 = C1) or (ak−1 = B2 and ok−1 = C2) or

(ak−1 = B3 and ok−1 = C3)} and (rk = +1)

1 if

{
¬{(ak−1 = B1 and ok−1 = C1) or (ak−1 = B2 and ok−1 = C2) or

(ak−1 = B3 and ok−1 = C3)} and (rk = 0)
0 otherwise

According to this environment, a chimpanzee that always selects the button
that corresponds to the cell where the ball is shown would score +1 reward
(one banana) for each cycle. For example, if the environment shows C2 and
the chimpanzee presses B2, then a banana is given.

Although this example is quite simple, the general setting shown in Figure
1 using environments, agents, actions, observations, and rewards is powerful
enough to represent the requirements stated in [27], as well as many intelli-
gence measurement setting seen in Section 2.1 (except, perhaps, some types
of psychometric tests, CAPTCHAs and the Turing Test due to the absence
of rewards).

In this setting, we must first think about a set of environments that are
complex enough to meet the above requirements. In other words, we can-
not assume any constraint on environments and observations if we want the
setting to be general enough for an intelligence measurement. In reinforce-
ment learning, in particular, many techniques assume that the environment
is a Markov Decision Process (MDP). In other cases, however, it is assumed

11

that environments are fully-observable, i.e., that there is a function between
observations and states. We cannot assume this since many real-world prob-
lems are not fully-observable. This is especially the case in social contexts
where other individuals may have different (and partial) views of the same
situation.

In [29], a taxonomy of environments is developed that distinguishes among
many kinds of environments. For instance, passive environments are those
for which agents’ actions can only affect rewards but not observations. A
special sub-category is sequence prediction as used in classical psychomet-
ric tests, and also the typical classification problems in machine learning.
Some other kinds of environments are nth-order Markov Decision Processes
(MDPs), where the next observation can only depend on the n last observa-
tions and the n last actions. It can be shown that nth-order MDPs can be
reduced to first-order MDPs (or simply MDPs). In this case, it is natural to
talk about “states”, like many board games and some mazes, since the next
reward and observation only depend on the previous observation and action
(there is no ‘perceptual aliasing’ problem if the state is fully observable). Er-
godic MDPs are MDPs of a special kind, which are characterised by making
any possible observation reachable (in one or more cycles) from any state.
That means that at any state, agents’ actions can recover from a bad previ-
ous decision. We think this is a strong limitation. As many others advocate
(e.g. [27]), we need to be as general as possible in the class of environments
that is considered.

This is one of the issues that recurrently appears throughout the rest
of this paper. We will try to consider the most general concept (or class)
of environment and the most general concept of agent in order to allow a
universal test that will permit a variety of contexts and be applicable to
any kind of agent. For the moment, we only assume that environments are
infinite (i.e. no sequence of actions makes them stop) and that they are
model-based (i.e., we have a description, program, or model behind them).
We also assume that this model is computable.

Apart from the characteristics of environment and agent, when we address
the issue of evaluating the agent, it is necessary to determine whether any
constraint on the reward distribution is needed, and, most especially, how
rewards are aggregated. In reinforcement learning, several aggregation or
payoff functions have been defined. For instance, the most common way of
evaluating the performance of an agent π in an environment µ is to calculate
the expected value of the sum of all the rewards, i.e.:

12

Definition 1. Expected Cumulative Reward

V π
µ := E

(
∞∑
i=1

rµ,πi

)
This is not the only option, since we have to determine whether more

relevance is given to the immediate rewards or to long-term rewards by using
different types of weighting or discounting, in order to make up for greedier
or more explorative policies. This is related to the (expected) life of the agent
(the number of interactions allowed) and also whether there is a bound on
the rewards [30].

3. Defining and Measuring Intelligence using Algorithmic Informa-
tion Theory

In this section, we present a short introduction to the area of Algorithmic
Information Theory and the notions of Kolmogorov complexity, universal dis-
tributions, Levin’s Kt complexity, and its relation to the notions of difficulty,
compression, randomness, the Minimum Message Length (MML) principle,
prediction, and inductive inference. Then, we will survey the approaches
that have appeared using these formal notions in order to give mathematical
definitions of intelligence or to develop intelligence tests from them, start-
ing from the compression-enhanced Turing tests, the C-test, and Legg and
Hutter’s definition of Universal Intelligence.

3.1. Kolmogorov Complexity, Universal Distributions and Inductive Infer-
ence

Algorithmic Information Theory is a field in computer science that prop-
erly relates the notions of computation and information. The key idea is the
notion of the Kolmogorov Complexity of an object, which is defined as the
length of the shortest program p that outputs a given string x over a machine
U . Formally,

Definition 2. Kolmogorov Complexity

KU(x) := min
p such that U(p)=x

l(p)

where l(p) denotes the length in bits of p and U(p) denotes the result of
executing p on U .

13

For instance, if x = 1010101010101010 and U is the programming lan-
guage Lisp, then KLisp(x) is the length in bits of the shortest program in
Lisp that outputs the string x. The relevance of the choice of U depends
mostly on the size of x. Since any universal3 machine can emulate another,
it holds that for every two machines U and V , there is a constant c(U, V),
which only depends on U and V and does not depend on x, such that for all
x, |KU(x) − KV (x)| ≤ c(U, V). The value of c(U, V) is relatively small for
sufficiently long x.

From Definition 2, we can define the universal probability for machine U
as follows:

Definition 3. Universal Distribution
Given a prefix-free machine4 U , the universal probability of string x is

defined as:
pU(x) := 2−KU (x)

which gives higher probability to objects whose shortest description is small
and gives lower probability to objects whose shortest description is large.
When U is universal, this distribution is similar (up to a constant difference)
to the universal distribution for any other different universal machine, since
one can emulate the other (given a translation program of finite length in-
dependent of the target string, x). Considering programs as hypotheses in
the hypothesis language defined by the machine, this paves the way for the
mathematical theory of inductive inference and prediction. This theory was
developed by Solomonoff [31], formalising Occam’s razor in a proper way for
prediction, by stating that the prediction maximising the universal probabil-
ity will eventually discover any regularity in the data. This is related to the
notion of Minimum Message Length for inductive inference [10][11][32][12]
and is also related to the notion of data compression.

3A universal machine is any computer that is able to calculate any computable function,
also known as Turing-complete. Turing machines, lambda calculus (or λ-calculus), re-
writing systems and most programming languages are theoretical examples of universal
machines. Any real computer is also a (memory-bounded) universal machine.

4For a convenient definition of the universal probability, we need the requirement of U
being a prefix-free machine (see, e.g., [2] for details). Note also that even for prefix-free
machines there are infinitely many other inputs to U that will output x, so pU (x) is a
strict lower bound on the probability that U will output x (given a random input)

14

The notions of prediction and induction are closely related, but not iden-
tical, since a prediction can be obtained by a (e.g. Bayesian) combination
of several plausible models, while induction usually aims at discovering the
most plausible model and it usually entails some explanation of the obser-
vations5. However, these notions are frequently used as synonyms. In fact,
Solomonoff’s seminal paper [31] refers to the “theory of inductive inference”
while, under our interpretation (and also by some of his subsequent publica-
tions, see e.g. [33]), it would refer to a “theory of prediction” (or, perhaps,
the inductive inference of a probability distribution). Moreover, there are
also important differences between one-part compression and two-part com-
pression (MML induction). In the former, the model does not distinguish
between pattern and exceptions while the latter explicitly separates regular-
ities (main pattern) from exceptions. See [11, sec. 8], [12, sec. 10.1] and
[32](part of sec. 0.3.1 referring to Solomonoff) for more details on this.

One of the main problems of Algorithmic Information Theory is that Kol-
mogorov Complexity is uncomputable. One popular solution to the problem
of computability of K for finite strings is to use a time-bounded or weighted
version of Kolmogorov complexity (and, hence, the universal distribution
which is derived from it). One popular choice6 is Levin’s Kt complexity
[36][2]:

Definition 4. Levin’s Kt Complexity

KtU(x) := min
p such that U(p)=x

{l(p) + log time(U, p, x)}

where l(p) denotes the length in bits of p, U(p) denotes the result of executing
p on U , and time(U, p, x) denotes the time7 that U takes executing p to

5For example, in physics, we have several competing theories (Ptolemy, Newton, Ein-
stein special relativity, relativistic quantum mechanics, Einstein general relativity, etc.).
For the purposes of prediction, we can do a weighted average over these. But such a mix-
ture is not a model or explanation of the laws of nature - rather, it is only pragmatically
suited for prediction. See [12, chapter 10].

6There are other options, as [34] also suggests, such as fixing a bound on time (but
this would require setting an arbitrary constant), logical depth [2], the speed prior [35] or
through the use of redundant Turing machines [32](sec. 0.2.7).

7Here time does not refer to physical time but to computational time, i.e., computation
steps taken by machine U . This is important, since the complexity of an object cannot
depend on the speed of the machine where it is run.

15

produce x.

Finally, despite the uncomputability of K and the computational com-
plexity of its approximations, there have been some efforts to use Algorithmic
Information Theory to devise optimal search or learning strategies. Levin (or
universal) search [36] is an iterative search algorithm for solving inversion
problems based on Kt, which has inspired other general agent policies such
as Hutter’s AIXI, an agent that is able to adapt optimally8 in all environ-
ments where any other general purpose agent can be optimal [37], for which
there is a working approximation [38][39].

3.2. Developing Mathematical Definitions and Measures of Intelligence

Following ideas from A.M. Turing, R.J. Solomonoff, E.M. Gold, C.S. Wal-
lace, M. Blum, G. Chaitin and others, between 1997 and 1998 some works on
enhancing or substituting the Turing Test by inductive inference tests were
developed, using Solomonoff prediction theory [31] and related notions, such
as the Minimum Message Length (MML) principle. On the one hand, Dowe
and Hajek [3][4][5] suggested the introduction of inductive inference problems
in a somehow induction-enhanced or compression-enhanced Turing Test [1]
(they arguably called it non-behavioural) in order to, among other things,
completely dismiss Searle’s Chinese room [40] objection, and also because an
inductive inference ability is a necessary (though possibly “not sufficient”)
requirement for intelligence.

Quite simultaneously and similarly, and also independently, in [6][7], intel-
ligence was defined as the ability to comprehend, giving a formal definition of
the notion of comprehension as the identification of a ‘predominant’ pattern
from a given evidence, derived from Solomonoff prediction theory concepts,
Kolmogorov complexity and Levin’s Kt. The notion of comprehension was
formalised by using the notion of “projectible” pattern, a pattern that has
no exceptions (no noise), so being able to explain every symbol in the given
sequence (and not only most of it).

From these definitions, the basic idea was to construct a test as a set
of series whose shortest pattern had no alternative projectible patterns of

8Optimality has to be understood in an asymptotic way. First, because AIXI is un-
computable (although resource-bounded variants have been introduced and shown to be
optimal in terms of time and space costs). Second, because it is based on a universal
probability over a machine, and this choice determines a constant term which may very
important for small environments.

16

k = 9 : a, d, g, j, ... Answer: m
k = 12 : a, a, z, c, y, e, x, ... Answer: g
k = 14 : c, a, b, d, b, c, c, e, c, d, ... Answer: d

Figure 2: Examples of series of Kt complexity 9, 12, and 14 used in the C-test [7].

similar complexity. That means that the “explanation” of the series had to
be much more plausible than other plausible hypotheses. The main objective
was to reduce the subjectivity of the test — first, because we need to choose
one reference universal machine from an infinite set of possibilities; secondly,
because, even choosing one reference machine, two very different patterns
could be consistent with the evidence and if both have similar complexities,
their probabilities would be close, and choosing between them would make
the series solution quite uncertain. With the constraints posed on patterns
and series, both problems were not completely solved but minimised.

The definition was given as the result of a test, called C-test [6], formed
by computationally-obtained series of increasing complexity. The sequences
were formatted and presented in a quite similar way to psychometric tests
(see Figure 2) and, as a result, the test was administered to humans, showing
a high correlation with the results of a classical psychometric (IQ) test on
the same individuals. Nonetheless, the main goal was that the test could
eventually be administered to other kinds of intelligent beings and systems.
This was planned to be done, but the work from [13] showed that machine
learning programs could be specialised in such a way that they could score
reasonably well on some of the typical IQ tests. This unexpected result
confirmed that C-tests had important limitations and could not be considered
universal, i.e., embracing the whole notion of intelligence, but perhaps only
a part of it.

Since then, other intelligence definitions or tests using ideas from algorith-
mic information theory or compression theory have also been proposed (e.g.
[41], whose Large Text Compression Benchmark eventually converged with
Jim Bowery’s C-Prize into the Hutter’s Prize9). The main controversy has
been around the assumption that intelligence is all about induction, predic-
tion, and (one-part or two-part) compression. The case against this is that

9This prize is actually called the “Prize for Compressing Human Knowledge”
(http://prize.hutter1.net/).

17

Universal agent Universal test
Passive environment Solomonoff induction C-test
Active environment AIXI Universal intelligence

Table 1: Intelligence tests in passive and active environments (from [9]).

some people who are commonly considered intelligent only excel on some
specific cognitive abilities. On the contrary, the rationale in favour is that
in order to perform induction, memory is also required (to store, match, and
retrieve observations and models), as well as deduction (to check internal and
external model consistency with observations and other models) and some
other more basic cognitive abilities. Consequently, many argue that if in-
ductive inference is not the only factor for intelligence, at least it brings the
greatest accolades (see, e.g., [13, sec. 5.2] or [42, sec. 7.3] for a discussion on
this).

Nonetheless, a compression or induction test was already considered lim-
ited even as far back as its inception. A factorisation (and, hence, extension)
of these inductive inference tests was outlined in order to explore which other
abilities could shape a complete (and, hence, sufficient) test [43]. Addition-
ally, in order to apply the test for systems with low intelligence, (still) unable
to understand natural language, the proposal for a dynamic/interactive ex-
tension of the C-test was expressed like this: “the presentation of the test
must change slightly. The exercises should be given one by one and, af-
ter each guess, the subject must be given the correct answer (rewards and
penalties could be used instead)” [7].

Recent works by Legg and Hutter (e.g. [8],[9]) have followed the previ-
ous steps and, strongly influenced by Hutter’s theory of AIXI optimal agents
[44], have given a new definition of machine intelligence, dubbed “Univer-
sal Intelligence”, also grounded in Kolmogorov complexity and Solomonoff’s
(“inductive inference” or) prediction theory. The key idea is that the intelli-
gence of an agent is evaluated as some kind of sum (or weighted average) of
performances in all the possible environments.

The comparison with the works from Hernandez-Orallo (and also Dowe
and Hajek’s compression test) is summarised by Legg and Hutter as shown
in Table 1 (reproduced from [9]). In fact, the definition based on the C-

18

test can now be considered a static precursor10 of Legg and Hutter’s work,
where the environment outputs no rewards, and the agent is not allowed to
make an action until several observations are seen (the inductive inference or
prediction sequence). The point in favour of active environments (in contrast
to passive environments) is that the former not only require inductive and
predictive abilities to model the environment but also some planning abilities
to effectively use this knowledge through actions. Additionally, perceptions,
selective attention, and memory abilities must be fully developed. Not all
this is needed to score well in a C-test, for instance.

In our opinion, one of the most relevant contributions in [9] is that their
definition of universal intelligence allows one to formally evaluate the the-
oretical performance of some agents: a random agent, a specialised agent,
..., or a super-intelligent agent, such as AIXI [44], which is claimed to be
the agent that, if ever constructed, would score the best in the universal
intelligence test.

Legg and Hutter devote a special section in [9] to address typical criti-
cisms that a formal definition of intelligence based on ideas borrowed from
Solomonoff prediction might raise. We basically agree with Legg and Hut-
ter’s defence of these criticisms because we have faced similar ones in the
past. This also means that we refer the reader to [9][3][4][5][7][13]. Thus, we
will not devote any further space in this paper to typical issues on the whys
and whens of machine intelligence measurement, its relation to the Turing
Test, and other tests proposed so far.

Taking Legg and Hutter’s definition of Universal Intelligence as a basis, in
the quest for a refinement and improvement of their work (as their work can
be seen as an interactive variant of ours), we must first address some issues
that, in our opinion, may require a clarification or a correction and, once
they are clarified, we will concentrate on developing an anytime universal
intelligence test.

First of all, Table 1 from [9] should, in our opinion, be understood as
shown in Table 2. That means, as Legg and Hutter admit, that their defini-

10In fact, in Legg’s Ph.D. dissertation (section 3.1.7) [29], it is shown that sequence
prediction (which is used in Hernandez-Orallo’s and Dowe and Hajek’s works) is a spe-
cial case of what they call chronological environments (which is used in Universal Intel-
ligence). One important detail is that in the C-test, a universal distribution based on
Kt (Levin’s resource-bounded version of Kolmogorov complexity) is used instead of (the
non-computable) K (original version of Kolmogorov complexity).

19

Universal agent Universal definition Universal test
Passive
environment

Solomonoff
prediction

Comprehension ability
based on C-test [7],
Inductive ability

C-test [6],
Induction-enhanced
Turing Test [3]

Active
environment

AIXI Universal intelligence ?

Table 2: Intelligence tests in passive and active environments (clarification).

tion is not a practical test and, for the moment, cannot be used to evaluate
intelligent agents. On the contrary, other tests [3][4][5][7] have shown that
evaluation is feasible (with some limitations, as shown in [13]). In any case,
[9] is a good example of the fact that having a definition of intelligence does
not directly provide us with a means of measuring intelligence (i.e., an intelli-
gence test). Nevertheless, here we claim the reverse is true: having a general,
well-grounded, and formal intelligence test provides us with a definition of
intelligence.

3.3. Definition of Universal Intelligence

We have just stated above that having a definition of intelligence does
not directly provide us with an intelligence test. In order to see why Legg
and Hutter’s definition of Universal Intelligence is not valid for testing (even
with several modifications), we need to take a look at the definition. Their
definition is based on the reasonable idea that intelligence is performance in a
variety of environments. However, this “variety” of environments is addressed
by Legg and Hutter in a straightforward way: choose all of them. Then, given
an agent π, its universal intelligence Υ (using the expected cumulative reward
from Definition 1) can be given by the following definition:

Definition 5. Universal Intelligence [9]

Υ(π, U) :=
∞∑
µ=i

pU(µ) · V π
µ =

∞∑
µ=i

pU(µ) · E

(
∞∑
i=1

rµ,πi

)

where µ is any environment coded on a universal machine U , with π being
the agent to be evaluated. With pU(µ), we assign a probability to each
environment, although these probabilities will not add to 1.

20

Since we have infinitely many environments, we cannot assign a uniform
distribution to the environments. The solution is to use the universal dis-
tribution over a given machine U, as seen in Section 3.1 (Definition 3), by
properly adapting the coding of environments as strings in U , and assuming
that the class of environments is recursively enumerable (see page 63 of [29]
for details).

And, finally, since we have a sum of infinitely many environments, Legg
and Hutter discuss several ideas to avoid the accumulated rewards V π

µ being
infinite. In their discussion, the recurrent issue of environments where agents
can be greedy or more long-term far-sighted appears [30] (an issue which
is also persistent in the area of reinforcement learning). But, in the end,
they come up with a single constraint that they finally impose on every
environment:

Definition 6. Reward-bounded Environment
An environment µ is reward-bounded iff for all π:

V π
µ ≤ 1

Example 1 in Section 2.2 does not conform to this limitation because
a 1 reward can be obtained several times. However, Example 2 (below) is
reward-bounded:

Example 2. Consider a test setting where a robot (the agent) can press one
of three possible buttons (A = {B1, B2, B3}), rewards are just a variable
score (R = [0..1]) and the observation set derives from three cells where a
ball must be inside one of them (O = {C1, C2, C3}). An example of a possible
environment is:

µ(rk|r1o1a1r2o2a2...rk−1ok−1ak−1) =
1 if

{
{(ak−1 = B1 and ok−1 = C1) or (ak−1 = B2 and ok−1 = C2) or

(ak−1 = B3 and ok−1 = C3)} and (rk = 1/2k−1)

1 if

{
¬{(ak−1 = B1 and ok−1 = C1) or (ak−1 = B2 and ok−1 = C2) or

(ak−1 = B3 and ok−1 = C3)} and (rk = 0)
0 otherwise

The observation ok in both cases is randomly generated with a uniform
distribution between the three possibilities in O. The first reward (r1) is 0
(we start the game giving nothing to the agent). The robot has the behaviour

21

of always pressing button B1, i.e., π(B1|X) = 1 for all sequences X. Conse-
quently, the performance of the robot in this environment is:

V π
µ = E

(
∞∑
i=1

rµ,πi

)
= r1 + E

(
∞∑
i=2

rµ,πi

)
= 0 +

1

3

∞∑
k=2

1

2k−1
=

1

3

∞∑
k=1

1

2k
=

1

3

So, in this environment, rewards get smaller as k gets larger. This means
that most of the overall reward depends on the first actions.

The numerical value given for each reward ri is used to compute the
overall expected reward V π

µ , but physical rewards can be a function of each
reward ri, in order to keep the attention of the agent. For instance, for an
ape, a banana can be given whenever ri > 0, independently of the magnitude
of ri.

4. Addressing the Problems of the Definition of Universal Intelli-
gence

Definition 5, although very simple, captures one of the broadest defini-
tions of intelligence: “the ability to adapt to a wide range of environments”.
However, there are three obvious problems in this definition regarding mak-
ing it practical. First, we have two infinite sums in the definition: one is
the sum over all environments, and the second is the sum over all possible
actions (agent’s life in each environment is infinite). And, finally, K is not
computable. Additionally, we also have the dependence on the reference ma-
chine U . This dependence takes place even though we consider an infinite
number of environments. The universal distribution for a machine U could
give the higher probabilities (0.5, 0.25, ...) to quite different environments
than those given by another machine V .

Despite all these problems, it seems that just making a random finite
sample on environments, limiting the number of interactions or cycles of the
agent with respect to the environment and using some computable variant of
K, is sufficient to make it a practical test. However, on the one hand, this is
not so easy, and, on the other hand, the definition has many other problems
(some related and others unrelated).

22

4.1. On the Difficulty of Environments

The first issue concerns how to sample environments. Just using the
universal distribution for this will mean that very simple environments will
be output again and again. Note that an environment µ with K(µ) = 1
will appear half of the time. Of course, repeated environments must be
ruled out, but a sample would almost become an enumeration from low
to high K. This will still omit or underweight very complex environments
because their probability is so low. As an example, the (approximately) 16
environments of complexity that are less or equal to 4 would have about 95%
of the weight and a ridiculous 5% for the (overwhelming) rest, where more
interesting things might happen. Furthermore, measuring rewards on very
small environments will get very unstable results and be very dependent on
the reference machine. And even ignoring this, it is not clear that an agent
that solves all the problems of complexity that are lower than 20 bits and
none of those that are more than 20 bits is more intelligent than another
agent who does reasonably well on every environment. As an example, a
genius who is not very adept at simple things would score badly11,12.

Before going on, we need to clarify the notions of simple/easy and com-
plex/difficult that are used here. For instance, just choosing an environment
with high K does not ensure that the environment is indeed complex.

Example 3. Consider, for instance, that a relatively simple environment µ1

with high K has a behaviour with no pattern until cycle i = 1000 and then it
repeats the behaviour from then on indefinitely. K will be high because 1,000
cycles must be coded, but the pattern is relatively simple (a repetition) if the
agent has a big memory and interacts for thousands of cycles.

11Hibbard [45] proposes only including environments of complexity greater than a pos-
itive integer L. Besides, this reduces the dependency on the reference machine. However,
how to choose an appropriate value for L is not clear. Furthermore, the exclusion of simple
environments is a problem for evaluating subjects with low intelligence levels. Also, large
environments usually require more time for an agent to interact inside in order to get a
reliable assessment.

12Wallace [12](secs. 2.14 and 2.15) gives a way of modifying the weights from wj = 2−j

so that they decay very slowly but still add to 1. Another (very related) possibility is
to modify the original distribution very slightly to a distribution that is uniform over all
low-complexity environments up to some threshold and then has very slowly decreasing
weights.

23

Environment with high K ⇐= Intuitively complex (difficult) environment
Environment with low K =⇒ Intuitively simple (easy) environment

Figure 3: Relation between K and intuitive complexity.

Now consider a second environment µ2 with high K that goes as follows:
for any action, output the same observation o and reward r, except when
the interaction i is a power of 2. In this case (and only in this case), the
observation and reward depend on a quite complex formula over the previous
actions. It is easy to see that in a much higher number of cycles the behaviour
of the environment is simple while only in a few cycles the environment will
require a complex agent’s behaviour.

Finally, consider, e.g., an environment µ3 with only two possible ac-
tions such that every sequence of actions leads to very simple “subenviron-
ments” (subtrees in the decision tree), except one specific sequence of actions
a1, a2, ..., an which leads to a complex subenvironment. Logically, the com-
plexity of this environment is high, but only 1 of 2n action combinations will
make the complex subenvironment accessible and visible for the agent. Conse-
quently, with a probability of (2n− 1)/2n, the agent will see this environment
µ3 as very simple.

The issues raised with the first two environments µ1 and µ2 can also take
place with strings, but the third environment µ3 shows that the notion of
easy or difficult is not the same for strings as for environments. In the case
of an environment, an agent will only explore a (generally) small part of
it. In general, the relation between intuitive complexity and K is one of
the recurrent issues in Kolmogorov complexity, and this has motivated the
development of variants (such as logical depth, see [2] for details).

As Figure 3 illustrates, the relation is unidirectional; given a low K, we
can affirm that the environment will look simple. On the other hand, given
an intuitively complex environment, K must be necessarily high.

Given the relation shown in Figure 3, only among environments with
high K will we find complex environments, and, among the latter, not all of
them will be difficult. From the agent’s perspective, however, this is more
extreme, since many environments with high K will contain difficult patterns
that will never be accessed by the agent’s interactions. As a result, the envi-
ronment will be probabilistically simple. This will be crucial later on, as we
can consider most environments with high K as a kind of aggregate of the

24

environments of lower K. And this also means that environments are typi-
cally seen by agents as being much simpler than they really are since many
of the patterns that these environments include can be (probabilistically) in-
accessible. Therefore, only very simple patterns will be shown. Thus, giving
most of the probability to environments with low K means that most of the
intelligence measure will come from patterns that are extremely simple.

4.2. Selecting Discriminative Environments

Furthermore, many environments (either simple or complex) will be com-
pletely useless for evaluating intelligence, e.g., environments that stop inter-
acting, environments with constant rewards, or environments that are very
similar to other previously used environments, etc. Including some, or most,
of them in the sample of environments is a waste of testing resources; if we
are able to make a more accurate sample, we will be able to make a more
efficient test procedure. The question here is to determine a non-arbitrary
criterion to exclude some environments. For instance, Legg and Hutter’s
definition forces environments to interact infinitely, and since the description
must be finite, there must be a pattern. This pattern can eventually be
learned (or not) by the examinee. However, this obviously includes environ-
ments such as “always output the same observation and reward”. In fact,
they are not only possible but highly probable on many reference machines.
Another pathological case is an environment that “outputs observations and
rewards at random”13. However, this has a high complexity if we assume
deterministic environments. In both cases, the behaviour of any agent on
these environments would almost be the same. In other words, they do not
have discriminative power. Therefore, these environments would be useless
for discriminating between agents14.

In an interactive environment, a clear requirement for an environment to
be discriminative is that what the agent does must have consequences on

13In practice, this should be pseudo-random, which implies that there is a pattern, like
the program for a pseudo-random number generator or a simple program that outputs the
digits of the number π.

14The C-test [6] avoided some of the previous problems through the use of the notion
of projectibility of sequences and the use of patterns of several complexities. Literally
adapting this idea to environments is possible, but it would require some highly elaborate
concepts, such as a similarity between environments, which would be difficult to implement
in practice.

25

rewards. Without any restriction, many (most) simple environments would
be completely insensitive to agents’ actions. As mentioned above, in [29], a
taxonomy of environments is developed, and the concept of ergodic MDPs
is presented. Ergodic MDPs are characterised by making any possible ob-
servation reachable (in one or more cycles) from any state. That means
that at any state, agents’ actions can recover from a bad previous decision.
However, this taxonomy and the class of ergodic MDPs is not used to refine
the definition given in [9]. In any case, we think that ergodic MDPs are
quite a restriction, since many real environments do not give us a “second
chance”. If “second chances” are always available, agents’ behaviours tend
to be greedier and less reflective. Furthermore, it seems easier to learn and
succeed in this class of environments than in a general class.

Instead, we will restrict environments to be sensitive to agents’ actions.
That means that a wrong action (e.g., going through a wrong door) might
lead the agent to part of the environment from which it can never return
(non-ergodic), but at least the actions taken by the agent can modify the
rewards in that subenvironment. More precisely, we want an agent to be
able to influence rewards at any point in any subenvironment. This does not
imply ergodicity but reward sensitivity at any moment. That means that we
cannot reach a point from which rewards are given independently of what we
do (a dead-end). This can be formalised as follows:

Definition 7. Reward-sensitive Environment
Given a deterministic15 environment µ, we say it is n-actions reward-

sensitive if, for every sequence of actions a1a2...ak of length k, there exists a
positive integer m ≤ n such that there are two sequences of actions b1b2...bm
and c1c2...cm such that the sum of rewards that are obtained by the sequence
of actions a1a2...akb1b2...bm is different16 to the sum of rewards of the sequence
a1a2...akc1c2...cm.

Note that Definition 7 does not mean that any action has an impact on

15The restriction to deterministic environments is made because, otherwise, the defini-
tion should be defined in terms of the expectation of the sum of rewards. This is perfectly
possible, like choosing between a fair dice and a loaded dice produces different expected
results. For the sake of simplicity, we have assumed deterministic environments.

16We could set up several degrees of sensitivity by establishing a minimum threshold on
this difference. For instance, max(R)−min(R), i.e., the difference between the maximum
possible reward and the minimum possible reward, could be a good choice (if n� 1).

26

rewards (immediately or subsequently), but that at any point/time there are
always at least two different sequences of actions that can lead the agent
to get different accumulated rewards for n interactions. That means that
these environments can have an agent stuck for a time (in a “hole”) if the
good actions are not taken, but there is a way to get out of there or at least
to find different rewards inside the hole. In other words, they do not have
heaven/hell points nor do they have a passive “observer” behaviour, so at
any point the agent can strive to increase its rewards (or to keep them from
decreasing).

According to the above definitions, many table games we know are not
reward-sensitive environments. For instance, there are English draughts
(checkers) positions where unavoidably any move leads you to a different
way of losing/winning (assuming certain ability on the opponent’s side or
using the perfect solution given by [46]). But also note that it is not very
difficult to modify the scoring to make it fully reward-sensitive by assigning
points to the score that depend on the moves and position before losing (e.g.,
losing in 45 moves is better than losing in 25 moves).

The restriction of environment classes given by Definition 7 is simply a
practical thing. We do not want to use environments or subenvironments to
evaluate agents when anything the agent can do is useless for changing the
reward. There are many other options to restrict environments in order to
be more discriminative, but probably with a loss of generality. For instance,
environments with high diversity would be desirable, meaning that taking
different actions would usually lead to quite different subenvironments (sit-
uations); however, this is extremely difficult (if not impossible) to formalise.

There is an interesting relation of reward-sensitive environments and the
kind of rewards that are allowed by Definition 3.3 in Section 6 (reward-
bounded environment). In [9], a long discussion about how to distribute
rewards is included and only one restriction is ultimately set: the total reward
must be lower than 1 (Definition 3.3). The reason is mainly that, otherwise,
all agents could accumulate an infinite value in the limit, and we could have
the same score for all. Note that with the original definition, an environment
that gives reward 1 after the first action and then always gives 0 complies with
the reward-bounded restriction, but it is quite useless. The reward sensitive
condition makes this impossible since, at any point in the environment, part
of the total reward must remain in order to be shared among all the following
subenvironments. This does not exclude, in principle, an environment that
gives 0 rewards for thousands of initial actions and then starts giving rewards

27

after this “dead” period. That is the reason why we will typically specify
a small n in the definition of n-actions reward-sensitive environment, which
implies that there must be some reward ‘spent’ after each n or more actions.
An extreme case is when n = 1, where some amount must appear in at least
one of the rewards of the possible actions at any point. Example 2 seen above
is a case of this.

4.3. On Practical Interactions

We are now closer to being able to construct a finite sample of ‘proper’
environments. However, in the original definition, we still have an infinite
interaction with the environment, and we also have that K is not computable.

Limiting the number of interactions is easy to do. We just need to set a
limit of interactions ni for each environment by simply modifying the defini-
tion of expected reward17:

Definition 8. Cumulative Reward on a Finite Number of Interac-
tions

V π
µ (ni) :=

ni∑
k=1

rµ,πk

It would be adequate to make the environments nr-actions reward-sensitive,
with nr ≤ ni so that actions have an effect on rewards in the limited period
of interaction with the environment. A good choice is to make nr = ni.

With this restriction to ni interactions, administering the test seems to be
a finite task, but it is not. Apart from the problem that K is not computable,
it has an additional very important problem: very inefficient environments
are possible since the time that elapses between two observations can be
too large. This means that, even with a short number of environments and
interactions, some tests can be extremely long to take.

There are some options to computably approximate K, with Levin’s Kt
complexity being one popular choice. Although Kt is a computable approxi-
mation to K, this does not mean that it is an efficient approximation. Thus,
in some cases, we would need to check a huge number of operations for a
very small program. Nonetheless, the main problem with this measure is

17Apart from having a finite number of interactions, we also assume the environment to
be deterministic, so this definition turns out to be a calculated reward.

28

that the number of environment interactions is infinite. Consequently, there
is no bound on the time required to execute the environment. A possibility
here is to consider the average time (per bit or, in the case of environments,
for each interaction). However, averaging the time taken on an infinite string
(or environment interaction) can be done in many different ways. Besides,
convergence and computability are not always ensured, and very variable
time-slots can appear for the interactions. A simpler (and more practical)
approach is to consider the maximum time for each output. First, for a uni-
versal Turing machine U and an environment program p in that machine,
we define ∆ctime(U, p, a1:i) as the time required to print the pair 〈ri+1, oi+1〉
after the sequence of actions a1:i, i.e. the (cycle) response time after the
sequence of actions a1:i. From here, we can set the upper bound to the
maximum computational time that the environment can take to output the
reward and the observation after the agent’s action18.

Definition 9. Kt Complexity weighting interaction steps

KtmaxU (µ, n) := min
p such that U(p)=µ

{
l(p) + log

(
max
a1:i,i≤n

(∆ctime(U, p, a1:i))

)}
which means that we sum the length of the coding of the environment (the
length of the program in U) plus the logarithm of the maximum response
time of that environment coding with the machine U . The complexity mea-
sure is bounded by a maximum number of interactions or cycles n, making
its definition computable19. Note that this upper bound can be used in
the implementation of environments, especially for making their generation
computable. This limit n is not only necessary for computability; it is also
practical in some other cases where computability is not a problem but there
is not a maximum. For instance, consider an environment whose ith output
depends on the calculation of whether number i is prime or not20. In this
case, the maximum ∆ctime would not be bounded and, hence, KtmaxU of this

18This definition is clearly inspired by both Levin’s Kt and the speed prior [35].
19Another option is to only consider environments whose maximum response time can

be computed (i.e., proven) (and possibly include the time for proving its response time in
the complexity measure). This would make parameter n unnecessary for Ktmax.

20We now know it is a polynomial problem (it can be solved in polynomial time with
respect to the number whose primality we want to check) [47].

29

sequence would be infinite. Therefore, the environment would be ruled out
if we do not set a limit n.

The complexity function given by Definition 9 ensures that the response
time at any interaction with an environment is bounded, but we still preserve
Occam’s razor in the derived probability. With this new distribution, we
refine the definition for universal intelligence as follows:

Definition 10. Universal Intelligence (finite set of reward-sensitive
environments, finite number of interactions, Ktmax complexity)

Υii(π, U,m, ni) :=
1

m

∑
µ∈S

V π
µ (ni)

where S is a finite subset of m environments being ni-actions reward sensitive
extracted with ptU(µ) := 2−Kt

max
U (µ,ni).

Definition 10 now makes explicit that the reference machine, the number
of environments, and the number of interactions in each are parameters of
the definition. While U is a theoretical necessary choice, both m and ni are
practical requirements to make the test finite. The good thing is that if both
m and ni get higher, their relevance is smaller, and it is also true that the
choice of U is also less important.

Given a finite value for m and ni, we can evaluate several subjects and
compare their scores. The subject with highest score will be considered the
most intelligent, so a test defined from Definition 10 is, in principle, useful
for comparing subjects. However, since rewards are positive, the value of
Υii that is returned is somehow meaningless. This is because as ni gets
higher the value also gets higher, since rewards are always positive and we
just accumulate scores. This is now clear because we have removed all the
other sources of infinity. The attempt by [9] to bound rewards was in the
right direction, but if we infinitely accumulate them for larger ni, we will
get higher and higher values (up to the established bound). Note that this
does not happen for increasing values of m, since m is in the denominator.
Therefore it seems that just putting ni in the denominator would solve the
problem. However, it is precisely the choice of the accumulated reward being
between 0 and 1 which would yield:

∀µ, π : lim
ni→∞

V π
µ (ni)

ni
= lim

ni→∞

E (
∑ni

k=1 r
µ,π
k)

ni
≤ lim

ni→∞

1

ni
= 0

30

The use of reward-bounded environments creates many questions about
the distribution of the rewards since most of the bounded total amount will
be typically given during the first interactions. Therefore, agents will be very
hasty trying to get positive rewards before they are exhausted. Generally,
postponing an important quantity of the total amount to late cycles requires
higher description sizes than do environments that return most of it during
the first interactions. Bounding the rewards may solve some issues, but it
also creates others, and it seems that having rewards throughout along the
life of the agent (as is customary in reinforcement learning) seems a much
more natural option to keep the attention of the examinee.

As we will see in Section 4.5, we do not bound rewards. Instead, we
distribute them by maintaining the constraint of being reward-sensitive on a
finite n. However, the relation between expected intelligence score and the
number of interactions is still quite unclear. This relation is discussed below.

4.4. On Aggregating an Absolute Intelligence Score

The problem of getting an “intelligence score” from Definition 10 is much
more cumbersome than it might seem at first glance. The relation between
the expected score and the values of m and ni is intricate. Let us first
analyse the influence of m, which determines the number of environments
and, indirectly, the Ktmax values of the sample.

The figurative plot shown in Figure 4 shows an example of the expected
score, i.e., assuming an infinite number of interactions, of four agents de-
pending on the complexity Ktmax of the environment. As the figure shows,
the curve for each agent has a lot of information that is difficult to summarise
in a single number.

Three of the four agents behave better for low complexity environments;
even though their curves are not monotonic, the four of them are able to
get some score for more complex environments. This is also a general result
since rewards are positive and, even though rewards can be very sparse in
large environments, this will typically be greater than 0 in the limit. If we
compute the sum of the expected rewards per agent for all the environments,
it is clear why we usually get an infinite value. In fact, we get an infinite
value for the four since the integral of each and all of the four curves between
1 and ∞ is ∞. If, instead of that, we perform an average (dividing by m) as
in Definition 10 and we let m become larger, it boils down to measuring the
value when Ktmax →∞, ignoring the start of the curve. In this case, agents
1, 3, and 4 would have the same intelligence (0.2) while agent 2 would have

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agent 1
Agent 2
Agent 3
Agent 4

Complexity of the Environment

E
xp

ec
te

d
Ac

cu
m

ul
at

ed
 R

ew
ar

d

Figure 4: Figurative evolution of expected accumulated rewards vs. complexity of envi-
ronment.

0.15. If we use a probability that overweights simple environments (as Legg
and Hutter do), agent 4 would dominate over agent 2, agent 2 over agent 1
and (mostly) agent 1 over agent 3. It is, in fact, almost like only considering
the leftmost part of the curve.

Again, one dilemma we face here is whether performing in simple en-
vironments is as important as performing in complex environments, as we
discussed at the beginning of this section. In other words, is the beginning
of the curve important? This dilemma vanishes if we realise that complex
environments also include simple patterns and these will remain much more
frequent than the complex ones. In the case of environments, it is much eas-
ier to see why simple patterns are frequent in complex environments, as we
discussed in Section 4.1. Consider, for instance, an environment µ defined as
follows: if the first action is a1, then behave as environment µ1; otherwise,
behave as environment µ2. If µ1 and µ2 are independent, the overall com-
plexity would be approximately the sum of both; it is clear that µ has two
simpler patterns, each with complexity equal to the complexities of µ1 and µ2

alone21. Furthermore, in large environments, it is more likely to find subenvi-

21This is related (but different) to the fact that any incompressible object (e.g., a se-
quence) must have compressible parts (subsequences) (see, e.g., [2]). Note also that the
existence of simple patterns in large environments is not obtained by the existence of “dead
code” since this is impossible because we are using KU (µ) (or KtmaxU (µ)) instead of l(µ).

32

ronments where a policy ensures very good rewards (as it is also more likely
to find subenvironments where a policy ensures very bad rewards). This is
basically because there can be more diversity. In very simple environments,
however, series of very good rewards might simply not exist. And if these
simple patterns exist in complex environments, intelligent agents will be able
to take advantage of them (note that the number of interactions in Figure 4
is assumed to be infinite), so rewards will be slightly better than those ob-
tained by a random agent with infinite interactions. Consequently, the end
of the curve is some kind of aggregate of all the previous complexities.

As a result, as suggested by [45], should we go directly to environments
of very high complexity as a means of getting an approximate value of in-
telligence? This is completely against Occam’s razor. One way out of this
dilemma is to think that results for low-complexity environments are less
reliable for the overall score than results for high-complexity environments.
However, the problem of using high-complexity environments is that they
also require longer interactions to get good reliability (Figure 4 shows in-
creasing stability on the right because we are assuming an infinite number
of interactions). Consequently, going to very complex environments would
require too much time.

And this is where ni also has to be considered. If we give few interac-
tions to a very complex environment we get poor reliability. In the end if
the number of interactions increases with a fixed given complexity, then an
intelligent agent has more data (more observations) to learn from, and the
results are expected to be better (than those obtained by a random agent).
This is seen in Figure 5. Agent 1 and agent 2 start behaving as a random
agent, but as the history of observations grows through an increasing num-
ber of interactions, they are able to learn and behave better. As a figurative
example, agent 2 is shown to be more eager than agent 1 and starts scoring
better initially, while agent 1 perhaps takes some more risks initially to learn
the environment better and then scores better in the limit. Note also that
since we are plotting accumulated reward (and rewards are always positive),
it also grows for a random agent (independently of whether or not a discount-
ing factor is used). This is counterintuitive, since the expected value for a
random agent should be the same, independently of the number of interac-
tions. One of the most distinctive signs of an agent being intelligent is that
its expected reward increases (in our context, higher than random) as long as
more interactions are given. Consequently, if random agents do not score 0
on average (or another constant) for every environment, we need to calibrate

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Agent 1
Agent 2
Random

Number of interactions (logscale)

E
xp

ec
te

d
Ac

cu
m

ul
at

ed
 R

ew
ar

d

Figure 5: Figurative evolution of expected accumulated rewards vs. number of interac-
tions.

results for each environment in order to compare agent performance in each
of them and also in order to compare and aggregate results from different
environments.

However, the key point is in the relation between m (the number of envi-
ronments, which determines the average complexity) and ni (the number of
interactions which has to be considered in each environment). For instance,
a value of ni = 1000 for an environment of KtmaxU = 5 will usually be enough
to reach the stable part of the curves in Figure 5. However, the same value
for a very complex environment will typically be insufficient. A very intel-
ligent agent might score as a random agent simply because it has not been
given enough observations to capture the underlying models or once it has
captured it, most of the reward has been exhausted since we are considering
reward-bounded environments. Therefore, the result will not be much differ-
ent from that of a random agent. This also suggests that for a finite number
of interactions, the appearance of Figure 4 might be different. The expected
reward for very complex environments could be the same for a relatively in-
telligent agent as for a random agent since the former would not have enough
interaction steps to learn from the environment.

From this discussion, we see that increasing values for m may entail a
worse expected result (since more complex environments are allowed) and
increasing values for ni certainly entail better results (a larger number of
interactions is allowed to learn the pattern). This suggests that we could

34

apply a correction in the score. The following definition revisits the previous
definitions of accumulated reward and formalises this idea:

Definition 11. Adjusted Reward
Given an environment µ of complexity ξµ = Ktmax(µ, ni), with ni being

the number of completed interactions, then the adjusted cumulative reward
for agent π is defined as follows:

W π
µ (ni) = V π

µ (ni) · Φ(ni, ξµ)

such that Φ(x, y) is a function that is decreasing in x and increasing in y.

The function Φ(x, y) should be determined theoretically or experimentally
(or a combination of both). However, this does not seem easy, especially
because this relation depends on each environment. This would possibly
include some bias and would be a source of permanent discussion. In what
follows, and especially in Section 5 with the notion of an adaptive test, we
will try to get rid of this adjustment.

4.5. Symmetric Rewards and Balanced Environments

Note that the influence of ni in Υ (Definition 10) is twofold. On the one
hand, we have the effect of having more observations to let an intelligent agent
learn and get better rewards. On the other hand, we have the effect of using
cumulative rewards as a payoff function that affects any agent, including a
random agent. Thus, an increase in the score may originate from a really good
behaviour on the environment or just because more rewards are accumulated
since they are always positive. As a result, an average reward seems a better
payoff function. However, an average is not possible with Legg and Hutter’s
reward-bounded constraint (since this would converge to 0). Consequently,
we are going to revisit the constraints on rewards. Our proposal is to use
symmetric rewards, which can range between −1 and 1:

Definition 12. Symmetric Rewards
We say an environment has symmetric rewards when:

∀i : −1 ≤ ri ≤ 1

Note that this does not preclude the accumulated reward at a certain
point from being greater than 1 or lower than −1. Thus, if we do many good

35

actions in a row, we can have an accumulated reward that is greater than
1. With regard to physical implementation, negative rewards do not have to
be associated with punishment, which is considered unethical for biological
individuals. For instance, if we are evaluating an ape, rewards from −1 to
−1/3 might imply nothing, from −1/3 to 1/3 a piece of fruit, and from 1/3
to 1 two pieces. Or a negative reward may imply removing a previously
awarded fruit.

If we set symmetric rewards, we also expect environments to be symmet-
ric, or more precisely, to be balanced on how they give rewards. This can
be seen in the following way. In a reliable test, we would like that many
(if not all) environments give an expected 0 reward to random agents. The
following definition formalises this.

Definition 13. Balanced Environment
An environment µ is balanced iff

1. It has symmetric rewards, i.e.: ∀i : −1 ≤ ri ≤ 1
2. Given a random agent πr, the following equality holds22:

V πr
µ = E

(
∞∑
i=1

rµ,πi

)
= 0

This excludes both hostile and benevolent environments, i.e., environ-
ments where doing randomly will get more negative (respectively positive)
rewards than positive (respectively negative) rewards. In many cases it is
not difficult to prove that a particular environment is balanced. For com-
plex environments, the previous constraint could be tested experimentally.
Another approach is to set a reference machine that only generates balanced
environments (as shown in some examples in Section 6).

Note that the previous modifications on rewards now allow us to use an
average rather than an accumulated reward, namely:

Definition 14. Average Reward

22Note that the expected value must be 0 in the limit. For infinitely many ni, the
expected value can be different from 0. Even for deterministic environments, the series of
accumulated rewards might be divergent, i.e., the value limni→∞ V πr

µ (ni) might not exist
and we assume a Cesàro limit (limni→∞

1
ni

∑ni

j=1 V
πr
µ (ni)).

36

Given an environment µ, with ni being the number of completed interac-
tions, then the average reward for agent π is defined as follows:

vπµ(ni) =
V π
µ (ni)

ni

And we can calculate the expected value (although the limit may not
exist) of the previous average, denoted by E(vπµ), for an arbitrarily large
value of ni. Let us see this with an example:

Example 4. Consider a modification of the test setting that we saw in Ex-
ample 2. A robot (the agent) can press one of three possible buttons (A =
{B1, B2, B3}), rewards are just the handing over of no bananas, a banana
or two bananas (R = {−1, 0, 1}), and the observation set derives from three
cells where a white and black ball must each be inside one (but a different)
cell, namely (O = {0WB, 0BW,W0B,B0W,WB0, 0BW}), where W de-
notes the cell has a white ball, B denotes the cell has a black ball, and 0
denotes that it is empty. With x, we denote a variable symbol denoting any
possible symbol in {0,W,B} where two separate occurrences of x do not have
to be equal. An example of a possible environment is:

µ(rk|r1o1a1r2o2a2...rk−1ok−1ak−1) =

1 if

{
{(ak−1 = B1 and ok−1 = Wxx) or (ak−1 = B2 and ok−1 = xWx) or

(ak−1 = B3 and ok−1 = xxW)} and (rk = +1)

1 if

{
{(ak−1 = B1 and ok−1 = Bxx) or (ak−1 = B2 and ok−1 = xBx) or

(ak−1 = B3 and ok−1 = xxB)} and (rk = −1)

1 if

¬{(ak−1 = B1 and ok−1 = Wxx) or (ak−1 = B2 and ok−1 = xWx) or

(ak−1 = B3 and ok−1 = xxW)} and
¬{(ak−1 = B1 and ok−1 = Bxx) or (ak−1 = B2 and ok−1 = xBx) or

(ak−1 = B3 and ok−1 = xxB)} and (rk = 0)
0 otherwise

The observation ok is generated as a uniformly random choice between
these four observations {0WB, 0BW,W0B,WB0}. The first reward r1 is 0.

A first robot (π1) has the behaviour of always pressing button B1, i.e.,
π1(B1|X) for all sequences X. Consequently, the performance of π1 in this
environment is:

37

E(vπ1
µ) = Eni→∞

(∑ni
k=1 r

µ,π1

k

ni

)
=

2

4
lim
ni→∞

ni
ni

+
2

4
lim
ni→∞

0

ni
=

1

2

A second robot (π2) has the behaviour of always pressing button B2, i.e.
π1(B2|X) for all sequences X. Consequently, the performance of π2 in this
environment is:

E(vπ2
µ) = Eni→∞

(∑ni
k=1 r

µ,π2

k

ni

)
=

1

4
lim
ni→∞

ni
ni

+
2

4
lim
ni→∞

−ni
ni

+ lim
ni→∞

0

ni
= −1

4

A third robot (π3) has the behaviour of always pressing button B3, i.e.
π3(B3|X) for all sequences X. Consequently, the performance of π3 in this
environment is:

E(vπ3
µ) = Eni→∞

(∑ni
k=1 r

µ,π3

k

ni

)
=

1

4
lim
ni→∞

ni
ni

+
2

4
lim
ni→∞

−ni
ni

+ lim
ni→∞

0

ni
= −1

4

A fourth robot (π4) has a random behaviour. Then the performance of π4

is:

E(vπ4
µ) = Eni→∞

(∑ni
k=1 r

µ,π4

k

ni

)
=

3

3

(
2

4
lim
ni→∞

ni
ni

+
1

4
lim
ni→∞

−ni
ni

+
1

4
lim
ni→∞

−ni
ni

)
= 0

Equivalently, we can get this by averaging π1, π2 and π3.
Consequently, agent π1 is better than random (π4) in this environment,

and π2 and π3 are worse. And, finally, since the expected overall reward of a
random agent is 0, this environment is balanced.

Let us now give a more refined definition of universal intelligence using the
new symmetric rewards, the balanced environments and the average rewards:

Definition 15. Universal Intelligence (finite set of reward-sensitive
and balanced environments, finite number of interactions, Ktmax

38

complexity) with adjusted score

Υiii(π, U,m, ni) :=
1

m · ni

∑
µ∈S

W π
µ (ni)

where S is a finite subset of m balanced environments being ni-actions reward
sensitive extracted with ptU(µ) := 2−Kt

max
U (µ,ni).

We still maintain the weighted reward (from Definition 11), which in-
cludes the function Φ.

5. Time and Intelligence

Definition 15 given above is now feasible and stable with respect to vary-
ing m and ni. But the main criticism is that, provided that “universal
intelligence could be viewed as generalising the C-test from passive to active
environments” [9], there is no reference to (physical) time. How can an in-
teractive extension disregard time? How can a very slow agent be considered
as equally intelligent as a very quick agent with the same result? Also, how
can we administer a test disregarding physical time? We need to evaluate
intelligence in a finite period of time. And the use of physical time may refer
either to the environment or to the agent since both interact and both of
them can be either fast or slow.

If we consider how physical time may affect an environment, i.e., the
environment’s speed, it is unacceptable to have an interactive test where the
agent has to wait several hours after each action in order to see the reward
and the observation. We expect the environment to react immediately. With
the use of Ktmax, and the complexity levels we expect to reach, it will almost
always be the case that the environment’s reactions will be perceived as
immediate. Under these circumstances, there need not be a great concern
about the environment’s speed in our test setting.

On the other hand, when we generally refer to time when measuring
intelligence, especially in non-interactive tests, it is assumed that we are
talking about the agent’s speed. This is much more controversial in general
(and also in our setting). A quick reference is made on page 426 in [9]: “while
we do not consider efficiency to be a part of the definition of intelligence, this
is not to say that considering the efficiency of agents is unimportant”. The
reference to time has also been made in [5], [7] and [32, footnote 202].

39

This issue is also recurrent in psychometrics, with a strong debate about
the correlation of “inspection time” and intelligence. Nonetheless, time is
generally introduced in typical IQ tests in an indirect way since the examinees
have a fixed time to do the test. Conversely, one can think that speed and
intelligence are different things. We could measure intelligence and the speed
of answers/reactions separately. In fact, in psychometrics, tests are usually
categorised into either speed tests or potential tests, with intelligence tests
being inside the latter category. The rationale behind this is that many
difficult problems seem unsolvable by dull agents even if they are given infinite
time. Even though this is probably true, considering time and intelligence to
be independent is quite an assumption. Some systems are able to produce a
reasonable action in a short period of time, and they can improve the action
if they are given more time. Intuitively, these systems seem more adaptable
than others that do not come up with any good action until a long period of
time has passed.

Also, there are other conceptual problems that are associated with ignor-
ing time in an intelligence definition: constructing intelligent systems would
seem less difficult than it actually is since disregarding computational com-
plexity would be an option. For instance, an inefficient and exhaustive search
method (see, e.g., [32, footnote 199]) might be appropriate for intelligence.

Consequently, there is a need to consider time, either as a limit to get
agents’ actions or as a component of the final score. The inclusion of time in
the test can be done in such a way that its influence can be adjusted, from
cases where we want to test good and quick responses to other cases where
time is not so relevant. Another option is to incorporate time in a discrete
way (as we will see in some definitions in the following sections).

One possibility of incorporating time without modifying the original Legg
and Hutter formulation would be to de-couple observations-rewards from ac-
tions in the way that we can get several rewards and observations in a run
without any action. This is in fact implicitly contemplated in the original
definition since a special action known as “no action” can be considered.
However, the time scale between observations and actions (imagine an obser-
vation each nanosecond, or an observation every thousand years) seems to be
a parameter that looks quite anthropomorphic if we set it to some seconds.
Thus, we need to explore some other options.

40

5.1. Time and Rewards
Apparently, there are many options for incorporating time. Considering

that we have an overall time τ for an environment, one option is to set a
time-out τo for each action (with τo � τ) such that if the agent does not
select an action within that time, reward 0 is given (or a random action
is performed). The shorter the time-out is, the more difficult the test is.
However, apart from the problem of setting this time-out in an appropriate
way for different kinds of individuals, consider a very fast agent who does
slightly better than random. If we evaluate this agent during a time τ over an
environment, its strategy would be to perform as many actions as possible
in order to accumulate maximum reward, since the more interactions, the
higher the accumulated score. Apart from the solution of averaging the
rewards and using balanced environments, an alternative possible solution
would be to set a fixed time, a time-slot τs (instead of a time-out) for each
interaction (with τs � τ). But, again, given an overall time τ , how many
equal-length time-slots should we generate? Considering (randomly chosen)
different-length time-slots for several interactions, a quick agent would be
able to perform appropriate actions for more interactions than a slow agent
with the same potential intelligence. However, it is not easy to tune these
time-slots independently from the agent and, in any case, it is not very
sensible to make the agent wait for some observations and rewards if we
want to make a practical and efficient test.

As a result, if we do not assign time-slots, necessarily the rewards obtained
in an environment during an overall time τ must be averaged, otherwise very
fast but dull (slightly better than random) agents would perform well. The
natural idea is to average by the number of interactions that the agent finally
performs in time τ as seen in Definition 14. However, a shrewd policy here
would be to act as a fast random agent until the average reward becomes
larger than a threshold (this can happen with greater or lower probability
depending on the threshold) and then stop acting. For instance, consider an
agent that performs one action randomly. If the reward is positive, then stop
(no other action is performed). If the reward is negative, then act fast and
randomly until the average reward is positive and then stop. Note that this
strategy ensures a positive reward in balanced environments. Consequently,
an agent could get a very good result by very fast (and possibly lucky) first
interactions and then rest on its laurels, because the average so far was good.

One way to minimise this problem is to use the time left from the last
action until time τ as a discount over the recent history. Namely,

41

Definition 16. Average Reward with Diminishing History

v̆πµ‖τ :=
1

n∗

n∗∑
k=1

rµ,πk where n∗ =

⌊
nτ

(
tnτ
τ

)⌋
where v̆πµ‖τ means the average reward until time τ (possibly externally inter-
rupted), nτ is the number of completed interactions made by π in µ in time
τ , and tnτ denotes the total time elapsed until the last action ai was made.

This definition scales the number of evaluated cycles proportionally to
the time from the beginning until the last completed action τ . That means
that if the most recent actions have been good and we delay future actions or
let time pass, the measure will soon ignore the recent (good) rewards. If we
stop, in the limit, the measure reaches 0, so it also avoids stopping policies
(for further justifications on these choices, see [48]).

It is clear that as we leave more physical time, generally, an agent can get
more observations (very quickly, almost randomly at first) and then try to
use this knowledge in some other actions. Thus, we again have that results
are expected to improve when τ grows, while they are expected to worsen
when the complexity of environment ξµ grows (if τ remains constant). Con-
sequently, if we were able to relate τ and ξµ, such that complex environments
were allotted more time (as we will do in Section 5.2), we could get rid of Φ.
For the moment, we need the adjusted version of the aggregated reward:

w̆πµ‖τ := Φ′(τ, ξµ) · v̆πµ‖τ

The function Φ′ is similar to Φ, but it considers physical time and not
the number of interactions as the first parameter. And now, with an average
reward and physical time, the goal of Φ′ becomes different. If we want to give
more or less weight to the speed of the agent in the measure of intelligence,
then Φ′ should be different from the case in which we just want to correct
the influence of time. Of course, we can also tune Φ′ to give more or less
weight for simple or complex environments.

Finally, if interactions are limited by physical time, the definition is as
follows:

Definition 17. Universal Intelligence considering time (finite set of
reward-sensitive and balanced environments, finite number of in-
teractions, Ktmax complexity) with adjusted score and using phys-
ical time to limit interactions

42

Υiv(π, U,m, ni, τ) :=
1

m

∑
µ∈S

w̆πµ‖τ

where S is a finite subset of m balanced environments that are also ni-actions
reward-sensitive. S is extracted with ptU(µ) := 2−Kt

max
U (µ,ni).

Note that we use the same value n to bound the limit of consecutive ac-
tions that have to be reward-sensitive and also to make Kt computable. We
should consider here a value of n that is large enough and still makes the
computation of Kt feasible. If the number of interactions used to calculate
Kt is eventually surpassed, we could just limit the response time for subse-
quent interactions to become the calculated maximum response time until
interaction n.

5.2. Anytime Evaluation with Time

Using two different parameters for the number of environments (m) and
the overall time left (τ) for each environment is an important bias (apart from
the effect they have on the measurement) even if minimised by function Φ′.
If we allow many environments with a small number of interactions in each,
many agents will be unable to find patterns and take advantage of them.
Leaving many interactions to let agents find the patterns would allow us to
explore only a few environments. In other words, there are also practical
reasons to find a trade-off between the parameters m and ni in Definition 15,
and the relation between m and τ in Definition 17. If we want to test a system
with high intelligence, these values should be chosen accordingly: apparently
we should use few but more complex environments with more time interacting
with them. On the other hand, if we want to test a less competent system, we
should use many simple environments with possibly less time interacting with
them. This suggests that in order to take advantage of a limited available
time, we should carefully choose some parameters before applying the test
according to our expectations about the examinee. Although this is typical
in psychometrics, and we have different kinds of tests for different levels
of intelligence (non-human animals, infant or adult humans, etc.), it is not
acceptable for a general test. The key point here is that tests cannot be
independently configured before administration, since the complexity and
time of the exercises would be set beforehand depending on the subject,
and the results would not be comparable. Instead, we need tests to be
adaptive to the examinee’s level of intelligence. And this adaptation must be

43

done automatically and equally for all (quite differently to a Turing Test, for
instance, where there is an adaptation, but it is quite subjectively conducted
by a human).

The idea of adapting the test to the examinee is known in psychometrics
as Adaptive Testing and, since the tool which is typically used to adapt
the questions/items to the examinee is a computer, the area is known as
Computerized Adaptive Testing (C.A.T., see e.g. [49]). C.A.T. is based on
a calibration of items in order to know their difficulty. This must be done
by taking information from previous test administrations, so necessarily the
difficulty of an item is subjective to the population that has been used as
examinees in the past. Following this idea, a more sophisticated approach
that is generally used in C.A.T. is known as Item Response Theory (IRT)
[50][51], where not only a difficulty score is assigned to each item but a richer
Item Response Function or Curve is assigned. These functions allow for an
optimised item selection based on the examinee’s cognitive demand features,
providing results that help understand what is being measured and adapting
the test to the level of the individual being examined. An extra sophistication
is when the adaptation to the examinee is not purely statistical but tries to
learn from the examinee using cognitive theory or even artificial intelligence.
Items generated from cognitive theory and analysed with IRT are a promising
tool, but these models are not yet mainstream in testing [16][15][52].

Not only do we want a test to be adaptive, but we want to have a test
that, given a small slot of time, we could have a rough approximation of the
intelligence of the agent. On the other hand, if given more time, we could
have a better approximation. It would also be interesting to be able to stop
the evaluation at any moment and get an approximation. In other words,
we would like to have an anytime test (an anytime algorithm is an algorithm
that can be stopped at any time, giving a reasonable answer for the time
given). Again, some approaches from C.A.T. fulfil (or can be easily adapted
to) this requirement.

All of this research in C.A.T. can be useful to a greater or lesser extent
for constructing a universal and adaptive test. In our case, however, the
difficulty of each item is determined theoretically and not experimentally.
We propose the idea of adapting both the complexity of the environments
and the testing time that we assign to each of them. One possibility is to
define two counters: one for the (Ktmax) complexity (denoted by ξ) of the
environment and another for (physical) time (denoted by τ), the time that
we leave to play with one environment before switching to a different one.

44

Therefore, since we do not know the intelligence or the speed of the agent, we
need to start with very simple problems and very small time slots to play with
each environment. We will produce progressively more complex problems and
we will leave more time for each environment. But since many individuals
will only be able to learn and interact reasonably at some small ranges of
complexity if given a limited time, there must be a mechanism to also degrade
the complexity if the agent does not score well on the environments23 (this
is the meaning of adaptive, here).

Therefore, to design the adaptation policy of the modified test, the first
question is to determine the complexity level and the speed scale at which we
should start. In C.A.T., a typical choice is to start at an intermediate level
of ability/difficulty because we have some expectations on the individual’s
ability or, at least, we have a wide range from which we can establish a
middle point. However, when evaluating an unknown agent (which might
be a very intelligent human or an incredibly dull software agent), we cannot
assume any base intelligence. Similarly, we cannot assume any speed scale
(humans have typical response times in the order of seconds, but a software
agent might have response times which might be much more variable, from
microseconds to hours of computation). Consequently, the proposal is to
start with the smallest possible value for complexity (ξ = 1, or the lowest
value such that its (Ktmax) complexity gives a valid environment) and the
smallest possible value for time (τ = Planck time, ≈ 10−43 seconds, or, more
practically, a value around current agent technology, e.g. 1 microsecond). It
is easy to modify these start values if we have some information about the
capabilities of the examinee.

The second question is the pace and directions at which ξ and τ have
to be modified. If we think about complexity, the idea is to apply a servo-
control adaptation to increase ξ when the agent is able to deal with the
environment’s complexity and the time scale and to decrease ξ otherwise.
This kind of regulation is also typical in C.A.T. Thus, ξ will be incremented

23Again, using lower values for ξ ensures simple environments, but higher values for ξ
do not guarantee difficult environments (nor are they much more likely, but just possible).
Moreover, in complex environments, we may find subenvironments where there is a policy
that ensures very good rewards. On the contrary, for simple environments, even though
we assume reward-sensitivity, we will seldom find a sequence of actions that ensure good
indefinite rewards. In other words, large environments have more diversity and offer more
opportunities.

45

when the agent succeeds in an environment, and ξ will be decremented when
the agent fails in an environment. A detail we have to consider is that we will
not allow an agent to play with the same environment twice (which would
allow rote memory learning with an already seen environment). Since there
is a limited number of environments with a complexity lower than a given
ξ, if a very bad agent exhausts all the environments with complexity lower
than a given ξ, we will increase ξ in order to avoid environment repetitions.

With regard to time, we need to increase it until it matches the agent’s
time resolution/scale. The difference here is that if an agent reacts with an
action in approximately a second, initially it will not have time to perform
any action if we start with microseconds. In a few iterations, we will reach
τ = 1 second and we will start seeing how the agent performs a few actions.
Finally, with some more iterations, when this value is incremented further
(e.g. τ = 2 minutes), we will allow more actions in the same environment
and the agent will work within its time scale.

The final question is therefore the precise pace of increasing/decreasing
complexity and increasing time. To allow quick adaptation, an exponential
growth for time could be used, and complexity variations could depend on
the reward value. The following definition specifies this.

Definition 18. Anytime Universal Intelligence Test taking time into
account
We define Υv(π, U,H,Θ) as the result of the following algorithm, which can
be stopped anytime:

46

1. ALGORITHM: Anytime Universal Intelligence Test

2. INPUTS: π (an agent), U (a universal machine), H (a complexity function),

Θ (test time, not as a parameter if the test is stopped anytime)

3. OUTPUTS: a real number (approximation of the agent’s intelligence)

4. BEGIN

5. Υ← 0 (initial intelligence)

6. τ ← 1 microsecond (or any other small time value)

7. ξ ← 1 (initial complexity)

8. Sused ← ∅ (set of used environments, initially empty)

9. WHILE (TotalElapsedTime < Θ) DO

10. REPEAT

11. µ← Choose(U, ξ,H, Sused) (get a balanced, reward-sensitive

environment with ξ − 1 ≤ H ≤ ξ
not already in Sused)

12. IF (NOT FOUND) THEN (all of them have been used already)

13. ξ ← ξ + 1 (we increment complexity artificially)

14. ELSE

15. BREAK REPEAT (we can exit the loop and go on)

16. END IF

17. END REPEAT

18. Reward← V π
µ ‖τ (average reward until time-out τ stops)

19. Υ← Υ +Reward (adds the reward)

20. ξ ← ξ + ξ ·Reward/2 (updates the level according to reward)

21. τ ← τ + τ/2 (increases time)

22. Sused ← Sused ∪ {µ} (updates set of used environments)

23. END WHILE

24. Υ← Υ/|Sused| (averages accumulated rewards)

25. RETURN Υ
26. END ALGORITHM

The definition has four parameters. Apart from the agent, we have a uni-
versal machine (or an environment class), a complexity function (a function
that returns a positive real number with the complexity of each environment
in the universal machine or in the environment class), and a time limit (which
can be given in advance or used to stop the algorithm anytime). The com-
plexity function can be precalculated for a sufficiently large random sample

47

or pool of environments. As discussed above, our proposal for H is the func-
tion24 Ktmax; however, any other computable complexity function could be
used instead, especially for restricted environment classes (such as those that
will be seen in the examples in section 6).

The selection of environments is made in line 11 of Definition 18. Note
that this function will typically depend on precalculations or prefilters. For
instance, it is preferable to use a universal environment class that only in-
cludes balanced reward-sensitive environments, such as some of those shown
in the examples in Section 6 in this paper (or the one introduced in [53]).
Also, the measurement is more efficient and robust if we leave each environ-
ment running against a random agent for a while before using the environ-
ment. This eliminates any start-up garbage (see, e.g., [53] for a full discussion
on this).

Note that complexity and time have similar updating policies, even though
complexity depends on rewards. Note that complexity is not necessarily a
positive integer number, but a positive real number, so fractions in ξ are
perfectly valid. If rewards are positive, complexity increases. If rewards are
negative, complexity decreases. This dependence on rewards is important in
order to avoid cheating. For example, an agent could cheat by scoring well
(near 1) for very simple environments and the complexity would be upgraded.
Afterwards, the agent could just score sufficiently bad (near −0.01) in order
to be downgraded. This would allow the agent to try easy environments
again and to score very well (near 1). This could be iterated indefinitely. On
average, the scores would be around 0.5, even though the agent has never left
the very simple levels. Although this behaviour is quite pathological, with
the formula in line 20, the increase/decrease of complexity is proportional to
the rewards (like a servomechanism), so going back to easy complexities im-
plies important negative rewards, which are finally counted into the measure
Υ.

Line 18 is the part of the algorithm where the agent interacts with the
environment and where the algorithm waits for the agent’s action. All of the
time that is spent by the algorithm must be included in the environment’s
response time, and should be much shorter than the agent’s time scale. Thus,
the agent would perceive that the environment reacts immediately.

24A sufficiently large value for the parameter n can be used if the environment class
does not ensure a provable bounded execution time per interaction.

48

A figurative trace of the algorithm is as follows. Initially, with a very small
τ , the agent has no time to perform an action (or it has to do something very
quickly without time for thinking, such as a random choice). Therefore,
the agent has an expectation of 0 reward. This means that ξ would not be
increased (since the increase depends on the reward), and the agent would
go for another environment with ξ = 1 (if it exists, otherwise ξ = 2, and so
on). In practice, this means that ξ will hover around small numbers for a
while (since repeated environments are not allowed), but not too long, since
τ grows exponentially. When time gets closer to the agent’s time scale, the
agent can perform better actions, and, if rewards are positive, increase ξ.
The larger Θ is, the higher ξ can be, and more time is left in each of the
environments. This gives more reliability to the aggregated reward and less
dependence on the reference machine. Logically, if very little time is allowed,
speed is crucial. Consequently, the relevance of speed in the measurement is
determined by the time available to do the test.

Whenever the test is stopped, we have an approximation of the agent’s
intelligence by averaging the rewards obtained in all the environments. We
can also have a look at the evolution (the curve) of results depending on
ξ. This information should not be seen as an alternative measurement of
intelligence, but just as some extra information that can help understand
how the test worked out.

The expected results for different kinds of agents are difficult (if not im-
possible) to estimate precisely because they depend on the environment class
used and the reference machine. The only easy case is a random agent, whose
expectation is 0.

Nonetheless, we can make an estimation of the expected intelligence re-
sults of agents with some learning abilities, or to show the maximum value
that can be obtained25. Table 3 shows how the test should work for some
specific types of agents:

Although Table 3 shows figurative results for a human when the test is
administered for several minutes, it is still an open question to know how

25Note that as Θ → ∞ and ξ → ∞, we have very large environments which contain
patterns that can be exploited by the agent. In fact, the probability of an environment µ
appearing (dominated by 2−K(µ)) is similar to the probability of subenvironment µ being
reached by a random interaction inside a randomly chosen µ′ (according to the same
probability distribution but with K(µ)� K(µ′)). Whether this holds for KtmaxU is to be
confirmed in order to ensure non-zero convergence for Θ→∞.

49

Expected Υ and
attained level if
test stopped very
early (e.g. mi-
croseconds)

Expected Υ and
attained level if
test stopped after
several minutes.

Expected Υ and
attained level
if test could go
on indefinitely
(actual value).

Random very fast agent Υ = 0, ξ > 0 Υ = 0, ξ � 0 Υ = 0, ξ =∞
Relatively slow intelligent
agent (e.g. a human)

Υ = 0, ξ = 0 Υ > 0, ξ > 0 Υ > 0, ξ =∞

Very fast super-intelligent
agent (or an oracle)

Υ > 0, ξ � 0 Υ > 0, ξ � 0 Υ > 0, ξ =∞

Table 3: Figurative expected results on the anytime test for several prototypical agents
for Υ (from Definition 18) and the expected complexity level which may be attained.

much time is required to have a good assessment of intelligence of, let us
say, a human or an ape, and whether this required time would make the
tests practical. It is different for machines since we can invest more time for
intelligence assessment (since the test is completely automated and it does
not require human intervention). The reason for showing the complexity
level (and not only the aggregated value of intelligence) in Table 3 is to help
understand how the test works. It is not our intention to use ξ as another
cognitive factor or to define intelligence as a tuple of values that represent
different factors.

The effect on the time required for the test is an issue since, given a fixed
time Θ, the reliability of the estimation of intelligence of slow agents will
be poorer than the estimation of intelligence of fast agents26. Speed is also
considered in Definition 18 in the score since a slow agent will receive many
0 results until the values for τ reach the agent’s time scale. According to
Definition 17, only when the agent can see enough observations will it be
able to make good actions and improve its average result. Finally, there is a
relation between the time available for the test and the relevance of speed:
the higher Θ is, the lower the influence of speed in the measurement is.

26For ultra-intelligent systems, a small value of Θ could also give an understimated
score.

50

5.3. Anytime Evaluation Disregarding Time

Although the algorithm in Definition 18 has been designed to consider
physical time, it can be easily converted into a test that ignores the agent’s
speed by replacing physical time by interaction steps, as follows:

Definition 19. Anytime Universal Intelligence Test disregarding Time
We define Υvi(π, U,H,Θ) as the result of a modified version of the al-

gorithm in Definition 18, which can be stopped anytime. In Definition 18,
we replace physical time by interaction steps (line 6 changes into “n ← 1
(step)”), and these are updated by the formula n ← dn+ n/2e (line 21).
And V π

µ ‖τ is replaced by V π
µ (n) (line 18).

Note that in this case, testing a very slow agent would take much more
time than testing a very fast agent.

6. Examples

In order to illustrate some of the features of the test specified in Definition
18, we present some examples of environment classes. We show simple ex-
amples on restricted classes first, and then we show some richer environment
classes considering universal (Turing-complete) machines.

6.1. A Very Simple Environment Class

Consider the same test setting as in Example 2 with some modifications.
In this setting, the agent can press one of n (with n > 2) possible buttons
(A = {B1, B2, ..., Bn}), raw rewards are just the removal of one banana,
no banana, or the handing over of one banana (R = {−1, 0, 1}), and the
observation set is specified by n cups where some (or all) of them are black
and the rest are white. Initially, the colours of the cups are set randomly.
Each button (action) switches the colour of the corresponding cup. The
environment also changes the colour of one cup in each action i, with the
cup being i mod n. Initially, the colours of the cups are set randomly. Raw
rewards are −1 if all the cups are black, +1 if all the cups are white, and 0
otherwise (not all cups are of the same colour).

It is easy to see that this class of environments (let us call it Us) is reward-
sensitive, and it is also balanced. An agent πw that always presses the button
that corresponds to a black cup (unless no black cup is left, where any other
button is pressed randomly) makes (using Definition 18):

51

lim
Θ→∞

Υv(πw, Us, H,Θ) > 0

where the complexity function is H(µ) = n, with n being the number of cups.
For low values of Θ and a slow agent, the result may typically be equal to
0, such as a random agent, since the agent would not have time to react in
time.

It is clear that this environment class is very restrictive and uses a very
simplistic complexity function H, but it can be used to understand the adap-
tation process of Definition 18.

6.2. Environments as Finite State Machines

Consider a reference machine U1 which codes regular automata (finite
state machines), such that each state has a fixed raw reward in the range
between −1 and 1, transitions can only be made through three different
actions A = {a1, a2, a3}, and observations are always a subset of the set of
possible states O = {o1, o2, o3, . . . }, where o1 is always the initial state.

Additionally, we have some particular constraints:

• All the states must be accessible. That is, the resulting graph must be
fully connected.

• From each state it must be possible to access any other state with a
different reward in one or more steps. This implies that environments
are reward-sensitive.

• Any infinite random walk through the automaton has an expected re-
ward of 0. This implies that environments are balanced.

Given this setting, we can enumerate all the automata and compute their
Ktmax using a language or grammar to represent this class of automata, and
use this measure of complexity for H. One of the simplest possible automata
is shown in Figure 6. Note that the optimal behaviour for that environment
is: a2∗. Of course, in general, we would need an agent that is able to learn
regular patterns to behave well in other environments in this class.

This second example is much more interesting and richer than the first
one. Finite State Machines are an important class of machines in computer
science (and also in linguistics). This means that even with the set of con-
straints we have added, many environments and problems that can be mod-
elled with Finite State Machines and regular languages can be evaluated with

52

o1
a1

-1
o2

a2
a1

a2

a3

a3
+1

Figure 6: A simple automaton.

the anytime test. The novelty here would be that we start the test with sim-
ple automata, such as the one shown in Figure 6, which would be used for
a few interactions. Then we would move to more complex automata with
more interactions. This allows for a more effective measuring of any agent
with a short time limit. Regular automata is an important class, but it is not
universal (type 3 in Chomsky’s hierarchy). Also it does not contain other
agents and objects, as discussed in Section 2 (a requirement advocated by
many, such as [27]). Nonetheless, it is still an interesting environment class
to assess learners, before moving to type 2, type 1, and ultimately type 0.

6.3. A Very Simple Spatial Environment

Consider a reference machine U2 which codes a playing space or grid of
9× 9 cells. We denote cells by (X, Y), where X is the horizontal co-ordinate
and Y is the vertical co-ordinate. Our agent can move towards four possible
directions or stay in the same cell, with actions A = {L,R, U,D, S}, which
represent left, right, up, down, and stay, respectively. The limits of the
grid can be surpassed (so the grid movement is toroidal), appearing at the
corresponding cell at the other side of the grid (e.g. if placed at cell (1, 5),
we move Left (L), then we go to (9, 5)).

Two objects, called Good and Evil, move around the space. The eval-
uated agent can be at the same cell as either Good or Evil, but Good and
Evil cannot share the same cell (except for the initial state). The sequence
of movements of Good and Evil are given by a non-empty finite sequence
of actions (a path) which are repeated when exhausted. For instance, if the
path for Good, which is denoted by pathGood, is UULRDD, it means that
it will move according to the pattern UULRDDUULRDD... forever. If the
movements of Good and Evil make them go to the same cell, this is avoided

53

Figure 7: A representation of this class of environments. ⊕ denotes Good, 	 denotes Evil
and ♥ is the agent.

by randomly letting one of them move and keeping the other at its previous
cell.

Observations are 4 × 3 matrices where the i-index indicates the content
of the four adjacent cells in this order (Left, Right, Up, and Down) and the
j-index indicates the presence or absence of Good, Evil, and Limit. Limit
indicates that we are at some of the limits of the grid (which, as we have
stated, can be surpassed).

Raw rewards for an agent π are defined as the inverse of the Euclidean
distance plus 1 to Good minus the inverse of the Euclidean distance plus 1
to Evil, i.e.:

r =
1

d(π,Good) + 1
− 1

d(π,Evil) + 1

and using the surpassing rule to compute distances (i.e., toroidal distance).
Thus, the distance between cell (1, 5) and (9, 5) is 1.

It is easy to see that these environments are reward-sensitive (note that
both Good and Evil cannot be in the same cell), and they are also balanced
(one Good and one Evil with a symmetric reward function).

Given this setting, we can enumerate all the possible behaviours for Good
and Evil and compute their Ktmax. One of the simplest possible environ-
ments µ is the following one:

pathGood = L

pathEvil = R

54

In this environment µ, a random agent would score 0 (as it could not be
otherwise since all the environments in this class are balanced). A slightly
more intelligent agent could move randomly until it gets a reward that is
greater than 0.5. For instance, an example that this is possible is when Good
is at (4, 3), Evil at (6, 7), and the agent is at (4, 3) where the reward is
(1− 1/(5 + 1)) = (1− 0.17) = 0.83. Note that a reward that is greater than
0.5 always implies that the agent is at the same position as Good. When this
is the case, the agent will move left all the time with rewards close to 1. If a
collision between Good and Evil takes place, in half of the cases, it will make
a reward of less than 0.5. In this case, the agent will start moving randomly
again until a reward greater than 0.5 is found. With this policy, it is clear
that the average reward will be close to 1 in the limit.

This example is a good class of environments to show that the agent can
interact, in some way, with other simulated agents (very näıve in this case).

6.4. A General Spatial Environment Class

The above example can be easily extended to include objects. The grid
can be converted into any graph with a different (and variable) topology and
actions (e.g. using walls, as mazes), and many more objects and agents can
be introduced using Turing-complete languages to generate their movements.
The more we are able to generalise the better. This is what we have developed
in [53], a hopefully unbiased environment class with spaces and agents with
universal descriptional power, which can be summarised as follows:

• Space (Cells and Actions): The space is defined as a directed labelled
graph of nodes (or vertices), where each node represents a cell and arcs
represent actions. The topology of the space can be quite varied. Since
it is generated by a randomly-generated set of rules (using a universal
distribution), it can include any complex topology.

• Objects/Agents: Cells can contain objects (agents). Objects can have
any behaviour as long as they follow the space topology. Agents can
be reactive to other agents and can be defined to act deterministically
(or not) with different actions according to their observations. Objects
perform one and only one action at each interaction of the environment.
Good and Evil are special agents that must have the same behaviour.

• Observations and Actions: Actions allow the evaluated agent to move
in the space. Observations show the (adjacent) cell contents.

55

• Rewards: We use the notion of reward trace (left by Good and Evil)
and the notion of “cell reward”. An intuitive way of seeing this is that
Good and Evil leave a positive and a negative trace, respectively.

For the space (the graph), and the behaviour of all the agents, we use a
Turing-complete language based on rewriting rules (Markov algorithms). Of
course, this makes it difficult to compute Ktmax (especially for agents be-
cause, unlike the space, we need to check that the computation ends for each
interaction). This environment class is shown in [53] to be balanced and
reward-sensitive, and an interface has been defined so that it can be used to
test biological subjects and machines. For more details we refer the reader
to [53].

6.5. A Game Environment Class

In this last example of environment class, we are going to focus on games,
which is a restricted (but still important) set of tasks in artificial intelligence.
There have been several game languages that have been used to describe
games in a general way. For instance, Metagame [54][55] is a generalisation
of symmetric chess-like games, which uses generative grammars to create
many new games within a family or class of games. A more elaborate ap-
proach is the Game Description Language (GDL), which is used for the AAAI
General Game Playing Competition [56]. The first problem of using GDL in
our tests is that the computation of Ktmax in this language would be very
difficult. For example, tic-tac-toe (noughts and crosses) is represented in
about 40 rules. It can surely be expressed with fewer rules, but calculating
this is a challenging problem with current computing power even for this
simple game. Also, it would be very difficult to define the notion of balanced
environments for these games. We should change scores in order to make
a random agent score 0, which is not a typical result for random agents in
games. Furthermore, many of them are not reward-sensitive. Nonetheless,
we could use the number of rules (or characters) as an approximation of
Ktmax for each of the 90 games that have already been coded. We could
then calibrate the games by executing them on random agents repeatedly
(and change the scores accordingly), and we could also check whether there
is a dead-end in some of the games in order to ensure sensitivity. With this,
we could construct a pool of games to execute the anytime test.

The advantages of this arrangement (over the selection and contest rules
of the AAAI General Game Playing Competition) are that the test would be

56

anytime, and the complexity of games would be adjusted automatically by
using a (rough) approximation to Ktmax. An interesting observation here is
that the notion of difficulty of a game is generally considered unrelated to the
length of the shortest description for the game (its Kolmogorov complexity,
see e.g. [4, sec. 6]). For instance, the game Go is a very simple game in
terms of its rules, but it gets more elaborate as more matches are played.
In other words, it is one thing to solve a game (i.e., to play optimally, as
was recently done in [46] with checkers), and it is a different thing to simply
learn the rules of play. It is much easier to learn the rules of Go than to learn
the rules of Chess, and this is clearly related to the size of the description
of the game. In fact, in [38][39], an agent learns to play tic-tac-toe and a
partially observable pac-man from scratch (including the rules of the game)
by only using rewards. This conditioning setting is enough for the agent to
learn what the legal moves are, and what the goals of the game are. As a
result, trying to adapt the anytime testing philosophy and concepts to this
environment class would be a great source of results and insights into the
area of (artificial intelligence in) game playing.

7. Discussion

There is a common thesis in all intelligence tests (which is relatively well-
known in psychometrics and comparative cognition) that states that the time
which is required to evaluate the intelligence of a subject depends (1) on the
knowledge or features which are known about the subject (same species, same
culture, same language, etc.) and (2) on the adaptability of the examiner.
The former (1) is taken to the extreme in human classical psychometrics
(except for C.A.T.), where tests are just a form with questions explained in
natural language. The latter (2) is taken to the extreme with the Turing
Test or any kind of interview evaluation, where the examiners are humans
who dynamically adapt their questions according to the subject’s answers.
In this work, since we do not want to assume anything about the subject and
we want to evaluate any intelligence range, then we are forced to devise an
adaptive test. Adaptivity has many advantages, even in the case of evaluating
one single species or a segment from it as C.A.T. and Item Response Theory
practitioners advocate. However, adaptivity becomes necessary when we
want to get the best assessment of any kind of agent (human, non-human
animal or machine) in a limited period of time. A different aspect is how
to specifically design this adaptivity. We have made some choices, but there

57

may obviously be other possibilities.
An interesting discussion is that the adaptivity we consider here is a

non-intelligent adaptability. An example of intelligent adaptability of the
test is precisely the case where the examiner is an intelligent system. The
prototypical case is when the examiner is a human, such as in a Turing Test
or in any classical informal psychological test. We do not discard a possible
evaluation by an artificial intelligence examiner, provided it is clear how the
examiner operates in order to ensure no bias for any of the examinees. For
the time being, simpler notions of adaptive examiners such as those included
in this paper suggest a huge amount of possibilities, discussion, and material
for further investigation.

7.1. Main New Features

Let us sum up the changes we have made to the original definition of
Universal Intelligence. Legg and Hutter’s definition had three main formal
limitations: the use of uncomputable K; the use of all the environments;
and the use of all the interactions. Their definition also had other trickier
problems (time was ignored, the possible use of very slow environments) and
other general issues that affect any measurement based on several exercises
(how to weight them, especially if there are infinitely many).

The following items summarise the main features of the various new in-
telligence tests we have introduced.

• The distribution of environments is based on Ktmax (a bounded and
computable version of K). There are many reasons for this: we cannot
wait indefinitely for the environment; it is also computable and allows
us to make the sample.

• The definition now includes a sample of environments, instead of all
environments. The most important constraint to make this sample
more discriminative is that the environment must be reward-sensitive.

• In the anytime versions of the test, the complexity of the environments
is also progressively adjusted in order to make the test more effective
and less dependent on the chosen distribution and preference over sim-
ple or complex environments.

• Interactions are not infinite. Rewards are averaged by the number of
actions instead of accumulated. This makes the score expectation less
dependent on the available test time.

58

• Time is included. The agent can only play with a single environment
for a fixed time. This time limit progressively grows to make the test
anytime.

• Rewards and penalties are both included (rewards can range from−1 to
1). Environments are required to be balanced, meaning that a random
agent would score 0 in the limit in these environments. Otherwise, a
very inept but proactive/quick agent would obtain good results.

Some other less relevant features have also been introduced to make the
measurement consistent and feasible, especially in the anytime version of the
test.

7.2. Applicability and Implementation

The above modifications shape several new intelligence tests and hence
new intelligence definitions. Some tests include time and others do not. In
the same way, some tests are anytime and some others are not. In order to
clarify this, the relation among agents27, definitions and tests is summarised
in Table 4.

Although the recommended test is the anytime test that considers time
(Definition 18), Table 4 suggests that several kinds of tests can coexist and the
most suitable one can be chosen depending on the application, the subjects,
or the environment class. In fact, the different choices of either ignoring
time or taking time into account can be useful in refining or getting a better
understanding of the relation between speed and intelligence for a specific
individual. For instance, Definition 15 and Definition 19 ignore time, so they
should give the same score to two agents π1 and π2, where π2 behaves exactly
the same as π1 but π2 is slower. On the other hand, consider an agent π′1
that improves with experience (i.e., as long as it gets more observations, its
reward expectancy increases) and another agent π′2 that behaves exactly the
same as π′1 but π′2 is n times slower (with n > 1), meaning that it takes n
times longer to perform the same action in the test than π′1 does. For both
Definition 17 and Definition 18, we could expect that the intelligence score
for π′1 should be greater than for π′2.

27AIMML in Table 4 refers to a modification of AIXI that would consider the best action
following MML induction (a single theory) instead of a Bayesian posterior aggregation of
theories as AIXI does.

59

Envnt. Time Universal agent Universal definition Universal tests
Passive No Solomonoff

prediction [31]
Comprehension ability based
on C-test [7]

C-test [6]],
Induction-Enhanced
Turing Test [3][4]

Active No AIXI [44] Universal intelligence (infi-
nite number of environments
and interactions, simple
environments having more
weight) [9]

Impossible
(as originally defined)

Active No Brute-force or
computationally
intractable algo-
rithms (such as
AIXI) [44].

Universal intelligence (finite
number of environments and
interactions, use of Ktmax,
average rewards, complex en-
vironments aggregate simpler
environments)

Definition 15
(parametric, Υiii),
Definition 19
(anytime, Υvi)

Active Yes Levin search
agent [36],
MonteCarlo
AIXI [38][39],
AIMML

Universal intelligence (finite
number of environments and
interactions, use of Ktmax,
average rewards, complex en-
vironments aggregate sim-
pler environments, consider-
ing time)

Definition 17
(parametric, Υiv),
Definition 18
(anytime, Υv)

Table 4: Relation among intelligent agents, intelligence definitions, and tests.

60

According to this rationale, a good practice to evaluate an unknown agent
would be to first apply the time-sensitive anytime test (Definition 18) and
then use the time-insensitive anytime test (Definition 19) to see whether the
bad or good results can be attributed to a bad or good intelligence level or
because the agent is too fast or two slow. For instance, if we get very bad
results for a test with Definition 18 and then very good results with a test
with Definition 19, we can conclude that we have a very slow, but intelligent,
agent. However, for a slow agent, Definition 19 would require a lot of time.
Another option is to use the history of rewards and times used in the anytime
version of the test to calculate a pair of scores (potential intelligence, speed)
instead of a single aggregated value.

With regard to the implementation of the tests, many issues appear,
especially if we want to find a single environment class that can be used
to evaluate, for instance, adult humans, children, robots, software agents,
chimpanzees, and dolphins. With the examples in the Section 6 we have
got an idea of what a real test on universal environments could look like.
The question of feasibility is obviously a crucial one, since in any case some
approximations should be used. It is clear that the generation of a pool of
environments will require more effort, time, and computational power than
the C-test required (which also was based on a Turing-complete machine, an
accumulator machine, and the use of a computable, but intractable, com-
plexity function, such as Kt). The main reason is that now we deal with
environments, and not with sequences, making things harder. But again, the
startpoint is a computable definition, and the part that is computationally
the hardest only needs to be completed offline.

In any case, we do not expect to generate environments such as “checkers”
randomly using any reasonable (and not-biased) environment class, as we do
not find these problems in IQ tests. What we require is to generate a set
of environments of different complexity that can be used in a test, in such
a way that the intelligence of the system is inferred from the test, without
measuring the success in real scenarios. This is exactly the approach that was
taken in IQ tests for almost a century in order to evaluate human intelligence.
Instead of arbitrarily constructing and selecting the exercises from previous
tests to existing intelligent machines (which we may or may not have), we
propose constructing the exercises from a theoretical base and objectively
determining their a priori complexity.

It is also useful to see some related concepts that can also help to imple-
ment the tests. Since psychometric tests are quite similar to the C-tests, or

61

an imitation contest is similar to a Turing test, a question that arises here is:
Is there something we know that would be comparable to these “anytime in-
telligence tests”? The answer is affirmative: games, children’s games, where
children start with easy ones and soon move to more sophisticated ones. To
find an even closer parallelism, the anytime intelligence test is quite similar
to a random collection of videogames where players play for a short time
with the easy ones first and then they are given more time to play with other
more difficult ones if they succeed on the easiest ones. As usual, easy levels
can be passed quickly and difficult levels require more time.

The difference here is that the environments and interactions are much
more carefully chosen and controlled, and the main goal is not to choose
the environments that best entertain the agent, but those that are more
discriminative. In fact, many experiments in animal cognition have taken
place with virtual environments, which very much resemble computer games
(the evolution from 2D to 3D perception on the environments has also taken
place in this area, see e.g. [57]).

The selection of tasks and environments in psychometrics for human and
non-human animals, as well as in artificial intelligence, is typically performed
in such a way that only a specific cognitive ability (or frequently, just a task
ability) is evaluated, such as memory, planning, pattern recognition, chess,
etc. In our case, the use of a sample of environments that is universal helps
the test to measure the ability to perform well in a variety of environments.
Consequently, the main criticism of the C-test and compression-based tests,
i.e., that only induction/compression ability was measured, is no longer valid
in our setting. Of course, a biased sample of environments can favour some
abilities over others, but the inaccuracy and bias can only come by the choice
of the universal machine taken as a reference and by time constraints that
preclude us from making thorough tests with a sufficiently large sample of
environments.

Finally, a recurrent issue is whether a random selection of environments
matches the environments where real intelligent species are successful. This
is related to the notion of “social intelligence”. In psychometrics and compar-
ative cognition and, more recently, in artificial intelligence, the role of “social
intelligence” has been more and more vindicated, versus purely instrumental
tests. Some studies support the cultural intelligence hypothesis that states
that the quality step in human intelligence is social intelligence, which is
present to a much lower extent in apes and other animals. For instance, [17]
developed several specialised tests for children and apes (chimpanzees and

62

orangutans) that “support the cultural intelligence hypothesis and contra-
dict the hypothesis that humans simply have more general intelligence”. In
particular, they “found that the children and chimpanzees had very similar
cognitive skills for dealing with the physical world, but that the children had
more sophisticated cognitive skills than either of the ape species for dealing
with the social world”.

How can we create environments so that they have intelligent agents in-
side? It is enlightening (but perhaps of little practical use) to think that some
extremely complex infinite environments we consider as possible in the test
could contain “life”. In some of them, we could even find “intelligent beings”.
And, in some of them, these “intelligent beings” would be around from the
very start of the interaction with the environment. The only assumption for
this is to consider intelligence to be a merely computable thing. When we say
that it is perhaps of little practical use, it is because the complexity of these
environments is extremely high and the probability of one of them appearing
by chance is almost zero. Therefore, we cannot bind the evaluation of social
intelligence to this remote chance.

However, this a priori remote probability is in fact a much higher a pos-
teriori probability if we think in terms of evolution. The notion of life, as
we know it, implies several individuals and several species competing in the
same environment. It is then natural to expect that any intelligent biological
being has come through millions of years of evolution interacting with other
individuals, competing with other species, and possibly collaborating (and
developing languages) with individuals from its own or other species. This
means that a social environment should not only be probable but even nec-
essary, and that a great proportion of the world’s complexity surrounding a
natural individual is given by other agents that we usually refer to as animals
and plants. Consequently, we require inserting these other agents into the
environments (see [32, sec. 0.2.7] for a similar discussion).

One option would be to first evaluate many agents alone (including the
agent that we want to be evaluated). Then we could insert some agents of
similar intelligence into some environments (many possibilities exist here)
and then evaluate the behaviour of the agent in these enriched environments
where agents have to compete and/or collaborate, using, e.g., the anytime
test framework.

63

8. Conclusions

This paper represents a very important challenge which might have strong
and direct implications in many fields (e.g., artificial intelligence, psychomet-
rics, comparative cognition, and philosophy). We have developed a set of
tests and, especially, an anytime intelligence test that can be applied to any
kind of intelligent system (biological or artificial, fast or slow).

The name anytime comes from the idea that we can obtain a rough ap-
proximation of the intelligence of an agent in a small amount of time and
much better approximations in more time. The term also originates from
the fact that we introduce time in the definition of intelligence and we also
adapt the time scale to the agent’s in order to be able to evaluate very slow
and very fast intelligent agents, by also incorporating these times into the
measurement.

It is fair to recognise that the first anytime intelligence test in artificial
intelligence is the Turing test. The Turing test requires a human for its
implementation, it is anthropomorphic, and it tests humanity rather than
intelligence; however, it is anytime at least in the sense that the more time the
examiner is allowed to interact with the examinee, the higher the accuracy of
the result. Any test based on an interview (by a human) is usually anytime,
since it is generally adaptive.

One of the key claims and hypotheses that is considered here is that intel-
ligence is defined as an average that converges in the limit, i.e., for infinitely
large environments. Many very complex environments have simple patterns
and, consequently, the performance of an agent that is slightly better than
random should be slightly greater than 0. Note that for this to be true, it
is important to realise that no “dead code” appears in the environments;
therefore, using a Ktmax (or K) to evaluate the complexity of the environ-
ments is a conditio sine qua non (using the length of the description of the
environment or some other notions of complexity not based on algorithmic
information theory would not work).

Some other less determinant choices are our selection of environments.
We have restricted environments to be reward-sensitive and to be balanced,
which changes rewards from a range between 0 and 1 into a range between −1
and 1, which must be centred for random agents. We think that in general
we can modify any environment to be balanced, while preserving its essence.
In fact, as we show in some examples in Section 6, we present environment
classes with universal behaviours that comply with all these properties.

64

Despite its scientific interest from a theoretical point of view, we expect
that, in the near future, practical applications and a plethora of test in-
stances and variants may arise for multi-agent systems, games, collaborative
platforms, social networks, psychometrics, animal comparative cognition, etc.
In the medium term, the results of this research will be of utmost relevance to
grade, classify, and certify a surfeit of intelligent agents and bots, according
to their universal intelligence.

More precisely, the acceptance and use of these tests could allow new
research breakthroughs to take place:

• Progress in artificial intelligence could be boosted because systems
would be evaluated. Contests and competitions would foster and pro-
vide enormous feedback information to improve intelligent systems.
This would not only be possible on artificial general intelligence with
universal reference machines, but we could also evaluate restricted ar-
tificial problems (mazes, sequence predictions, classification problems,
games, etc.) using restricted versions of the reference machines (classes
of environments), like those shown in some examples here, and a proper
choice of the samples and assessment of the complexities.

• New generations of CAPTCHAs [19][20] that take into account some of
the ideas of these tests could be developed. For instance, CAPTCHAs
are usually non-interactive, and they typically have one single question.
In the medium term, more sophisticated CAPTCHAs will be needed
since it is becoming easier and easier to crack them by bots. In the long
term, very fast adaptations of the anytime tests could be used instead.

• Certification tests would be devised in order to automatically decide
whether an unknown agent can be accepted in a service or a collabo-
rative project. In other words, we would be able to establish cognitive
requirements in order to admit an agent in a project, service, or ap-
plication. If it passes, then we can make the agent/assistant learn its
tasks through the use of rewards.

• In the long term, these tests will be necessary to determine when we
reach the “Technological Singularity” (the point in evolution where a
species is able to build a system as intelligent as itself28). This point

28The term ‘singularity’ can be traced back to a conversation between Von Neumann and

65

is placed by some (optimistic) researchers about twenty years from
now. This means that in approximately that time, a battery of tests
for different kinds of factors and environment classes will be required,
since intelligent systems will converge sooner on some intelligent factors
than others. And once the technological singularity is surpassed, we will
require a test to measure the evolution of intelligence beyond human
intelligence (and it is clear that the Turing Test or related contests will
not be useful for that). Additionally, a test like the one presented here
(and the theory behind it) will help to focus the ethical debate that
will be generated as the moment of the singularity nears.

Making an analogy between machine intelligence tests and psychometrics, we
would expect at least the same applications that psychometrics have today
in education, recruitment, and therapy in the world of artificial intelligence,
where the areas would be knowledge acquisition, agent cognitive certification,
and intelligent system (re)design.

As a consequence, future work around many different lines is possible.
Implementation and experimentation using the tests are at the top of the
list. Experimentation on any kind of subjects (humans, non-human animals,
artificial intelligent systems29) would bring valuable information from which
we could learn lessons and improve the tests. The battery of experiments
should be enlarged with the use of different classes of environments. The
implementation using universal machines and its administration to real sub-
jects (e.g., humans, as we did with the C-test in [6] and [7]) is certainly a
challenge because of the computational resources needed, but it is one of the
combinations where we can obtain the most useful information. Neverthe-
less, implementations on restricted environment classes are also of utmost

Ulam which is referred by Ulam [58] in 1958. A more explicit link to artificial intelligence
is made through the term “intelligence explosion”, introduced by Good [59] in 1965. The
magnitude of the “future shock” that we can expect from our AI expanded scientific
community and on social effects was first analysed by Solomonoff in 1985 as the “infinity
point” [60]. Finally, Vinge [61] popularised the term “Technological Singularity” in the
1990’s as we know it today.

29Intelligent systems, either biological or artificial, can be typically evaluated as indi-
viduals, but they can also be evaluated as a group, society, colony or swarm. This is
especially the case when the individuals are very simple entities that collaborate to have
higher ‘emergent’ intelligence. See [32, sec. 0.2.7, p545, col. 1] and [42, sec. 7.3] for
further discussion.

66

relevance in artificial intelligence. We now have a general theory of how
to evaluate agent performance for specific fields such as optimisation and
control problems, machine learning tasks, games, etc. Many specific areas
in artificial intelligence have different notions of complexity and different
“standards” to evaluate the performance of their systems in their tasks. For
instance, “maze learning” is clearly a problem (like any other problem) that
can be interpreted as a restricted environment class. In fact, a maze is not
very different from the environment that we used in the example of Section
6.3. Zatuchna and Bagnall [62], for instance, analyse mazes used in research
in the last two decades, develop a specific measure of “complexity”, and
try to determine which kind of learning agents behave best depending on
the complexity, by also using a specific measure of performance (based on
correctness, convergence, and memory). Extensive works, such as Zatuchna
and Bagnall’s paper, are not frequent (because they require an enormous
amount of work), but they are crucial for the real evaluation of progress in
artificial intelligence. In our opinion, these evaluation works would be much
more productive if they could be homologated under a grounded and com-
mon measurement of performance. The evaluation made in Zatuchna and
Bagnall’s paper (and many others, such as [63]) can be done as an instance
of the anytime intelligence test.

Much needs to be done on the reliability and optimality of the test.
Constructs from Computerized Adaptive Testing and Item Response Theory
(IRT) can be adapted here. An interesting open problem is whether it is pos-
sible to determine a theoretical item response function given an environment.
This would allow a direct adaptation of IRT here. The relation between speed
and intelligence is also an area where further research is needed. We think
it is possible to develop tests that are able to measure intelligence and speed
at the same time, without a batch combination of tests as we suggested in
Section 7.

There is also much theoretical work ahead. Some of the decisions that
we made in some of the definitions could be presumably refined or improved.
Some theoretical results could be obtained for some of the tests (convergence,
optimality, etc.), as well as some expected scores proven for different kinds
of agents and classes of environments (as Legg and Hutter do for the AIXI
agent and as we have (trivially) done here for random agents). In this regard,
the completion of the taxonomy of environments, as it appears in [29], is
one of the most appealing things to do first, including the new environment
definitions that we have introduced here. A formalisation of the notion of

67

social environment, its parametrisation, and its inclusion in the taxonomy
would also be necessary.

Overall, the practical experimentation and the theoretical exploration of
the notion of anytime universal intelligence test will help understand the
implications of some of the choices introduced in this paper.

Acknowledgements

This work has benefited from discussions and suggestions made from many people
from different areas. We thank Shane Legg and Marcus Hutter for some early dis-
cussions in 2005 about the relation between their work and ours. These discussions
and their work on universal intelligence finally provided us with enough motiva-
tion (and also some more scientific basis and constructs) to resume our earlier
work and embark on this work. The primitive idea of an anytime intelligence test
and its applicability to areas out of artificial intelligence matured from insightful
comments from Maŕıa Victoria Hernández-Lloreda and Sergio España. Finally,
this paper has been greatly improved with the comments and suggestions from the
reviewers. The authors are also gateful for a grant from the Spanish Ministerio de
Educación y Ciencia (MEC) and funding from Monash University during 2004 for
a three-month research stay of one of the authors to collaborate with the other, as
well as the funding for the MEC projects EXPLORA-INGENIO TIN 2009-06078-
E, CONSOLIDER-INGENIO 26706 and TIN 2007-68093-C02, and GVA project
PROMETEO/2008/051.

References

[1] A. M. Turing, Computing machinery and intelligence, Mind 59 (1950) 433–
460.

[2] M. Li, P. Vitányi, An introduction to Kolmogorov complexity and its appli-
cations (3rd ed.), Springer-Verlag New York, Inc., 2008.

[3] D. L. Dowe, A. R. Hajek, A computational extension to the Turing Test,
in Proceedings of the 4th Conference of the Australasian Cognitive Science
Society, University of Newcastle, NSW, Australia.

[4] D. L. Dowe, A. R. Hajek, A computational extension to
the Turing Test, Technical Report #97/322, Dept Com-
puter Science, Monash University, Melbourne, Australia, 9pp,
http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html.

[5] D. L. Dowe, A. R. Hajek, A non-behavioural, computational extension to the
Turing Test, in: International conference on computational intelligence &

68

multimedia applications (ICCIMA’98), Gippsland, Australia, 1998, pp. 101–
106.

[6] J. Hernández-Orallo, N. Minaya-Collado, A formal definition of intelligence
based on an intensional variant of Kolmogorov complexity, in: In Proceed-
ings of the International Symposium of Engineering of Intelligent Systems
(EIS’98), ICSC Press, 1998, pp. 146–163.

[7] J. Hernández-Orallo, Beyond the Turing Test, Journal of Logic, Language
and Information 9 (4) (2000) 447–466.

[8] S. Legg, M. Hutter, A universal measure of intelligence for artificial agents,
in: International Joint Conference on Artificial Intelligence, Vol. 19, 2005, p.
1509.

[9] S. Legg, M. Hutter, Universal intelligence: A definition of ma-
chine intelligence, Minds and Machines 17 (4) (2007) 391–444,
http://www.vetta.org/documents/UniversalIntelligence.pdf.

[10] C. S. Wallace, D. M. Boulton, An information measure for classification,
Computer Journal 11 (2) (1968) 185–194.

[11] C. S. Wallace, D. L. Dowe, Minimum message length and Kolmogorov com-
plexity, Computer Journal 42 (4) (1999) 270–283, special issue on Kolmogorov
complexity.

[12] C. S. Wallace, Statistical and Inductive Inference by Minimum Message
Length, Springer-Verlag, 2005.

[13] P. Sanghi, D. L. Dowe, A computer program capable of passing IQ tests,
in: Proc. 4th ICCS International Conference on Cognitive Science (ICCS’03),
Sydney, Australia, July 2003, pp. 570–575.

[14] C. Spearman, General Intelligence, Objectively Determined and Measured,
The American Journal of Psychology 15 (2) (1904) 201–92.

[15] S. E. Embretson, K. M. S. McCollam, Psychometric approaches to under-
standing and measuring intelligence, in: R. Sternberg (Ed.), Handbook of
intelligence, Cambridge University Press, 2000, pp. 423–444.

[16] S. E. Embretson, A cognitive design system approach to generating valid
tests: Application to abstract reasoning, Psychological Methods 3 (3) (1998)
380–396.

[17] E. Herrmann, J. Call, M. V. Hernández-Lloreda, B. Hare, M. Tomasell, Hu-
mans have evolved specialized skills of social cognition: The cultural intelli-
gence hypothesis, Science Vol 317 (5843) (2007) 1360–1366.

69

[18] G. Oppy, D. L. Dowe, The Turing Test, in: E. N. Zalta (Ed.),
Stanford Encyclopedia of Philosophy, Stanford University, 2008,
http://plato.stanford.edu/entries/turing-test/.

[19] L. Von Ahn, M. Blum, J. Langford, Telling humans and computers apart
automatically, Communications of the ACM 47 (2) (2004) 56–60.

[20] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, M. Blum, RE-
CAPTCHA: Human-based character recognition via web security measures,
Science 321 (5895) (2008) 1465.

[21] R. Madhavan, E. Tunstel, E. Messina, Performance Evaluation and Bench-
marking of Intelligent Systems, Springer, September, 2009.

[22] L. A. Zadeh, Fuzzy logic, neural networks, and soft computing, Communica-
tions of the ACM 37 (3) (1994) 84.

[23] L. A. Zadeh, Toward human level machine intelligence-Is it achievable? The
need for a paradigm shift, IEEE Computational Intelligence Magazine 3 (3)
(2008) 11–22.

[24] V. C. I. Ulinwa, Machine Intelligence Quotient, VDM Verlag Saarbrücken,
2008.

[25] J. Laird, A. Newell, P. Rosenbloom, Soar: An architecture for general intelli-
gence, Artificial Intelligence (1987) 33: 1–64.

[26] J. E. Laird, Extending the Soar cognitive architecture, in: P. Wang,
S. Franklin (Eds.), Artificial General Intelligence 2008: Proceedings of the
First AGI Conference, IOS Press Inc, 2008, pp. 224–235.

[27] J. E. Laird, R. E. Wray III, Cognitive Architecture Requirements for Achiev-
ing AGI, in: M. Hutter, E. Baum, E. Kitzelmann (Eds.), Artificial General
Intelligence, 3rd International Conference AGI, Proceedings, “Advances in
Intelligent Systems Research” series, Atlantis Press, 2010, pp. 79–84.

[28] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, The
MIT press, 1998.

[29] S. Legg, Machine Super Intelligence, Department of Informatics, University
of Lugano, June 2008.

[30] M. Hutter, General discounting versus average reward., in: J. L. Balcazar,
P. M. Long, F. Stephan (Eds.), ALT, Vol. 4264 of Lecture Notes in Computer
Science, Springer, 2006, pp. 244–258.

[31] R. J. Solomonoff, A formal theory of inductive inference. Part I, Information
and control 7 (1) (1964) 1–22.

70

[32] D. L. Dowe, Foreword re C.S. Wallace, The Computer Journal 51 (5) (2008)
523–560, Christopher Stewart WALLACE (1933–2004) memorial special is-
sue.

[33] R. J. Solomonoff, Does algorithmic probability solve the problem of induc-
tion?, in: D. L. Dowe, K. B. Korb, J. J. Oliver (Eds.), Proceedings of the
Information, Statistics and Induction in Science (ISIS) Conference, World
Scientific, Melbourne, Australia, 1996, pp. 7–8, iSBN 981-02-2824-4.

[34] M. Hutter, Open Problems in Universal Induction & Intelligence, Algorithms
2 (3) (2009) 879–906.

[35] J. Schmidhuber, The Speed Prior: a new simplicity measure yielding
near-optimal computable predictions, in: Computational Learning Theory,
Springer, 2002, pp. 123–127.

[36] L. A. Levin, Universal sequential search problems, Problems of Information
Transmission 9 (3) (1973) 265–266.

[37] M. Hutter, Universal algorithmic intelligence: A mathematical top→down ap-
proach, in: B. Goertzel, C. Pennachin (Eds.), Artificial General Intelligence,
Cognitive Technologies, Springer, Berlin, 2007, pp. 227–290.

[38] J. Veness, K. S. Ng, M. Hutter, D. Silver, A Monte Carlo AIXI Approxima-
tion, in: CoRR, Arxiv preprint arXiv:0909.0801, 2009.

[39] J. Veness, K. S. Ng, M. Hutter, D. Silver, Reinforcement learning via AIXI
approximation, in: Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI-10), 2010, pp. 605–611.

[40] J. Searle, Minds, brains, and programs, Behavioral and Brain Sciences 3 (3)
(1980) 417–457.

[41] M. Mahoney, Text compression as a test for artificial intelligence, in: Pro-
ceedings of the National Conference on Artificial Intelligence, AAAI, John
Wiley & Sons Ltd, 1999, pp. 970–970.

[42] D. L. Dowe, MML, hybrid Bayesian network graphical models, statistical
consistency, invariance and uniqueness, in: J. Wood and M. R. Forster and P.
Bandyopadhyay (Ed.), Handbook of the Philosophy of Science - Philosophy
of Statistics, Elsevier, 2010, pp. 861–942.

[43] J. Hernández-Orallo, On the computational measurement of intelligence fac-
tors, in: A. Meystel (Ed.), Performance metrics for intelligent systems work-
shop, National Institute of Standards and Technology, Gaithersburg, MD,
U.S.A., 2000, pp. 1–8.

71

[44] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability, Springer, 2005.

[45] B. Hibbard, Bias and no free lunch in formal measures of intelligence, Journal
of Artificial General Intelligence 1 (1) (2009) 54–61.

[46] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake, P. Lu,
S. Sutphen, Checkers is solved, Science 317 (5844) (2007) 1518.

[47] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Mathematics
160 (2) (2004) 781–793.

[48] J. Hernández-Orallo, On evaluating agent performance in a fixed period of
time, in: M. Hutter, E. Baum, E. Kitzelmann (Eds.), Artificial General In-
telligence, 3rd International Conference AGI, Proceedings, “Advances in In-
telligent Systems Research” series, Atlantis Press, 2010, pp. 25–30.

[49] H. E. Wainer, Computerized adaptive testing: A Primer (2nd Edition), Mah-
wah, NJ: Lawrence Erlbaum Associates, 2000.

[50] F. M. Lord, Applications of item response theory to practical testing prob-
lems, Mahwah, NJ: Erlbaum, 1980.

[51] S. E. Embretson, S. P. Reise, Item response theory for psychologists, Lawrence
Erlbaum, 2000.

[52] S. E. Embretson, Measuring Human Intelligence with Artificial Intelligence,
in: R. J. Sternberg, J. Pretz (Eds.), Cognition and intelligence: identifying
the mechanisms of the mind, Cambridge Univ Pr, 2005, pp. 251–267.

[53] J. Hernández-Orallo, A (hopefully) non-biased universal environment class
for measuring intelligence of biological and artificial systems, in: M. Hut-
ter, E. Baum, E. Kitzelmann (Eds.), Artificial General Intelligence, 3rd In-
ternational Conference AGI, Proceedings, “Advances in Intelligent Systems
Research” series, Atlantis Press, 2010, pp. 182–183.

[54] B. Pell, Strategy generation and evaluation for metagame playing, PhD thesis,
University of Cambridge, 1993.

[55] B. Pell, A strategic metagame player for general chesslike games., in: Proceed-
ings of the 12th National Conference on Artificial Intelligence, Association for
the Advancement of Artificial Intelligence (AAAI), 1994, pp. 1378–1385.

[56] M. Genesereth, N. Love, B. Pell, General game playing: Overview of the
AAAI competition, AI Magazine 26 (2) (2005) 62.

[57] D. A. Washburn, R. S. Astur, Exploration of virtual mazes by rhesus monkeys
(macaca mulatta), Animal Cognition 6 (3) (2003) 161–168.

72

[58] S. Ulam, Tribute to John von Neumann, Bulletin of the American Mathemat-
ical Society 64 (3) (1958) 1–49.

[59] I. J. Good, Speculations concerning the first ultraintelligent machine, Ad-
vances in Computers 6 (1965) 31–88.

[60] R. J. Solomonoff, The Time Scale of Artificial Intelligence: Reflections on
Social Effects, Human Systems Management 5 (1985) 149–153.

[61] V. Vinge, Technological singularity, in: VISION-21 Symposium sponsored
by NASA Lewis Research Center and the Ohio Aerospace Institute, March,
Vol. 30, 1993, p. 31.

[62] Z. Zatuchna, A. Bagnall, Learning mazes with aliasing states: An LCS algo-
rithm with associative perception, Adaptive Behavior 17 (1) (2009) 28–57.

[63] D. Weyns, H. Parunak, F. Michel, T. Holvoet, J. Ferber, Environments for
multi-agent systems, state-of-the-art and research challenges, in: Environ-
ments for multi-agent systems, Vol. 3374 of Lecture Notes in Computer Sci-
ence, Held with the 3th Joint Conference on Autonomous Agents and Multi-
agent Systems, AAMAS, Springer-Verlag, 2005, pp. 1–48.

73

